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Abstract-A theoretical mode! is derived which describes the non-linear response of a suspended 
elastic cable to small tangential oscillations of one support. The support oscillations, in genera!, 
result in parametric excitation of out-of-plane motion and simultaneous parametric and external 
excitation of in-plane motion. Cubic non-linearities due to cable stretching and quadratic non- 
linearities due to equilibrium cable curvature couple these motion components in producing full. 
three-dimensional cable response. In this study, a two-degree-of-freedom approximation of the 
mode! is employed to examine a class of in-plane/out-of-plane motions that are coupled through the 
quadratic non-linearities. A first-order perturbation analysis is utilized to determine the existence 
and stability of the planar and non-planar periodic motions that result from simultaneous paramet- 
ric and extcmal resonances. The analysis leads to a bifurcation condition governing planar stability 
and results highliat how planar stability is reduced and non-planar response is enhanced whenever 
a “two-to-one” internal resonance condition exists between a pair of in-plane and out-of-plane cable 
modes. This two-to-one resonant behavior is clearly observed in experimental measurements of 
cable response which are also in good qualitative agreement with theoretical predictions. 

t. BACKGROUND AND INTRODUCTION 

Cables are lightweight, flexible structural elements that are capable of transmitting forces, 
carrying payloads and conducting signals across large distances. Due to their overall 
flexibility, cables are susceptible to oscillations which may ultimately degrade their perform- 
ance. The study of cable dynamics has enjoyed a long and rich history [l J and recent 
developments in this field are reviewed in [Z, 33. Key results of the linear theory of 
suspended cables, which are prerequisite to the current investigation, are briefly reviewed 
first. 

The three-dimensional, linear response of the planar, suspended cable of Fig. 1 is the 
superposition of two decoupled motions: one lying in the plane defined by the cable 
equilibrium and one normal to this plane. The natural frequency spectrum for suspended 
cables with small sag and level supports is shown in Fig. 1 as a function of a cable parameter 
introduced by Irvine and Caughey [4]- For the symmetric suspensions considered, the 
in-plane vibration modes are either antisymmetric or symmetric with respect to the 
mid-span. Furthermore, only the symmetric modes involve (first-order) cable stretching and 
their frequencies depend strongly on the cable parameter. By contrast, the natural frequen- 
cies of the antisymmetric in-plane modes and all out-of-plane modes are independent of the 
cable parameter. The natural frequencies of in-plane modes exhibit thefrequency crussouer 
behavior shown in Fig. 1. As discussed in [4], the frequency crossovers reflect the transition 
of each symmetric in-plane cable mode from that of a taut string (&‘n + 0) to that of an 
inextensible cable (n/n + co). 

Hagedom and Schafer [SJ demonstrate that geometrical non-linearities significantly 
influence the non-linear frequencies for free, in-plane cable oscillations approximated by 
a singe-degree-of-freedom model. In such models, both hardening and softening behaviors 
may occur depending on the relative contributions of the quadratic and cubic non- 
linearities as determined by the cable parameter and the amplitude of oscillation (6,7]. The 
quadratic non-linearities produce a static “drift” towards the center of curvature and result 
in planar oscillations that are not symmetric about the equilibrium position [7]. In general, 
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Fig. 1. Natural frequency spectrum for elastic cable with small sag and level supports. Katural 

frequencies of first four in-plane and out-of-plane modes are plotted vs i..:n where i.’ is the cable 
parameter introduced in [4]. (---) symmetric in-plane modes: (----) antisymmetric in-plane modes; 

(. . ) out-of-plane modes. The nth crossover region is centered about i..‘a = 2n. 

the non-linearities couple the in-plane and out-of-plane motions leading to free, three- 
dimensional response. Luongo et al. [S] utilize a simplified two-degree-of-freedom model 
for transverse in-planeand out-of-plane motions to demonstrate the existence of planar and 
non-planar monofrequent oscillations. Monofrequent oscillations, however, arise only for 
particular initial conditions and, in general, modal coupling leads to a beating-type 
exchange of energy between in-plane and out-of-plane modes [9]. This coupling is en- 
hanced by internal resonance between the in-plane and out-of-plane modes [lo]. Qualitat- 
ively similar conclusions hold for cables with arbitrary sag and either horizontal or inclined 
supports [ 111. 

Benedettini and Rega [ 123 examine the existence and stability ofplanar, periodic motions 
under conditions of primary external resonance. For suspensions with very small sag, the 
dominant non-linearities are cubic and hardening and lead to one unstable and two stable 
periodic solutions near resonance. For larger sag, quadratic non-linearities dominate, and 
up to five periodic solutions may exist close to primary resonance. Subsequent analyses 
focus on secondary external resonances resulting in second- and third-order superhar- 
monies Cl33 and one-half- and one-third-order subharmonics [14]. Periodic planar and 
non-planar motions are examined in [IS] under conditions of primary in-plane and out- 
of-plane external resonance. Takahashi and Konishi [ 163 demonstrate that pure in-plane 
excitation may initiate the large out-of-plane response observed experimentally in [ 17). In 
[16], the out-of-plane response problem is linearized about the periodic in-plane motion 
and cast in the form of coupled Hill’s equations from which regions of instability are 
numerically determined. 

