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A robust gain scheduled controller combined with a parameter estimator 
produces a robust adaptive controller for  a broad class o f  deterministic but 
uncertain systems, provided the estimator is efficient in a new, deterministic 
sense. 
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Abstract--Sufficient conditions are given under which an 
adaptive control system is robustly stable and achieves a 
guaranteed robust asymptotic performance level equal to 
that of the robust controller given perfect parameter 
information. The conditions are general in several respects. 
For example, structured non-parametric uncertainty (e.g. 
block diagonal) is allowed, as well as exogenous noise inputs. 
In addition, the structure of the parametric uncertainty is 
very general, and even allows for parameters which scale the 
uncertainty magnitudes. This allows one to identify the size 
of the non-parametric uncertainty and to schedule the 
controller based on this size. Finally, the robust gain 
scheduled controller is largely unrestricted. Identification 
mechanisms which are proven to satisfy the sufficient 
conditions are not given here and, for the general problem, 
have not yet been developed. However, an example of such 
a mechanism for a subclass of systems does exist and is 
referenced. For the general problem, this paper provides 
properties to be sought in the development of robust 
identification laws for robust adaptive control. 

1. INTRODUCTION 
ROBUST CONTROL seeks stability and pe r fo rmance  
guarantees  in the presence  of  model ing  errors.  
The  model ing errors  are typically character ized 
as real pa rame te r  uncertaint ies  a n d / o r  dynamical  
uncertainties with f requency  domain  magni tude  
bounds  (examples of  the latter include Bode ,  
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1945; Horowi tz ,  1963; Doyle  and Stein, 1981; 
Leh tomaki ,  1981). 

Adapt ive  control  is the combina t ion  of  an 
adjustable control ler  and a plant  pa rame te r  
est imation process which drives the control ler  
adjustment .  In effect, adapt ive  control  is 
designed to ove rcome  pa ramete r  uncertainty.  
Stable approaches  have been ob ta ined  (e.g. 
Narendra  et al., 1980; Morse ,  1980; Goodwin  et 
al., 1980). 

Robus t  adapt ive control  is adapt ive  control  in 
the presence of  non-paramet r ic  model ing  uncer-  
tainty. It is a challenge receiving much a t tent ion,  
and various robust  stability results have been  
obta ined  (e.g. Kreisselmeier  and Ande r son ,  
1986; Narendra  and A n n a s w a m y ,  1987; Krause  
et al., 1989; Or tega  et al., 1985; I o a n n o u  and 
Tsakalis, 1986). 

Of  course,  these various results have limita- 
tions (as all results do).  A m o n g  the practically 
significant limitations are the structural  assump- 
tions regarding the parametr ic  and non-  
parametr ic  uncertainty.  This is in contras t  to  the 
generali ty in uncer ta inty  s tructure one  can find 
in robust  multivariable control  theory  (e.g. 
Doyle ,  1985; Doy le  et al., 1982). 

A n o t h e r  l imitation is an absence of  an on-line 
identification o f  the non-paramet r ic  uncer ta inty  
magni tude.  This magni tude  is relevant  to the 
assignment of  a control ler  to maximize the robust  
pe r formance  of  the system. Pr ior  bounds  can be 
used in place of  identified bounds  in determining 
the robust  control ler  assignment,  at the cost  o f  
potential  conservatism. 

Recent  research directions may  eventual ly 
address these limitations. Separa te  f rom the 
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problem of adaptive control, progress has been 
made in structured uncertainty model invalida- 
tion (Smith and Doyle, 1989; Smith, 1989). This 
problem is a precursor to robust parameter 
identification with structured non-parametric 
uncertainty. Progress has been made in consis- 
tent parameter set estimation (Younce, 1989; 
Younce and Rohrs, 1990; Kosut et al., 1990), 
which creates a potential for adaptive algorithms 
which take advantage of the additional informa- 
tion provided by the membership set of the 
parameters rather than a single element of the 
set. Likewise, progress has been made in on-line 
modeling error characterization (LaMaire and 
Valavani, 1987; Helmicki et al., 1990a, b; 
Goodwin and Salgado, 1989; Younce, 1989; 
Kosut, 1987, 1988), which creates a potential for 
adaptive algorithms which take advantage of the 
particular value of the modeling error rather 
than assuming the worst case. 

Progress in these areas could lead to robust 
stability and performance guarantees in an 
adaptive control context. This paper contributes 
to this development by providing sufficient 
conditions under which an adaptive system yields 
robust stability and asymptotic performance 
guarantees. Structured uncertainty is allowed, 
and adaptive systems with and without on-line 
modeling error characterization are addressed. 
The adaptive controller robust stability and 
asymptotic performance guarantees are as strong 
as that of the robust gain scheduled controller 
given perfect plant parameter information. 

Abstractly, the conditions are: 

Condition 1. Uncertainty bounds 
The unknown parameters must lie in some 

known bounded set. Energy bounds (L 2 with 
exponential weighting) are required for ex- 
ogenous disturbances. Energy-gain bounds (in- 
duced norms) are required for non-parametric 
dynamical modeling errors. Some additional 
uncertainty information, such as uncertainty 
structure, is allowed but not required. 

Condition 2. Lipschitzian gain schedule 
The controller gains must be a locally 

Lipschitzian function of the plant parameter 
estimates. This eliminates some switching con- 
trol schemes, but still admits an interesting class 
of gain schedules. 

Condition 3. Robust performance of the gain 
scheduled controller 

In this paper, the "gain scheduled controller" 
is the controller which would result from perfect 
plant parameter information, using the designed 
gain schedule. There is a family of possible gain 

scheduled controllers since there is a set of 
possible true plant parameters. We require that 
for any value of the true plant parameter, the 
corresponding ideal gain scheduled controller 
must provide robust performance. This is a 
natural minimum requirement when one takes 
the philosophical perspective that an adaptive 
control system consists of a gain scheduled 
controller and an identification mechanism. This 
perspective is not universal in adaptive control 
theory; it is perfectly legitimate to regard an 
adaptive controller as a single nonlinear control 
mechanism. 