The above investigations of non-linear cable dynamics, with the possible exception of 
[16], are largely unsubstantiated by experimental results. The present study is motivated by 
laboratory measurements of non-linear cable response excited by very small tangential 
oscillations of one support. The support oscillations lead to parametric excitation of 
out-of-plane and antisymmetric in-plane modes, and simultaneous parametric and external 
excitation of symmetric in-plane modes. For the technically important class of cables 
considered in the tests, the cable parameter was in the neighborhood of the first crossover in 
Fig. 1. As a result, the natural frequency of the fundamental symmetric in-plane mode was 
nearly twice that of the fundamental out-of-plane mode. The support motion frequency was 
selected to excite principal parametric resonance of the fundamental out-of-plane mode, 
and as a consequence of internal tuning, this excitation could simultaneously excite primary 
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Fig. 2. Measured cable response induced by small oscillations of one support. Periodic orbits 
described by the cable cross-section are plotted in the normal Liz x U, plane; refer to Fig. 9. 
The sequence (a)-(d) shows the periodic orbits generated by slowly increasing the excitation 
amplitude F. (a) P = 0.12 mm (f= 3.2 x 10-s); (b) F = 0.43 mm (f= 11.2 x IO-‘); 

(c) F = 0.50 mm (f= 13.8 x IO-‘); (d) F = 0.85 mm (/= 23.5 x IO-‘). 

external resonance of the fundamental symmetric in-plane mode. Under these conditions, 
the measured cable response was either planar or highly coupled as illustrated by the test 
results of Fig. 2. Pure planar, periodic response was observed for small excitation (support 
motion) amplitude; see, for example, Fig. 2a and b. Beyond a critical excitation amplitude, 
the response became suddenly non-planar and consisted of large in-plane and very large 
out-of-plane harmonic components. Furthermore, as illustrated in Fig. 2c and d, the 
frequencies of the in-plane and out-of-plane motions were commensurable and in the ratio 
of 2: 1, respectively. As described herein, these experimental results are evidence of the 
strong modal interactions which couple a commensurable pair of in-plane and out- 
of-plane modes through quadratic non-linearities. 

Nayfeh and Balachandran [ 181 review the many previous investigations that focus on the 
response of internally resonant, two-degree-of-freedom systems coupled through quadratic 
non-linearities. These have considered the periodic, quasi-periodic and chaotic responses 
excited by external resonances (e.g. [19, 203) or parametric resonances (e.g. [21, 223). 
Related experimental studies have verified the saturation phenomenon [23] and the 
existence of various amplitude- and phase-modulated responses [24]. Within this context, 
the current investigation considers the existence and stability of periodic motions that arise 
under conditions of simultaneous external and parametric resonances. External and para- 
metric resonances may interact strongly in single-degree-of-freedom systems as seen, for 
example, in [25]. 

This investigation begins with the derivation of a continuum model that describes the 
non-linear, three-dimensional response of an elastic cable to tangential oscillations of one 
support. An asymptotic form of this model is developed for suspensions with small 
equilibrium curvature. The asymptotic model is discretized using Galerkin’s method and 
a two-degree-of-freedom approximation is used to examine coupled in-plane/out-of-plane 
response. Using the method of multiple scales, a first-order perturbation analysis provides 
four ordinary differential equations governing amplitude and phase modulations under 
conditions of simultaneous principal parametric resonance of the out-of-plane mode and 
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primary external resonance of the (symmetric) in-plane mode. These equations are used to 
determine the existence and stability of steady-state periodic motions and the bifurcation 
condition governing planar stability. Results from a companion experimental study are 
presented. 

2. THEORETICAL MODEL 

A theoretical model is derived that describes the non-linear dynamic response of an 
elastic cable about a curved equilibrium configuration (Fig. 3). The planar equilibrium 
configuration describes a cable which sags between two level supports under the influence of 
gravity. The response considered is three-dimensional and arises from small, prescribed 
oscillations F(T) = FcosRT of the left support in the direction tangential to the equilib- 
rium cable. This response CJ(S, T) is decomposed into the three displacement components 
Ur(S, T), Uz(S, T), U3(S, T) aligned, respectively, with the local tangential I,, normal 12, 
and binormal I3 unit vectors defined by the equilibrium configuration. Here, S denotes the 
equilibrium arc length coordinate measured positive from the left support S = 0 to the right 
support S = L and T denotes time. 

2.1. Continuous model 
The equations governing three-dimensional response are derived by applying Hamilton’s 

principle 

[I 

l-2 
d (fI, - IT, + IIw)dT 1 = 0 (1) 7-l 

in which IIT, I& and IT, denote the cable kinetic energy, cable strain energy, and the work 
done by gravity, respectively. 

Following [7,26], the cable is modeled as a one-dimensional, homogeneous elastic 
continuum obeying a linear stress-strain law. The flexible cable is assumed to undergo 
uniform axial extensions described by the Lagrangian strain of its centerline. This hnite- 
strain description leads to the non-linear strain-displacement relationship [26] 

E = h -t u,,s - KU2 I- fE(~,.s - KU,? + v2.s + KUi12 + 63 (2) 

in which E is the Lagrangian strain of the cable in the final (dynamic) configuration and K(S) 
and P(S) are the cable curvature and tension in the equilibrium configuration. EA denotes 
the section stiffness of the cable cross-section. Using (2), the strain energy of the cable in the 
final configuration becomes [26] 

f-I3 = IT; + 
I 

L [PQ + $EAe:]dS (3) 
0 

where 

Ed = u 1.S - Ku2 + +CW,., - KU2Y I- vJ2.s + KL1112 f 61 (4) 

is the dynamic component of the Lagrangian strain and IT& is the strain energy of the 
equilibrium cable. The kinetic energy of the cable is 

nr= o~fpC(~,,r)2+~~,.r)2+(LI,.,)zl~S 
J 

(5) 

FwrRT 

Fig. 3. Definition diagram. Elastic cable of length L suspended between a fixed support (S = L) and 
an oscillating support (S = 0). (- - - -) equilibrium configuration; (-1 dynamic configuration. 
C denotes three-dimensional displacement from equjlib~um and is referred to the Frenet triad 

(1,.1,,1,). 
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where p is the cable mass/length. The work done by gravity g is 

L 

l-I w=I-&+ 

I 
- pg[CJ,sintI + U1costI]dS (6) 

0 

where fIk is the gravitational potential energy of the equilibrium cable and 8 is the angle of 
inclination of the unit tangent vector II from the horizontal. 