Condition 4. Non-degeneracy 
The "robustly performant" gain scheduled 

system must also have bounded gain in response 
to certain added inputs. Moreover, the perfor- 
mance level must not degrade discontinuously 
for arbitrarily small errors in the controller 
parameters. These are properties which are 
normally expected of a robust control system, 
and are not an issue in practice. They are 
explicitly included here merely because of the 
necessity of precluding degenerate counter- 
examples. 

Condi6on 5. Asymptotic efficiency 
The parameter estimate must remain bounded, 

and be asymptotically efficient in a newly-defined 
deterministic sense. Effectively, the estimate 
must in the limit as time approaches infinity 
become consistent (modulo decaying transients) 
with recent measurements and prior system 
information. 

Even more abstractly, this paper shows that 
robust control plus asymptotically efficient 
estimation yields robust adaptive control. In this 
sense, this paper provides a separation principle 
for adaptive control which puts theoretical rigor 
behind the common engineering heuristic de- 
composition of an adaptive controller into a 
scheduled controller and an identification proc- 
ess. Note that robust control plus parameter 
convergence to the true value would also provide 
stability and performance, but does not serve to 
separate the problem since the convergence 
depends on excitation, which in turn depends on 
the adjustable controller parameter behavior, 
which in turn depends on the parameter estimate 
behavior. The use of efficiency in this paper, 
rather than parameter convergence, allows true 
separation; efficiency is a property of the 
estimation algorithm, not a joint property of the 
algorithm and excitation. As such, estimation 
efficiency allows us to conclude adaptive 
controller stability and performance without 
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excitation assumptions and without parameter  
convergence to the true value. 

Overall, the treatment of this paper is fairly 
philosophical. The benefit of this is generality; 
robust parameter  adjustment mechanisms may 
now be developed under various uncertainty 
scenarios. Application of the robust parameter  
adjustment mechanisms in an adaptive controller 
will automatically lead to robust asymptotic 
performance if the relatively simple abstract 
conditions are satisfied. 

A concrete identification mechanism which 
also provides a guarantee of robust asymptotic 
performance has been given in Krause et al. 
(1989), although that paper and this paper are 
entirely different. Krause et al. (1989) addresses 
special uncertainty structure, while this paper 
allows a very broad class of uncertainties (e.g. 
block diagonal and of arbitrary interconnection 
to the known dynamics). Moreover ,  Krause et 
al. (1989) provides a particular complete 
recursive robust adaptive algorithm, while this 
paper provides generally applicable sufficient 
conditions for robustness of an adaptive system. 

Another  paper which provides robust asy- 
mptotic performance results for adaptive con- 
trollers is Poolla and Shamma (1990). There  the 
notion of "asymptotic" is distinct from the 
notion used here; the distinction resembles the 
distinction between signals in L z (~  their paper) 
and bounded signals which go to zero (--~ this 
paper). Moreover,  Poolla and Shamma (1990) 
employ a switching control scheme which is 
distinct from the continuous adaptation of 
Krause et al. (1989) and the general identifica- 
tion processes of this paper. Needless to say, 
these fundamental problem distinctions lead to 
highly divergent formal details. Still, Poolla and 
Shamma (1990), Krause et al. (1989) and this 
paper share a common theme: robust asymptotic 
performance of adaptive controllers from an 
operator  theoretic perspective. 

TABLE 1. NORM NOTATION SUMMARY 

I" I Euclidean or  F roben ius  N o r m  
I1"11 °'' Signal n o r m  (equat ion  (1)) 
I1"11 ° Signal no rm with t = oo 
II" II ° ' '  Signal no rm with 0 = 0 
I1" II Signal n o r m  with t = oo and 0 = 0 
11"1172 LL'°-induced ope ra to r  n o r m  
I1"1112 L2-induced ope ra to r  n o r m  

in L ~''°. When Ilxll ° ' '  is uniformly bounded over 
all t > 0, x is said to be in L 2'°. When tx = 0, we 
omit it from the superscript, and use the more 
common notation x • L 2e or x • L 2. 

For a real vector 0, 101 denotes the Euclidean 
norm. 

Table 1 summarizes the norm notation used in 
this paper. Note that signal norms take the form 
" l [ "  l[ . . . .  p . . . . .  t . . . .  , while operator  norms take 
t h e  f o r m  "ll " norm p . . . . .  t . . . . .  type of norm 

A set of operators A will be said to be a 
convex set of operators if and only if for any 
A~ • A and A 2 • A  and any scalar p • [0, 1], it 
follows that (pAl + (1 - p)Az) • A. 

When X is a set and y is a scalar, the scaled 
set (denoted y X )  is defined to be 

~,X := {~,x:x • X } .  

This definition applies to sets of operators as 
well as sets of signals, taking y to be either the 
cascade of a scaling operation with the operation 
x, or a direct scaling of the signal x, as dictated 
by the context. 

For X ~ R n a function F:X---* A m will be said 
to be locally Lipschitzian on X if and only if for 
each compact set Y in X there exists a finite 
constant k - - k ( Y )  such that for any x~ • Y and 
X 2 •  Y, 

[F(Xl) - F(x2)[ < k Ix 1 - -  X21. 

B. System assumptions 

Assumption 1. The system is assumed to take 
the form of Fig. 1. 

2. P R E L I M I N A R I E S  

A.  Mathematical notation and terminology 
Throughout  the development,  tr is a particular 

fixed and known nonnegative number. Super- 
script T denotes transposition. 

Consider a function x : E ÷ ~ I~N. Define the 
seminorm 

[[xll°'t:= I fo te -a° ( t -~ )xT($)x ( r )dr] l / z ,  ( 1 )  

where the superscript tr is omitted when o = 0, 
and the superscript t is omitted when t = oo. 
When Ilxll °.t exists for all finite t, x is said to be 

Known  
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FIG. 1. Genera l  system structure.  