Substitution of equations (2)-(a) into Hamilton’s principal (l), and integration by parts 
where needed, leads to the following non-linear equations of motion: 

Tangential component Ur: 

C(P + EAEd)(l + U1.s - KU2)l.s - CP + E&)KW2,s + KU,)1 

-pgsintI=pU,,z,. 

Normal component UZ: 

(7) 

C(P + EM(U2.s + KU1)I.s + [(P + E&W(l + u,,s - KU211 

- pgcose = pU2Jr. (8) 

Binormal component iJ3 : 

[(P + EA&d)(U3.S)l,S = Pu3,TT. 

And the boundary conditions: 

(9) 

Ur(0, T) = FCOSRT, U,(L, T) = 0 (10) 

U,(O, 7-) = U,(L, T) = 0, v = 2, 3. (11) 

Equations (7)-(g) contain both quadratic and cubic non-linearities which derive from the 
stretching of the cable centerline. For planar response, the quadratic non-linearities capture 
the softening of the cable element as it deflects towards its center of curvature. For 
non-planar response, the quadratic non-linearities include key terms which couple in-plane 
and out-of-plane motions. In the limit of vanishing equilibrium curvature, the quadratic 
non-linearities also vanish and equations (7)-(g) describe the non-linear response of a taut 
string. 

The non-homogeneous terms appearing in equations (7)-(g) vanish under conditions of 
static equilibrium and lead to the following solution for the equilibrium tension and 
curvature [26]: 

P(S) = JP,2 + [pg(S - L/2)32 (12) 

PSPO 
K(S) = P,2 + [pg(S - L/2)32 (13) 

where PO is the equilibrium cable tension at the mid-span (S = L/2). These solutions, which 
describe the classical catenary cable of elementary statics, appear as non-constant coeffic- 
ients in the homogeneous equations of motion reduced from equations (7)-(g). 

2.2. Asymptotic model for small curvature 
In most applications, the cable supports substantial static tension (PO 2 pgL) and the 

resulting equilibrium curvature is quite small. Under such conditions, the parabolic approx- 
imation to the catenary* is used which corresponds to the second-order Taylor series 
expansions of equations (12) and (13) about the mid-span: 

P = PO, K=E* 
PO 

The non-dimensional curvature k = KL = pgL/P, is then identified as a small parameter 
and is used to order the terms in the equations of motion (7)-(g) in obtaining an asymptotic 

l This approximation is valid whenever K S I/L or. equivalently, whenever D/H S l/8 where D is the sag of the 
equilibrium cable at the mid-span and H is the horizontal distance between the supports [l J. 
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model for small curvature. Using the equilibrium solutions (12) and (13) in equations (7)-(9) 
and neglecting terms of order kZ and higher provides 

~:{ui., - kur + !tCn:.~ + &IL = ul.rt (15) 
({d + ~:CUI., - kuz + +( 4,s + ~~.,,I)~~.,)., + kdh,, - kuz) = U2.n (16) 

({u: + L+CUL, - kU2 + +(U:., + 4.,,1)~~.,)., = U3, It (17) 

where the following non-dimensional quantities have been used: 

S 
s = -, 

L 
Ui=: i= 1,2,3 

kc!?!? PO 1 u2=__=- EA 

PO’ I PgL k’ 
u; = - 

Pg L 
(18) 

In equations (15)-( 17), the quantities u1 and u, represent the (non-dimensional) propagation 
speed of longitudinal waves and transverse waves along the cable, respectively. 

Next, the acceleration term in equation (15) is neglected under the assumption that the 
cable stretches in a quasi-static manner. This assumption, discussed in detail by Irvine and 
Caughey for elastic cables [4], is based on the fact that the propagation speed for 
longitudinal waves greatly exceeds that for transverse waves and, therefore, the ratio uf/t$ is 
of order k or smaller. Proceeding in a manner similar to [7], integration of equation (15) 
provides 

n1.r - kuz + tCn:., + &I = s(t) (19) 

where g(t) is an arbitrary function of time. Integrating again and using the boundary 
conditions (10) provides 

n,(s, r) =fcosor + g(r)s + 
I 

’ Ckn,(tl, r) - t{ Cuz.,,h 012 + CU3.&, t)12}ldtl (20) 
0 

where 

g(t) = -fcosot + 
I 

’ C- ku,h 0 + t{CUz.,h, 012 + [u3,,h N2}ldrl (21) 
0 

and 

j=;, 
L 

w=R -. 
J 

(22) 
g 

Equations (20)-(22) show that, for small support oscillations of order k, the tangential 
displacement ui(s, t) remains of order k. 