Constructed 
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Assumption 2. In the figure, M(O) is a linear 
time invariant system which depends on an 
unknown parameter  vector 0 e ~ N ,  but is 
otherwise known. M includes much of the plant 
description as well as much of the controller. 
This style of representation affords considerable 
flexibility in terms of plant parameterizations 
and controller structures (Doyle,  1985; Doyle et 
al., 1982). 

Assumption 3. We will assume prior knowledge 
of 0 of the form 0 c Op where Op is a known 
compact set. 

Assumption 4. External to M in Fig. 1 is a 
non-parametric uncertainty A. We will assume 
that A ~ A, where A is a known convex set of 
operators containing the zero operator.  
Moreover,  we assume that A has been 
normalized by the choice of M such that 
IIAII~- < 1 for all A c A .  Note that the assump- 
tions on A allow structured uncertainty (e.g. 
block diagonal). The signals v and d are internal 
signals of the plant. 

Assumption 5. Also external to M in Fig. 1 is 
the block C(O,.). C is a real matrix, which 
depends on the adjustable controller gains 
Oc(t) :N +---~/1~ M. We will assume only that C is a 
locally Lipschitzian function of Oc on RM. 

Assumption 6. The signals w : N --~ 1~"~ and u : 
R ~ N,u are internal signals of the controller. 

Assumption 7. The input vector n :1~ ~ / ~ "  of 
Fig. 1 is a noise input. We will assume that 
n e N, where N is a convex set of noise signals 
containing zero, and satisfying Ilnll°"_< 1 for all 
n e N .  

Assumption 8. The input vector r :  [~---~ ~"~ of 
Fig. 1 is the known exogenous input to the 
system, and is assumed to lie in L ~ n  L °'`. 

Assumption 9. The output vector e:l/~ ~ N ne of 
Fig. 1 contains the performance variables. These 
are assumed to be constructable from available 
measurements and/or  known inputs (the defini- 
tion of M includes the construction). Later,  
robust performance will involve keeping e small 
in some sense. A typical example of a 
performance variable is the command tracking 
error. 

Assumption 10. The output vector y : N ~ E"Y of 
Fig. 1 represents other measurements not 
already accounted for by e and w, but potentially 
relevant to the on-line parameter  identification 

task. The vector dimension of y can be zero (y 
absent). 

Assumption 11. As time evolves, the known 
inputs to M are r and u, and the constructed 
(known) output signals are e, y and w. Hereaf ter  
we will refer to these as the known inputs and 
constructed outputs, respectively. 

Assumption 12. In addition to the separate 
assumptions on A, M, and C above, we also 
assume that the feedback interconnection of Fig. 
1 is well-posed (see Willems, 1971) for each 
0 ~ Op and each A c A. That is, taking n(t), r(t), 
and Oc(t) as exogenous varying inputs to the 
system, and taking 0 e Op and A e A to be fixed, 
we assume that: (i) for all finite time and as long 
as the inputs are bounded, the solution to the 
system of equations represented by Fig. 1 exists 
and is unique, where "solution" includes all 
signals shown in the figure as well as the internal 
states of M(O), and (ii) for any finite interval of 
time, this solution is locally Lipschitz-continuous 
as a function of n, r, and 0,.. 

We will use the shorthand S(Oo, Oco) to denote 
the system of Fig. 1 with the plant parameter  
vector taking on a particular specified value 00 
and the controller parameter  vector taking on a 
particular specified value 0c0. In this notation, 
we have suppressed the dependence of the 
system on A; S actually denotes a family of 
systems parameterized by A alone. 

C. Initial conditions 
Since the subsystems M and A of Fig. 1 are 

dynamical, and since this paper measures and 
analyzes the time response on the half line 
(t->0), the issue of initial conditions is 
important. 

We will represent the initial condition of A as 
an added response to the output. Initial 
conditions arise a variety of ways; our 
characterization is consistent with the notion of 
past excitation causing initial conditions. That is, 
we suppose A satisfies 

~ f o  e-2~(-~)d r ( ~ ) d ( r ) d r  

<- e-Z°(-*)vr(~)vO:)dr=: 8~(0) < 0% (2) 

• / f ]  e-2O"-~v~ (Ov(T)d¢ 

° 

<__ e2°~vr(r)v(7:)d~ 

,/L- + e-2"(t-Ovr(r)v(r)dr 

= 8 ~ ( O ) e - ~  + Ilvll '.°. 

and 

Ildll'O_< 

(3) 
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Thus there exists a partitioning of the signal d 
into 

such that 

d(t)  = dx(t) + dr(t), t >- O, (4) 

II dxll" o ~ dx (0)e-  o, (5a) 

IIdiIl"°~ Iloll ''°. (5b) 

Note that we have not applied superposition in 
the treatment of the initial condition of A. 

Without loss of generality, M(O) can be 
written as the result of closing a (multivariable) 
loop around another matrix transfer function 
MI(O), with M I ( 0  ) uniformly stable over all 
0 • OR (see Fig. 2). Applying superposition, we 
represent the response of M1(O) as an open-loop 
initial condition response (Vx, ex, yx, Wx, and zx) 
and a force response. By the open-loop stability 
of M1, it is known that the II • II ' ' t  norm of Vx, ex, 
y~, Wx, and Zx is bounded and decays to zero as 
t---~ oo. 

By augmenting the unknown exogenous signal 
n with the additional signals dx, vx, ex, Yx, w~, 
and d~, we can remove the effects of the initial 
conditions from the internal workings of M. In 
effect, by expanding the vector n and its set N 
with additional bounded and transient ex- 
ogenous disturbances, we may assume, without 
loss of generality, that M and A are initially at 
rest. 

Assumption 13. Hereafter,  we assume that n 
incorporates the effects of initial conditions in 
this way. 