Substituting the above into equations (16) and (17) results in the following non-linear 
equations of motion governing the two transverse displacement components u,(s, t), v = 2,3 

cd + h7(t)lU3.s5 = U3.u 

[u: + dg(t)lur.ss + ku:gO) = U2.n 

with the boundary conditions (11) 

(23) 

(24) 

I&(0, t) = I&(1, t) = 0. (25) 

Equations (20)-(25) constitute an asymptotic form of the three-dimensional equations of 
motion which is valid in the limit of(i) small equilibrium curvature, and (ii) low-frequency 
response. For the linear theory [43, the accuracy of the quasi-static stretching assumption 
deteriorates for high-frequency response involving high-order elastic modes [26]. In equa- 
tions (23) and (24), the sum [u: + ufg(t)] represents the total cable tension composed of the 
static component 0, and the dynamic component ufg(t). The latter includes the dynamic 
tension induced by support motion which leads to the parametric excitation terms 
- (u:fcos wt)u,,, in equation (23) and - (u:fcos ot)u2,u in equation (24). Note also that 
the term kufg(t) in equation (24) includes the external excitation term - krffcosot. This 
excitation in the normal direction arises from the tangential motion of the support due to the 
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(non-zero) equilibrium curvature. Finally, note that upon linearization and setting f= 0, 
equations (21) and (23)-(25) reduce to the familiar linear cable theory of Irvine and Caughey 
143 with their cable parameter i.’ = u:/(L$)~. 

2.3. Discrete model 
A two-degree-of-freedom model is proposed for analyzing modal interactions in coupled 

in-plane/out-of-plane response. The discrete model is determined from equations (21)-(25), 
through application of Galerkin’s method using the separable solutions: 

u3(-% t) = C3(t)e3j(S) (26) 

u*(s, f) = u2(r)~2i(s). (27) 

The comparison functions 03j(S) and 0,((s) are chosen to be the jth out-of-plane and ith 
in-plane vibration mode shapes associated with free, linear response [4]. The natural 
frequencies associated with these mode shapes are denoted by w3 and at, respectively. 
Substitution of equations (26) and (27) into equations (21) (23) and (24) and application of 
Galerkin’s method yields the two-degree-of-freedom model: 

ti3 + f&3 = - Zfi,d, - 2(ffi3cos~Ut)c3 + Zlu2L’3 + j&1;: + /?2t’:U3 (28) 

ii2 + o:L;2 = - 2pzL.2 - 2(f/!*cosOt)U~ +fj~coswt + xzC: 

+ r3u: + p302L’: + p4u: (29) 

in which modal damping terms have been added. Note that the amplitudes of the para- 
metric and external excitation terms are not independent and, in equations (28) and (29), 
their dependence on the support motion amplitude f is emphasized. The coefficients 
appearing in equations (28) and (29) are defined in the Appendix. Also in the Appendix, 
it is shown that the quadratic non-linearities and the external excitation vanish 

(21 = z[L =f2 = 0) only when the in-plane mode Ozi(S) chosen in equation (27) is 
antisymmetric. 

3. PERTIJRBATIOl’i ANALYSIS 

The influence of modal interactions in coupled in-plane/out-of-plane cable response is 
examined through a perturbation analysis. The present analysis, which considers the 
coupling produced by the quadratic non-linearities in equations (28) and (29), is used to 
determine planar and non-planar periodic motions and their stability. The analysis high- 
lights how the non-planar response is enhanced whenever a two-to-one internal resonance 
condition exists between the in-plane and out-of-plane modes. The higher-order coupling 
produced by the cubic non-linearities is not considered presently and is the subject of 
numerous related investigations of the non-linear dynamics of taut strings; see, for example, 
those reviewed in [27]. 

The method of multiple scales [27] is used to obtain a first-order approximation to 
equations (28) and (29) in terms of the uniform expansions 

L’,(t) = Eti,l(LJ, t,) + E2L’,2(t0, fl), v = 2, 3. (30) 

Here, the small parameter E is introduced to distinguish motions with frequencies of order 
~2, o3 and o occurring at the fast time scale t,, = t from motions occurring at the slower 
time scale t, = ct. The slower time-scale motions represent small modulations of the 
response produced by the (quadratic) non-linearities, damping, parametric excitation, and 
external excitation. Thus, the small damping, parametric excitation and external excitation 
terms appearing in equations (28) and (29) are ordered as 

PY = W”, p. = EPYI for v = 2, 3 f2 = E2f2 (31) 

so that their influence is felt at the same level of approximation as the non-linearities. 
Following the standard details of the multiple-scales method, one obtains the zeroth- 

order solutions 
rVI = A,(tl)eiw*‘O + cc, v = 2, 3 (32) 
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where the AJrr) are the slowly modulated response amplitudes and cc denotes the complex 
conjugate of the preceeding terms. The equations governing the first-order solutions are: 

(33) 

32u22 
--I-W:v22= -2i0, 

3t: 

(2 + p2A2)e1U:‘. + Z2A:el?w>h 

_ fp2 2, e”” - WlL3 
+ +JYtei”‘O + cc + nst, (34) 

where the overbar ( - ) also denotes complex conjugate and nst represents terms that are 
always non-secular. The (non-linear) terms proportional to z1 and a2 become secular 
provided (i) the in-plane mode is symmetric’ and (ii) o 2 5 20~. These conditions arise in 
technical applications and are satisfied whenever the cable parameter L/n z 2n where 
n = 1,2, . . . . These values of the cable parameter define the regions of frequency crossover 
illustrated in Fig. 2 and result in a cable described herein as tuned. The terms proportional 
to py become secular under the conditions of principal parametric resonance: o zz 20,, 
v = 2 or 3. Furthermore, for a tuned cable, principal parametric resonance of the out- 
of-plane mode (w z 2w3 z 02) leads to primary external resonance of the in-plane mode; 
see secular term proportional tof2 in equation (34). This study focuses attention on the 
latter case. 

For the former case of principal parametric resonance of the in-plane mode, the equations 
(33)-(34) constitute an example of what is termed the “second form” in [18]. For this case, 
however, the response of a suspended cable is likely to involve more than simply two modes. 
Note that in the first crossover region of Fig. 1, o z 2~~ implies that (o/n z 4). Conse- 
quently, the excitation frequency is twice the natural frequencies of the first symmetric and 
antisymmetric in-plane modes as well as the second out-of-plane mode and all three modes 
would experience simultaneous principal parametric resonances. Furthermore, the para- 
metric resonance of the first symmetric in-plane mode could drive the fundamental out- 
of-plane mode through the two-to-one internal resonance described above. The current 
two-degree-of-freedom model would be insufficient to represent cable response in this case. 

3.1. Parametric resonance of out-of-plane mode 

In this case, excitation energy is imparted to the cable through principal parametric 
resonance of the out-of-plane mode and, simultaneously, through primary external reson- 
ance of the in-plane mode, provided the cable is nearly tuned. These conditions are 
described by 

W = 203 + Ep, 203 = 02 + EC7 (35) 

where p and (T denote parametric and internal detuning parameters, respectively. Combin- 
ing these definitions reveals an “external detuning parameter” given by the sum p + c which 
governs the external resonance of the in-plane mode. These definitions are used in equations 
(33) and (34) together with the polar representations A,(tl) = a,(tl)ei”.“1’/2, v = 2,3, and the 
vanishing of the secular terms provides the following four equations governing the ampli- 
tude and phase modulations 

!ala2aJsiny, + tfp3a,siny2 = 0 

d& 
w3a3F + !rla2a3cos-j3 - +fp3a3cosy2 = 0 

1 
(37) 

t The antisymmetric in-plane modes do not induce first-order cable stretching and the quadratic non-linearitics 
vanish; refer to the Appendix. 
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wLa2dr + ir2a:cosy3 + ~ff2cos(y2 - 7,) = 0 
1 

(39) 

where 
i’J([,) = - 24, + 42 - at1, Yz(tl) = - 243 + Ptl. (40) 

The singular points of equations (36)-(39) correspond to steady-state, periodic solutions 
and are described by the conditions da,/dt, = dyy/dt, = 0, v = 2,3. Using these conditions 
in (36)-(40) leads to 

a3Ow3p + bla2cosy3 - 4fp3cos72) = 0 (41) 

a,( - 03,u3 + ax, a2 sin y3 - *fp3 sin y2) = 0 (42) 

02(p + ala2 + ir2a$cosy3 + +ff2cos(72 - 73) = 0 (43) 

- w2p2a2 - ss12a:siny3 + )ff2sin(-j2 - y3) = 0 1 (44) 

which define all singular points. Two types of solutions to equations (41)-(44) exist which 
are distinguished by either vanishing or non-vanishing out-of-plane motion. For vanishing 
out-of-plane motion, the solutions 

a3 E 0, a2= *if (49 

give the coordinate amplitudes for planar (linear) response. For non-vanishing out-of-plane 
motion, the solutions are determined numerically using standard Newton-Raphson iter- 
ation. This procedure yields up to two more (non-trivial) solutions, depending on the 
particular choice of model parameters. The stability of all periodic solutions is assessed by 
linearizing equations (36)-(39) about the singular points and examining the eigenvalues 
associated with the linearized variational equations. 

Representative solutions are illustrated by the amplitude-forcing plots of Figs 4 and 5 for 
a typical tuned suspension described by the model parameters given in Table 1. These 
figures show the amplitudes a, and a3 of all periodic solutions as functions of the (non- 
dimensional) support motion amplitude J The differences observed in these figures arise 
from selecting different values for internal and parametric detuning. In these and all 
following figures, the solid (dotted) curves denote stable (unstable) periodic solutions. It 
should also be noted that, in all examples considered, the periodic solutions loose stability 
at a turning point. However, it is likely that, for other model parameters, stability may also 
be lost through Hopf bifurcations as noted in the special cases of pure primary external 
resonance or pure principal parametric resonance [18]. 