D. Notation reference 

T A B L E  2 .  S Y M B O L S  

0 Unknown system parameters 
0(t) Estimate of 0 
Oc(t ) Controller parameters 
n Unknown exogenous inputs 
r Known exogenous inputs 
e Performance variables 
y Miscellaneous measurements 
A Unmodeled dynamics 
A Known membership set for A 
N Known membership set for n 
OR Prior known membership set for 0 
O(t) Membership set at time t 

3. CONDITIONS FOR ROBUST ASYMPTOTIC 
PERFORMANCE 

This section develops conditions under which 
the robust asymptotic performance of an 
adaptive system equals that of a gain scheduled 
robust controller designed with perfect para- 
meter information. 

First, the robust performance of the gain 
scheduled system is defined. Next, the concept 
of "consistent parameter set" is introduced and 

M(O) 

:1 

v r 

e f 

~ Y  

• w 

FIG. 2. Nonzero initial condition effects. 

shown to have certain asymptotic properties. 
Finally, modest constraints on the gain sche- 
duled system and an "efficiency" constraint on 
the identification process are shown to imply 
robust stability and asymptotic performance of 
the adaptive system. 

A. Scheduled system robust performance 
In this section, the robust performance of the 

gain scheduled system is defined. The definition 
used here deliberately resembles that of Doyle et 
al. (1982) because of its practical utility (Enns, 
1987; Enns et al., 1987; Enns and Bugajski, 
1987). However, we deviate slightly with our 
definition. Most importantly, (1) exponentially 
weighted signal norms are used here to allow a 
more isolated description of asymptotic perfor- 
mance, and (2) the "known" part of the system 
is parameterized by the unknown plant para- 
meter vector, requiring that a family of systems 
be designed and analyzed. 

The identification process will be defined 
shortly. For now, let OR be a prior known subset 
of It~ N which covers the range of the identifica- 
tion process, so ~)(t) • OR Vt is known a priori. 
This allows estimators with parameter limits, 
such as switching estimators which confine O(t) 
to a pre-defined finite set of points. On the other 
hand, one may take the set OR to be all of EN. 

Definition 1. Gain schedule. Considering each 
value 0 • Op separately, one can assign control- 
ler gains. Let f :Op- -~EM represent this 
assignment, and let f be extended to the rest of 
OR, so that f : OR---~ E M. We refer to f as a gain 
schedule. When Oc=f(O)  and O e O p ,  the 
resulting controller is said to be a gain scheduled 
controller. For any value of 0 • Op, the system 
of Fig. 1 with the parameter vector taking on the 
value 0 and with 0c taking on the value 0c = f ( 0 )  
is a gain scheduled system. That is, for any 
particular 0 • Op, S( O, f ( O)) is a gain scheduled 
system. 
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Assumption 14. We assume that there exists an 
open set O0 containing Op such that f is locally 
Lipschitzian on O0 t3 OR. 

Remark. Assumption 14 is structured such that 
the theorems to follow, apply to estimators which 
adjust parameters smoothly as well as estimators 
which switch between distinct candidate para- 
meter values, or combinations of the two. Note 
in particular that assumption 14 is satisfied for 
the special case in which On is ~N and f is locally 
Lipschitzian on an open set containing Op. 
Assumption 14 is also clearly satisfied for the 
special case in which OR is a finite set of points 
and f is Lipschitzian on OR. 

Definition 2. Graph of the gain schedule. For 
each value of 0 • Oe, there corresponds a gain 
scheduled system. The collection of all pairs 
consisting of 0 • Oe and the associated gain 
scheduled system is the graph of the gain 
schedule. That is, {S(O,f(O)),  O • O e }  is the 
graph of the gain schedule. 

The significance of the gain schedule graph is 
as follows. Prior analysis of the particular gain 
scheduled system corresponding to the true 
value of 0 is not possible, since the particular 
value of 0 is not known. Nonetheless, one can 
determine the performance guarantees for the 
gain schedule graph, since the graph is known a 
priori. This performance level, then, is the most 
favorable level one can hope to guarantee a 
priori with an adaptive system. 

Of course, the performance of a particular 
gain scheduled system (corresponding to a 
particular value of 0) could exceed a prior 
guarantee valid for the entire graph (namely the 
worst case over all 0 • OR of the gain scheduled 
system performance). In this case the adaptive 
system may also exceed the prior performance 
guarantee. 

Consequently, various forms of p rformance 
are of interest. These are now defined. 

Definition 3. Performance measures. For each 
0COp,  the unforced robust performance 
measure of the gain scheduled system is a real 
scalar trl(0) defined by 

C~'I(0 ) := sup [ltell°" : Ilrll °''= O, n • N, 

A • A, 0c =£(0)1. 

The forced robust performance measure of the 
gain scheduled system is a real scalar o~z(0) 
defined by 

re2(0) := sup [ Ilell°" - °q(  O)" llrll°" :/:0, 
Itrll ~,' 

n • N, A e A, Oc = f (O) ] .  
J 

Definition 4. Robust performance levels. The 
performance level of the gain scheduled system 
is a real scalar function J~(t, r, O) defined by 

Jl(t, r, O) = 011(0) + 012(0) tirl] °''. 

The performance bound for bounded r norm of 
the gain scheduled system is a real scalar 
function J2(L 0) defined by 

J2(e, 0) = c~1(0) + o~2(0)e. 

The performance guarantees over the entire 
graph of the gain schedule are clearly 

Jl(t, r, O) <--]l(t, r):= sup Jl(t, r, 0), (6) 
OeOp 

Jz(?, 0) -< J2(?) := sup Jz(r, 0). (7) 
0cOp 

Remark. J~ is useful as a nonconservative 
combination of aq and cr2. The J2 alternative is 
conservative for some values of the function r. It 
is nonetheless useful in that it represents a 
time-invariant tradeoff between noise response 
and command response. Later, this allows a 
time-invariant partial ordering of the gain 
scheduled systems, so some points on the gain 
schedule graph can be viewed as "bet ter"  than 
others. 

To facilitate a comparison after initial 
adaptation transients have subsided, we define 
asymptotic robust performance. 

Definition 5. Asymptotic robust performance. 
For a particular value of the input function 
r : R  ~ ~nr, an asymptotic robust performance 
level of Jl(t,r, O) [respectively, J2(r, 0)] is 
achieved if and only if there exists a bounded 
e(t) with a limit of zero as t---, ~ such chat 

Ilell°"<-Jl(t, r, O) + e(t) Vt>-O 

(respectively, [lell"'-J2(L 0) + e(t) Vt - 0). 
Note that, because of the inequality above, a 

system can be said to achieve many asymptotic 
performance levels. 

We now proceed to the technical detail of 
non-degeneracy--a detail which is reminiscent of 
internal stability. 

Definiton 6. Non-degeneracy. The robustly per- 
formant gain scheduled system (Oc=f(O),  
0 • Or) is said to be non-degenerate if, and only 
if: (i) the effect on performance of perturbations 
added to the outputs of all blocks of Fig. 1 (as 
shown in Fig. 3) is bounded, i.e. for the graph of 
gain scheduled systems, 

I lel l" '-  0"2(0)Ilrll ° ' ' -  cry(0) 

<-c(lldall °''+ Ilndll °' '+ Ilrdll .... + Ilu~ll °'' 

+ IIvall°" + Ileall°"+ IlYall°" + Ilwdll °'') 
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FIG. 3. Signal insertion points for non-degeneracy definition. 

for some constant c < oo independent of 0, and 
(ii) given e > 0 there exists a 6 > 0 such that if 
[0(t)[ < 6 for all t and O¢(t) =f(O - O(t)), then 

Ilell ° ' ' -  (a~2(0) + e) Ilrll ° ' ' -  (aq(0)  + e) 

<-(c + e)(llddll°"+ Ilnall°" + Ilrdll°"+ Ilu.ll °' ' 

+ Ilvall°"+ Ileall°"+ lya l l°"+ Ilwall°"), 

where c is valid in (i) above, and the choice of 6 
given e is independent of 0. 

Remark. In practice (and generically, we be- 
lieve), a particular level of robust performance is 
invariably more difficult to achieve than mere 
robust bounded-gain stability. Furthermore,  the 
robust performance of the system is not infinitely 
sensitive to small parameter variations. The term 
"non-degeneracy" above is appropriate. 

Assumption 15. We assume that for each 
0 • Oe, the associated gain scheduled system is 
non-degenerate. 

B. Consistent parameter set 
This section provides concepts which are 

necessary for an understanding of the 
"efficiency" of an identification process, which in 
turn is critical to the achievement of robust 
asymptotic performance. 

Definition 7. Consistent parameter set O(t). The 
consistent parameter set O(t) is defined to be the 
set of all parameter vectors 0 that are consistent 
with the M and A interconnection structure of 
Fig. 1 and all known inputs on the interval [0, t) 
and all constructed signals on the interval [0, t) 
and the uncertainty assumptions A • A, n • N, 
and 0 e Op. 

Note. With u and w both known, the depend- 
ency of u on w as shown in Fig. 1 provides no 
information regarding 0, and therefore this 

aspect of Fig. 1 is omitted from the definition of 
O(t). 

Definition 8. Asymptotic consistent parameter 
set O~ 

Oo~:= l i m / ~  O ( r ) / =  A O(r).  

Note. The last inequality and the existence of 
the limit follows the obvious fact that O(t2)c~ 
O(tl) if tl-< t2, and O(t) is compact since Op is 
compact. 

Lemma 1. O~ is nonempty. 

Proof. The system assumptions assert that some 
value of 0 exists such that all residual 
uncertainty can be captured by n • N and A • A. 
This is an element of O(t) for all t, and therefore 
it is an element of O~. [] 

The definition of Ooo involves the entire 
information content of the measurements and 
assumptions. It may be difficult to construct 
identification laws which make such a thorough 
use of information. Motivated by properties of 
the robust identifier of Krause et al. (1989), we 
now weaken the notion of a consistent 
parameter set to make it more attainable to an 
identification process. 

Definition 9. Asymptotic consistent parameter 
set modulo transients, O~ +. Recall that e, y, and 
w are the constructed signals. A parameter 
vector 0 is an element of the set O~ if and only if 
0 • Oe and there exist signals ~, )?, and ~ such 
that: (i) I l P - e l l ° " + l l y - Y l l ° " +  II~,-wll°"_< 
e(t) for some e(t) which is bounded and has a 
limit of zero as t ~ 0% and (ii) if the constructed 
signals e, y, and w were conceptually replaced by 
~, f ,  and if, then 0 would be consistent with the 
M and A interconnection structure of Fig. 1 and 
all known inputs on the interval [0, oo) and ~, Y, 
and ff as the fictitious constructed signals and the 
postulated uncertainty assumptions A e A and 
n • N .  

In words, O~ + are parameters which need not 
be completely consistent with the constructed 
signals. However, the inconsistency can be no 
more than transient. 

C. Adaptive system robust performance 
In stochastic estimation problems, an estimate 

is said to be efficient if its variance equals the 
Cramer-Rao bound, and asymptotically efficient 
if the ratio of the variance over the Cramer -Rao  
bound approaches one as time approaches 
infinity (Van Trees, 1968). In this paper, we 
have a deterministic problem formulation; the 
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uncertainty satisfies a deterministic bound rather 
than a stochastic distribution. Consequently, we 
redefine efficiency for the deterministic formula- 
tion, retaining the underlying abstract notion 
that efficiency is a "thorough use of 
information". 

With the added assumption that the identifica- 
tion mechanism is efficient, or even only 
asymptotically efficient, we show that the system 
automatically achieves robust asymptotic perfor- 
mance levels equal to those of the gain 
scheduled system. No excitation conditions are 
required. 