Shown in Fig. 4 are two examples of suspended cables with vanishing external detuning 
(p + (T = 0). For the perfectly tuned system of Fig. 4a (p = G = 0), the non-planar (non- 
linear) solution bifurcates from the planar (linear) solution (45) at the extremely small 
support motion amplitude denoted by fb. In this instance, fb z 0.11 x 10M5 and the non- 
planar response is readily excited for any support motion amplitudes exceeding a mere 
0.00011% of the cable length. The planar solution remains stable for f < fb and loses 
stability at the bifurcation value f = fb. For f > fb, the planar solution is unstable and 
a single, stable non-planar solution exists. Note that, for the non-planar solution, the 
in-plane response amplitude a2 steadily increases with increasing support motion ampli- 
tude. This feature becomes more pronounced in Fig. 5 for cases of non-vanishing external 
detuning. Thus, the primary parametric resonance considered here disrupts the saturation 
phenomenon that would otherwise occur for this model in the presence of the primary 
external resonance alone [18]. Figure 4b shows similar behavior for the case of vanishing 
external detuning but non-vanishing internal and parametric detunings (p = - rr = 15). 
The non-vanishing internal and parametric detunings substantially retard the bifurcation 
which, in the present case, now occurs at fb z 1.64 x lo-‘. 
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Non-vanishing external detuning leads to multiple periodic solutions and jump phe- 
nomena as illustrated by the cases shown in Fig. 5. For the case of positive external detuning 
(p + cr = 30) considered in Fig. Sa, a turning point exists at the support motion amplitude 
denoted byf, and two stable periodic solutions coexist over the rangef, <frfb. In this 
range, the initial conditions ultimately determine whether the cable response is planar or 
non-planar. Upon slowly increasing the support motion amplitude from zero, the response 
will remain planar while approaching fb from below. At f = fb, the planar motion becomes 
unstable and the cable response becomes suddenly non-planar. This upward jump involves 
an increase in the amplitude of the in-plane response. Starting with f >fb and slowly 
decreasing f leads to a downward jump in a2 atf=f;. These trends are reversed in the case 
of negative external detuning (p + CJ = - 30) as illustrated in Fig. 5b. In particular, slowly 
increasing f from zero in this case leads to a large decrease in u2 at f = fb and, over the range 
shown, the resulting non-planar response is dominated by out-of-plane motion. 

Figures 6 and 7 show representative amplitude-frequency plots obtained for the sus- 
pended cable example of Table 1. The figures show the amplitudes of all periodic solutions 
as functions of the parametric detun~ng (support motion frequency). In all the cases shown, 
the support motion amplitude is constant (f = 2 x lo-‘f and the observed differences arise 
from selecting different values for the internal detuning parameter. 

In the case of vanishing internal detuning ((r = 0) considered in Fig. 6, the planar response 
remains stable away from the parametric and external resonances which occur, simultan- 
eously, at p = 0. Siowfy increasing the support motion frequency starting from far below 
these resonances leads to unstable planar response at p z - 5.53. At this detuning, the 
response becomes suddenly non-planar and the amplitude of the in-plane mode experiences 
a slight downward jump. The response remains non-planar until p z 15.90 where the 
amplitudes of both the in-plane and out-of-plane modes experience large downward jumps. 
When starting far above these resonances and slowly decreasing the support motion 
frequency, non-planar response will first occur near p =Z 6.22 and vanish below p z - 10.0. 
Note that, in contrast to the case of pure external resonance [ 181, the additional parametric 
resonance considered here renders the amplitude-frequency curve asymmetric with respect 
to the p = 0 axis for the case CT = 0. From Fig. 6, also note that the non-planar response 
shown in Fig. 4a is driven by simultaneous parametric and external resonances. 

Significant internal detuning separates the parametric and external resonances as shown 
by the amplitude-frequency plots of Fig. 7. For the case of significant positive internal 
detuning (I = 15 considered in Fig. 7a, the external resonance is centered about p = - 15 
and lies to the left of the parametric resonance centered about p = 0. In this example, the 
stable response is planar in the extreme regions p < - 16.86 and p > 13.85 and also in the 
intermediate region - 12.78 c p < - 3.77. Slowly increasing the support motion fre- 
quency starting from well below the external resonance leads to a large upward jump in a3 
and a slight downward jump in a2 at p z - 16.03. As p z - 12.78 is approached from 
below, the amplitudes of the non-planar response components decrease rapidly and are 
continuous with those of the stable planar response in the intermediate region. Increasing 
the support motion frequency eventually produces a very rapid but continuous increase in 
43 and a modest and continuous decrease in a2 near p z - 3.77. The in-plane response 
reaches a Iocal minimum near p = 0 and increases thereafter until reaching the large 
downward jump in both o3 and a2 at p z 13.85. This downward jump is delayed until 
P x 15.00 when the excitation level is increased by 5% as shown by the position offt in the 
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solutions. 

amplitude-forcing plot of Fig. 5a. Consequently, the non-planar response depicted in Fig. 5a 
is driven primarily by the parametric resonance. 

Overall, the positive internal detuning greatly enhances the non-planar response near the 
parametric resonance. By contrast, the non-planar response at the parametric resonance is 
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greatly reduced in the case of significant negative internal detuning (p = - 15) as shown in 
Fig. 7b. In this case, the external resonance produces slightly larger non-planar response 
and lies to the right of the parametric resonance. Again, jumps occur at the extremes 
of the non-planar response regions (p z 3.00, 17.96) and the non-planar response is con- 
tinuous with the (stable) planar response at the boundary of the intermediate region 
(1.82 < p < 13.20). Finally, note that the non-planar response of Fig. 4b (a = - 15, p = 15) 
is mainly driven by the external resonance shown in Fig. 7b, while the non-planar response 
of Fig. 5b (a = - 15, p = - 15) is mainly driven by the parametric resonance. 

As illustrated in the above results, the planar response loses stability for model 
parameter values that lead to bifurcations of the singular points determined by equations 
(41~(44). Analysis of these equations leads to a closed-form expression for the bifurcation 
condition which governs the stability limit for planar response. Combining equations (41) 
and (42) provides 

a:[o:(!pZ + fi:, - +:a: + !r!fpJazcos (yz - 7,) - af2p:] = 0. (46) 

At the bifurcation point, both a, and the factor in brackets above vanish and a2 is given by 
equation (45). Under these conditions, substitution of equations (43) and (45) into the factor 
in brackets results in the bifurcation condition expressed in terms of the model parameters: 

&(W + P:) =fb2 
i 
ap:+ fi [ 

1 rl%PdP + 4 
4o:[p: +(P+a)Z] i@ + 2fi 11 . 