Definition 10. Identification process. In this paper, 
an identification process is a strictly causal 
mapping of known inputs, constructed signals, 
and prior information to an estimate 0(t) of 0, 
with 0(t) finite on any finite interval [0, T]. 

Remark. Finite O(t) is a mild restriction on the 
mapping since Op is compact. 

Definition 11. Efficiency. An identification pro- 
cess is efficient if and only if 

O(t) c O(t) Vt. 

Definition 12. Virtual efficiency. An identifica- 
tion process is virtually efficient if and only if 

lim 0(t) =: 0~ exists and 0~cO~.  

Definition 13. Asymptotic efficiency. An iden- 
tification process is asymptotically efficient if and 
only if 

l i m 0 ( t ) = : 0 ~  exists and 0 ~ e O  +. 

Corollary. Under the conditions of the theorem, 
the prior worst case performance guarantee (in 
the J1 sense) for the adaptive system is equal to 
the performance guarantee ]l(t, r) for the gain 
schedule graph. 

Paraphrasing Theorem 1, under the given 
conditions, the adaptive control system has a 
prior performance guarantee which is as good as 
that of the gain schedule graph. The perfor- 
mance can be better however; the adaptive 
system asymptotically performs at least as well as 
the gain scheduled system S(O~,f(O~)), even 
though the asymptotic system is actually 
S(O, f(O~)) where 0 need not equal 0~. 

Interestingly, no assumptions are required 
regarding the performance or even stability of 
"untuned" systems S(O,f(O2)) with 02 4= 0. For 
a particular value of 0, there may be values of 02 
within Oe such that S(O, f(02) ) is unstable. We 
can conclude from the theorem that when the 
gain schedule graph has robust performances, 
the efficiency property of the estimator steers the 
estimate away from values which make S 
demonstrate instability or poor performance for 
the particular applied input. Note, however, that 
parameter estimate convergence to the true 
value 0 does not necessarily follow. 

This is a key point: there is no claim that the 
asymptotic parameter estimate is correct. We 
know only that the system will behave (in a 
certain sense) as if it is correct. [Qualitatively 
similar observations have been made for 
different adaptive control problem formulations. 
See Becker et al. (1985) for an analysis which 
also distinguishes between convergence to a true 
parameter and convergence to a desired 
performance.] 

Remark. Clearly, the three forms of efficiency 
defined above are progressively weaker. 

Theorem 1. Given the system assumptions 1-13, 
and given that the adjustable controller para- 
meters satisfy Oc(t)=f(0(t)) for a gain schedule 
f satisfying assumptions 14 and 15, if: 

Assumption 16. The gain schedule graph has a 
robust performance level of Jl(t, r, 0), and 

Assumption 17. O(t) is generated by an asy- 
mptotically efficient identification process, 

then all signals shown in Fig. 1 for the adaptive 
system are in L 2'~ (this is Lz'°-BIBO stability), 
and the adaptive system achieves an asymptotic 
performance level of Jl(t, r, 0~). 

Proof. See Appendix. [] 

4. PREFERRED PARAMETERS 
In general, when unmodeled dynamics are 

included in the problem formulation, the " t rue"  
plant parameters are not uniquely defined. 
Multiple choices of 0 may produce the identical 
input-output map for all possible inputs, for 
some 0-dependent choice of A which satisfies all 
assumptions. Even in the rare case in which the 
parameters are uniquely defined using all 
possible inputs, the particular observed known 
inputs and constructed signals are generally 
insufficient to uniquely determine the para- 
meters. That is, O(t) and O~ are sets with many 
members. 

This nonuniqueness affords freedom to the 
identification process. Even among efficient 
identification processes, there is freedom. 
Theorem 1 provides a clue as to how to exploit 
this freedom to improve or optimize the 
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asymptotic performance, as shown in this 
section. 

First we describe the preferred parameters 
strategy in general terms. Next, we show an 
interesting special case involving the on-line 
identification of the magnitude of the non-para- 
metric uncertainty and noise simultaneously with 
plant parameter identification. Finally, we state 
a stronger asymptotic performance result which 
is achieved using a preferential identification 
mechanism. 

A. Preferential identification 
Let a preference take the form of a mapping 

P: {subsets of ~N} ~ {subsets of ~N}, 

which is weakly contractive in the sense that 
P(O) ~ {closure of O} for any O. 

Definition 14. Preferential identification. An 
asymptotically efficient identification process is 
also said to be preferential (with respect to the 
preference P) if and only if 

/)~ ~ P(~)) for some 0 containing O~. 

Remark. A simpler definition would result from 
using O~ alone rather than a set which contains 
it. However, it is difficult to build an identifier 
which makes such thorough use of information 
as to nonconservatively characterize O(t). It is 
easier to cover O(t) and, asymptotically, to 
cover O~. Consequently, the preferential iden- 
tification property defined above is easier to 
achieve in practice. 

B. Noise and unmodeled dynamics estimation 
In this section we illustrate the potential utility 

of preferential identification with an example. 
The example is interesting in its own right: 
on-line modeling of the size of non-parametric 
uncertainty. This can be done in many ways with 
the general parameterization M(0);  we give only 
a simple example here. 

Consider the special case of Fig. 1 given by 
Fig. 4. In the figure, 01, the first parameter in 
the parameter vector 0, multiplies the noise and 
the unmodeled dynamics outputs. 

The constant parameter 01 scales the size of 
the non-parametric uncertainty set. Recall that 
N and A are convex sets containing zero. Let 
01N and 01A denote the scaled uncertainty sets: 

• 01N if and only if ~ • N ,  (Sa) 

/~ • 01A if and only if Oll• A. (8b) 

d v 

M2(0) ~ e 
u " Y  

r I w 

FIG. 4. Uncertainty scaling parameter. 

The system 3/2 sees a noise h •  01N and 
d = 01 Av = ~v where ,~ • 01A. 

The gain schedule f can take advantage of the 
uncertainty scaling 01, but is not required to do 
so. Regardless, the worst case performance of 
the gain scheduled system is likely to improve as 
the uncertainty set gets smaller. 

A preferential identification process can take 
advantage of the performance improvement due 
to smaller-than-worst-case actual uncertainty sets 
in the following manner. Given a consistent 
parameter set O(t), the identification process 
could choose an element which minimizes the 
uncertainty scaling 01. Since O(t) is decreasing 
with time, 01(0 would be monotonically 
increasing. Since 01 would also have an upper 
bound equal to the smallest value which covers 
the actual uncertainty, it follows that  hl(t ) 
approaches a limit no larger than the actual 
uncertainty magnitude. 

As we will state formally in the next 
subsection, the asymptotic performance of the 
adaptive system will be at least as good as one 
would achieve if one knew the uncertainty 
scaling. In effect, if one's prior bounds on the 
uncertainty were conservative, the adaptation 
can reduce the conservatism and achieve 
improved performance. 

C. Asymptotic performance preferential 
identification 

Let f be a fixed chosen constant. Let P2 give 
preference to parameter estimates for which the 
gain scheduled system gives the best perfor- 
mance. That is, let P2 be defined by 

P2(O) = arg inf J2(~, 0), (9) 
0 c O  

where the argument of the infimum need not be 
unique. 

AUTO 28:2-D 
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Theorem 2. Given assumptions 1-17 as in 
Theorem 1, and in addition 

Assumption 18. The identification process is 
preferential with respect to P2, and 

Assumption 19. ]]rl[""- < f Vt then it follows that 
the adaptive system also achieves an asymptotic 
performance level of J2(L 0). 

Proof. See Appendix. 

Paraphrasing the theorem, the adaptive 
system performs at least as well (in the J2 sense) 
as the gain scheduled system corresponding to 
the true plant parameter vector 0. That is, it 
performs as well as S(O, f(O)) even though the 
asymptotic system is S(O, f(O~)). 

Note that there are two fundamental 
differences between Theorems 1 and 2. First, 
two different performance measures (J1 and J2) 
are used. Second, different gain scheduled 
systems are used in the comparison. Theorem 1 
used the gain scheduled system corresponding to 
0~, and Theorem 2 used the gain scheduled 
system corresponding to the true plant para- 
meter vector 0. 

Corollary. Under the conditions of the theorem, 
the prior worst case performance guarantee (in 
the J2 sense) for the adaptive system is equal to 
the performance guarantee ]2(?) for the gain 
schedule graph. 

5. SIMPLE EXAMPLE OF AN EFFICIENT 
ESTIMATOR 

The purpose of this paper is to provide a 
decomposition of robust adaptive control into 
robust control and robust estimation sub- 
problems. It is not our intention to solve these 
formidable subproblems in this paper. For 
selected subsets of the robust control sub- 
problem, solutions can be found in the robust 
control literature. On the estimation side, the 
literature lacks demonstrations of efficiency of 
deterministic estimators, since the notion of 
efficiency given in this paper is new. 

Since it is our intention to inspire research into 
efficient estimation, it is worth demonstrating at 
the present time that efficient estimators do exist 
for a nonempty set of special cases. We 
demonstrate existence here by construction of a 
simple example for a simple special case. 

Consider the system 

y(t) = Ogp(t) + d(t), (10) 

d(t) = Av(t) + n(t), (11) 

where 0 is an uncertain real parameter, A is a 
neglected uncertainty (not to be identified), n is 
an unknown noise term, ~p and v are known 
inputs, and y is a known output. Let the chosen 
prior membership sets for A and n be: 

A =  {A:A is real and [A[-< 1}, (12) 

N = {n : In(t)[-< 1 Vt}. (13) 

To avoid complicating mathematical nuances 
later, assume that the membership sets above 
were chosen to be slightly conservative. That is, 
assume that it is actually known that for some 
eo > 0, 

A e A 2 = { A : A i s r e a l a n d l A l ~ l - e o } ,  (14) 

n e N2 = {n : In(t)l -< 1 - eo Vt}. (15) 

Assume that the entire adaptive control design 
and analysis as described in this paper is carried 
out using the sets A and N. We will use the 
knowledge of the e-conservatism in the residual 
uncertainty bounds only in establishing the 
efficiency of the estimator (below). (Remark. We 
do not know if the e-conservative bounding 
technique is necessary, or if it is even useful for 
more general problems.) 

The set of all d(t) which are consistent with 
the known inputs and uncertainty assumptions 
(12) and (13) is 

d ~ {d(t):ld(t)] <_lv(/)l + 1 = :d( t ) ) .  (16) 

From (16) and (10) it is easily seen that the 
consistent parameter set is 

[y('r) - d(r )  y(~') + d(~')] 
O( t )=  (-') L ~- -~  ' ~ r )  J" r~[0,t), ~( r ~ 0  

(17) 

Then 0 2  must be the set of all 0 such that there 
exists a function )~ satisfying both 

0 N - + 

(18a) 

and 

11)9-Yll°"~0 as t---~o~. (18b) 

Let 

e(t) := y(t) - O(t)qg(t) = (0 - O(t))qa(t) + d(t) 

= O(t)dp(t) + d(t), (19) 

where the last equality is by definition of 
O(t) := 0 - 0(t). 

Let T1 be the set of all t such that le(t)l > d(t). 
Let the estimation law be 

d O(t) = l0  if t q T1 
(20) 

dt [dp(t)e(t) if t ~ T~" 
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Then,  

d(oz ( t ) )  = - 2 ( 0  - O(t))dp(t)e(t) 

= - 2 ( e ( t ) - d ( t ) ) e ( t )  VtE Tl, (21) 

where the last equality follows f rom (19). Now 
the e-conservatism in the A assumption implies 
that for some e2 > 0, 

d ( 0 2 ( t ) )  < -e2eZ(t) Vt • Tt. (22) 

Then since 02(0 is nonincreasin~g and bounded 
below by zero, it has a limit (so O(t) has a limit) 
and (22) implies 

(ft~r, e2(t)dt) is finite. (23) 

Now consider the following candidate ,9: 

~9(t) = O=dp(t) 

+ lim [-dr(t) ,  dr(t)]*(y(t)- O=(a(t)), (24) 

where 

f !  i f c<-a  
lim [a, b]*c = if c -> b 

otherwise. 