(47) 

Here, fb again denotes the support motion amplitude at the bifurcation. 
Figure 8 illustrates the bifurcation condition in the parameter plane defined by the 

support motion amplitude f and frequency p for the suspended cable example of Table 1. 
Three sets of curves are shown corresponding to three values of internal detuning. In all 
cases, stable planar response occurs only for values of (fI p) lying below the corresponding 
bifurcation curve defining fb. The bifurcation curves exhibit local minima at values of p that 
locate the positions of principal parametric resonance (p = 0) and primary external reson- 
ance (p + G = 0). Thus, the curve corresponding to d = 15 (a = - 15) possesses two local 
minima at p = 0 and p = - 15 (p = 15). These two resonances occur simultaneously at 
p = 0 for the perfectly tuned cable c~ = 0 and lead to an order of magnitude reduction in fb 
over the cases c = f 15 for p = 0. Thus, the two-to-one internal resonance is responsible 
for the large reduction in the planar stability region near conditions of principal parametric 
resonance. Note also that, for the perfectly tuned cable, bifurcations for a prescribed value 

Excitation Frequency, p 

Fig. 8. Bifurcation condition in the excitation amplitude/frequency plane. Curves give Jb for 
example of Table 1. (-) o = 0; (-.-) o = 15; (---) o = - IS. 
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of& occur at two values of p at either side of the combined parametric/external resonance; 
compare with Fig. 6 using fb = 2 x 10e5. By contrast, up to four values of p are associated 
with a prescribed value offb in the cases where the parametric and external resonances are 
separated (a = f 15); compare with Fig. 7 using fb = 2 x 10e5. 

4. PRELIMINARY EXPERIMENTAL RESULTS 

AS described in the Introduction, the non-linear response of a suspended cable under 
parametric excitation was first observed in a series of preliminary experimental tests. These 
tests were conducted using the cable test stand and instrumentation illustrated in Fig. 9. 

The cable used in the experiment is a small-diameter, woven nylon cord that is suspended 
between two supports at the same elevation. The horizontal position of the right support of 
the cable is adjusted to achieve a sag to span ratio corresponding to a cable parameter 
approximately within the first crossover region (j./rt z 2) shown in Fig. 1. The left end of the 
cable is attached to a voice-coil shaker vibration exciter whose axis is aligned with cable’s 
tangent. The shaker is driven by the sinusoidal output of a vibration exciter controller 
having controllable frequency and gain. A linear potentiometer fastened to the shaker 
provides direct measurement of the support motion amplitude. The response of the cable is 
measured using a special two-axis optical displacement probe developed in the laboratory. 
The probe, which follows from a previous design [28], utilizes a pair of linear diode arrays 
to measure the position of the cable cross-section in the normal (U, x U,) plane. Along both 
axes, the cable is illuminated by an external light source and the resulting shadows are 
focused onto the diode arrays. Each diode array consists of 256 photo diodes on 25 pm 
centers and, at any time, only a few diodes are covered by the cable shadow. A circuit was 
designed to continuously scan the diode array and to store the location of the covered 
diodes. Consequently, the location of the cable cross-section (shadow) can be measured and 
at scanning rates adjustable up to 5 kHz. The circuit outputs are recorded by a digital 
computer data aquisition system and are later calibrated. This probe makes non-contacting 
measurements of the large amplitude cable response and is capable of detecting the position 
of the cable cross-section (4.5 mm in diameter) in a 16 x 16 cm’ area to within 0.7 mm. 

To begin the experiment, the free response of the cable to initial conditions was measured 
to estimate the natural frequencies of the fundamental out-of-plane and symmetric in-plane 
modes as in [28]. These estimates indicated that w2 z 2w3 with small (positive) detuning 
.W z 0.4 and confirmed that the cable was within the region of the first crossover. In the 
remainder of the experiment, the support motion frequency was held constant and the 
exciter gain was adjusted in a quasi-static manner. After each gain change, the cable 
response was allowed to return to steady state and sampled signals from the probe were 
recorded and the support motion amplitude was noted. The support motion frequency was 

Fig. 9. Schematic of cable test stand and instrumentation. Cable: 4.5 mm diameter woven nylon 
cord, p = 12.0 g/m. EA = 1900 N. Two-axis optical displacement probe: measures position of cable 
cross-section in the normal plane defined by the normal Us and binomtal U, displacements; range: 
16 x 16 cm*; accuracy: 0.7 mm; frequency response: < 5 kHr Shaker: voice-coil shaker generates 

small, tangential oscillations of left support which are measured by attached potentiometer. Signal 
generator: drives shaker with controllable frequency and gain; frequency resolution: 0.001 Hr Data 
acquisition unit: microcomputer equipped with an A,‘D board used to sample, store and reduce data. 
In current test: cable length I_. = 3.615 m; probe placed 1.16 m from shaker; frequency constant 

3.300 Hz. 
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Fig. 10. The sequence (a)-(d) shows the periodic orbits generated by slowly decreasing the excita- 
tion amplitude F from maximum value of F = 0.85 mm; refer to Fig. 2d. (a) F = 0.51 mm 
(f= 14.1 x lo-‘); (b) F = 0.22 mm (/= 5.96x lo-‘); (c) F = 0.20 mm (f= 5.50x lo-‘); 

(d) F = 0.14 mm (/= 3.82x 10-s). 
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selected to excite the principal parametric resonance of the out-of-plane mode and the 
(positive) parametric detuning was estimated to be ep z 0.8. 