Let T2 be the set of  all t such that 
lY(/) - 0~q~(t)l > d(t). Clearly, 

~9(t) - y(t) = 0 Vt ~ T2, (25a) 

Lg( / ) -  Y(/)I = l y ( t ) -  0~q~(/)l 

- dr(t) Vt E T2. (25b) 

Since the pa ramete r  estimate can only 
improve as t ime evolves, one finds that 

[Y(/) - 0~q~(t)l < lY(/) - O(t)dp(t)l 

= le(/)l Vt • T2. (26) 

Thus, T2 c Ts, and it follows f rom (23), (25) and 
(26) that )~ - y is square integrable. Then for any 
o > 0 ,  I1~ -yll°"---'O as t---~ ~. 

This completes a proof  of  asymptotic  efficiency 
of the estimation law. 

Remark. In this example,  asymptot ic  efficiency 
happened to hold for any strictly positive choice 
of (r in the norm definition. The theorems of this 
paper  only require that the asymptot ic  efficiency 
be demonstra ted for a particular choice of  o. 

6. CONCLUSIONS 
On the philosophical side, this paper  provides 

a language for discussion of the per formance  of 
robust identification processes and robust adap- 
tive controllers. The language is pragmatic  in 

that the various notions of controller perfor- 
mance arise from a robust control setting. In 
addition, the identification propert ies  used here 
have a connection to the familiar notion of 
efficiency which arises in classical stochastic 
estimation. This paper  makes  precise the 
concept and terminology extensions required to 
talk about adaptive,  rather  than fixed, systems, 
and deterministic rather than stochastic 
uncertainty. 

On the theoretical side, this paper  supplies 
formal proofs of robust asymptotic performance 
for classes of adaptive systems. In effect, it states 
a separation principle: robust control paired with 
efficient estimation provides robust adaptive 
control. The parameter izat ion and uncertainty 
characterizations for which this separation 
principle holds are exceptionally general. In fact, 
the separate problems of robust control and 
efficient estimation have not been solved in such 
a general setting. Still, current robust control can 
handle a significant subclass of problems,  while 
efficient estimation is a new idea and is not 
nearly as far along. In effect, this paper  provides 
a goal (namely asymptotic efficiency) for robust 
identification research, and reveals the adaptive 
controller performance payoff of achieving the 
goal. 
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APPENDIX: PROOFS 

Proof o f  Theorem I. Since 0~ • O~ +, there exist ed, Yd, and 
w d satisfying 

Iledll°" + IlYdll"" + Ilwdll"'~O as t - - -~  

e 

n ~ "- e 
r ~1 M(O~ Y!-~ " 
u SI w!~  ~ Y  

"1 I ' -  w 

FiG. 5. Model for analysis. 

such that the system of Fig. 5 with n e N and A • A is a valid 
mathematical model for the constructed signals which result 
from the known inputs, for all t -> 0. 

By assumption 14, since 0(t) has a limit in O p  as t -*  o% 
O~(t) also has a limit as t--~ ~, namely Oc= =f(0=) .  

Now take any e > 0 and let 6 > 0 be chosen to satisfy the 
nondegeneracy expression (see definition 6). Since 0~--~ 0c=, 
there exists a time T <  oo such that 10c(t ) - O,.=l< 6 for all 
t>_T. 

Prior to time T, 0(t) is bounded (definition 10). Then since 
f is locally Lipschitzian, Oc(t) is also bounded on t • [0, T]. 
Then, by the well-posedness assumption on the interconnec- 
tion of A and M(O), all of the signals shown in Fig. 1 as well 
as the internal states of M exist (are bounded) on [0, T]. 
Now recall that the effect of nonzero initial conditions on M 
and past excitation of A can be reflected with an added 
transient noise term added to n. For the purpose of 
asymptotic analysis, shift the "start time" to time T (time T 
becomes the new time 0) and model the previous excitation 
(during [0, T]) by adding the appropriate n a to n. Recall 
from Section II.C. that the added n a satisfies Ilndll°"--*O as 
t ----~ O0. 

For t - T ,  non\degeneracy of the gain scheduled system 
corresponding to 0~ • Op implies 

Ilell°"--- (%(0~) + e) Ilrll°" + (~,(0~) + e) 

+ (c + e)(llndll°"+ Iledll °'t 

+ IlYdll°"+ IlwdlI°'% 

which approaches (0:2(0~) + e) Ilrll°"+ (oq(0®) + e) as t---~ 
ao. Since e is arbitrary, the theorem is proved. O 

Remark. The proof appears to make the commonplace 
argument that an asymptotically autonomous robust system 
acts in some respects like its limit. However, the proposition 
which is proved is subtly different. The asymptotic 
performance is that of a gain scheduled system with the plant 
parameters equal to 0~, yet the actual plant parameters 0 
need not equal 0~. The system merely behaves as if they do 
for the particular excitation and within the tolerances implied 
by the inclusion of n and A. 

Proof of  Theorem 2. By Theorem 1, the system achieves an 
asymptotic performance level of J~(t, r, 0~) which equals 
trl(0~) + o~2(0~) Ilrll °''. Applying the bound on Ilrll°'t, the 
performance meets or exceeds oq(0~)+ tr2(0~)? = J~(~, 0~). 

Of course, the true parameters 0 are in O®. The 
preferential identification produces 0~ • P2(O) where O~ 
O. Thus J2(L 0~) <-J2(L 0), by the definition of P2. [] 