Figure 2 shows a sequence of periodic responses that are representative of those meas- 
ured while slowly increasing the support motion amplitude & For the low-amplitude cases 
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of Fig. 2a and b, the response is planar and grows linearly with increasing /: Increasing 
f beyond a critical value fb 5 12.0 x 10m5, leads to large non-planar response. In the 
periodic orbit shown in Fig. Zc, the in-plane motion completes two cycles for every cycle of 
the out-of-plane motion. This clear two-to-one resonant response is further enhanced at 
larger values offas shown in Fig. 2d. In this extreme case, a support motion amplitude of 
only 0.85 mm leads to large in-plane and out-of-plane responses with amplitudes 1.08 and 
6.73 cm, respectively. Slowly decreasing the amplitude leads to a gradual reduction in the 
non-planar response until it suddenly collapses to pure in-plane response below a 
critical value /I z 5.7 3 10m5; refer to Fig. 10. Note also that the orbit shown in 
Fig. 10a (f= 14.1 x 10m5) for decreasingIreproduces that in Fig. 2c (f= 13.8 x 10m5) for 
increasing /: 

The results from the entire test are summarized in the amplitude-forcing plot of Fig. Il. 
The solid (open) symbols represent response amplitudes measured for increasing (decreas- 
ing) J: The range 0 <f<;fb defines the region of (stable) planar response which partly 
overlaps the region for (stable) non-planar response /I <_f due to non-vanishing external 
detuning. Note that the curves sketched through the data in Fig. 11 are in good qualitative 
agreement with those of Fig. 5a for the case of positive internal and parametric detuning. 
The calculated results in Fig. 5a are, however, carried out for values offwell beyond those 
indicated in Fig. 11. 

5. SUMMARY AND CONCLUSIONS 

A theoretical model is derived which describes the three-dimensional, non-linear response 
of a suspended elastic cable to tangential oscillations of one support. The model shows that 
small support oscillations lead to parametric excitation of out-of-plane motion and simul- 
taneous parametric and external excitation of in-plane motion. A two-degree-of-freedom 
approximation of the model is employed to examine a class of in-plane/out-of-plane 
motions that are coupled through the quadratic non-linearities created by non-zero equilib- 
rium cable curvature. 

A first-order perturbation analysis is utilized to determine the existence and stability of 
planar and non-planar periodic motions. The analysis focuses on the periodic motions that 
arise under conditions of principal parametric resonance of the fundamental out-of-plane 
mode for a suspended cable near the first crossover region. In this region, a two-to-one 
internal resonance exists between the fundamental out-of-plane mode and the first symmet- 
ric in-plane mode. For such cases, support motions producing principal parametric reson- 
ance of the out-of-plane mode also produce primary external resonance of the in-plane 
mode and the separation of these two resonances is proportional to the magnitude of the 
internal detuning. Furthermore, the principal parametric resonance disrupts the saturation 
phenomenon that would otherwise occur in the presence of primary external resonance 
alone. A bifurcation condition governing planar stability is derived and results indicate that 
the two-to-one internal resonance greatly reduces planar stability and enhances non-planar 
response. Such tuned resonant behavior is clearly observed in experimental measurements 
of cable response which are also in good qualitative agreement with theoretical predictions. 
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APPENDIX: DISCRETE MODEL 

The parameters appearing in the discrete model in equations (28) and (29) are determined through application of 
Galerkin’s method using the in-plane and out-of-plane vibration mode shapes associated with free, linear response. 
The (normalized) out-of-plane modes correspond to those of a taut string and are given by 

f?,,(s) = Jz sinjns (48) 
with natural frequencies 

W,=jnu,, j=l,2,3 ,.... (49) 

The in-plane modes are those associated with an elastic cable [4] and are distinguished as being either symmetric 
or anti-symmetric with respect to the mid-span. The (normalized) antisymmetric in-plane modes, 

Bli(s) = &sin ins, i = 2, 4, 6, . . . (antisymmetric) (50) 

with natural frequencies 
wz = mu,. i = 2. 4. 6, . . . , (51) 

induce no dynamic tension (no first-order cable stretching) and are identical to those of a taut string. The 
(normalized) symmetric in-plane modes, 

e2*(s) = 2Q 
[ 
sinE!$si~t2!&2.l] 

COeJ,/2~,) , 
i = 1, 3, 5, . . (symmetric) 

I 

induce (first-order) dynamic tension and have natural frequencies oz determined by the roots of the characteristic 
eauation. 

In equation (53). 

(53) 

(54) 
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is the cable parameter introduced by Irvine and Caughcy 143 and in equation (52) 

and 

Then. 

Q= 
(o*,k,)[l + cos(w*/c,)] 

(w,:‘c,)[Z + cos(02/it.,) - 3sin(w1 ;c,)] 
(55) 

is a normalization constant. 
In equations (28) and (29). the coefficie;ts of the non-linear terms I, - fll, the parametric excitation terms PI 

and p,, and the external excitation termJ1 are determined after first evaluating the quantities. 

0 antisymmetric 0,,(s) 

2v,[cos(oJc,) - I] 1 
(56) 

wzsin(c+ic,) 
symmetric L&,(s) 

(57) 

(58) 

Notice that for antisymmetric in-plane modes, g2 = 0, and the quadratic non-linearities and external excifation all 
vanish (2, = z2 = z, =f2 = 0). 


