
European Journal of Operational Research 56 (1992)357-363 357
North-Holland

Theory and Methodology

Multiobjective, preference-based search
in acyclic OR-graphs *

Chelsea C. White, III
Department of Industrial and Operations Engineering, Unil,ersity of Michigan, Ann Arbor, MI 48109, USA

Bradley S. Stewart
BELLCORE, Operations System Planning Center, Morristown, NJ 079, USA

Robert L. Carraway
Darden School of Business Administration, University of Virginia, Charlottesville, VA 22901, USA

Received May 1989; revised November 1989

Abstract: We consider the problem of determining a most preferred path from a start node to a goal
node set in an acyclic OR-graph, given a multiattribute preference function, a multiobjective reward
structure, and heuristic information about this reward structure. We present an algorithm which is shown
to terminate with a most preferred path, given an admissible heuristic set. The algorithm illustrates how
Artificial Intelligence techniques can be productively employed to solve multiobjective problems.

Keywords: Artificial intelligence, computation analysis, decision theory, heuristics, programming: multi-
ple criteria

I. Introduction

Decision making often involves the considera-
tion of multiple, conflicting, and noncommensu-
rate objectives. Decision making techniques that
have been developed to explicitly consider multi-
ple objectives include the determination of the
set of all nondominated decisions (Geoffrion,

* This research has been supported by ARO Contract DAAG
29-85-K0089, NSF Grant ECS8708183, and JPL Contract
957721.

1968), the use of a multiattribute preference func-
tion (Keeney and Raiffa, 1976), and various inter-
active techniques (e.g., Zionts and Wallenius,
1977). The interactive techniques are usually
based on concepts associated with nondominated
decisions and a, perhaps implicit, preference
function.

It is possible to represent many real-world
decisions problems - particularly those involving
a sequence of interrelated decisions - as what is
referred to in the Artificial Intelligence commu-
nity as a finite OR-graph (Pearl, 1984). Here,

0377-2217/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

358 C.C. White, 11I, et al. / Multiobjectit~e search in OR-graphs

'OR' refers to the fact that if a path in the graph
reaches a particular node, then extending that
path beyond that node requires selecting pre-
cisely one of the arcs emanating from the node.
(When a graph is such that a path can be defined
as including more than one arc emanating from
the same node, then it is called an AND-graph.)
In a finite OR-graph, a nondominated path can
be described as follows. Assume r(P) is the vec-
tor of rewards accrued by path P, each scalar
element of r(P) corresponds to the attribute
score of a particular objective, and 'more is bet-
ter' for all attributes. We say path P is nondomi-
nated if there does not exist a path P ' such that
r(P') > r(P) and r(P') -¢ r(P).

A preference function u provides a scalar-val-
ued measure of preference based on rewards. We
say reward vector r is at least as preferred as
reward vector r ' if and only if u(r)>_ u(r'). In
order to be consistent with the 'more is better '
assumption, u is assumed to be isotone (mono-
tonically nondecreasing); i.e., r >_ r ' implies u(r)
>_ u(r'). Thus, candidates for the most preferred
reward vector are the nondominated reward vec-
tors.

In this paper, we consider the problem of
finding the most preferred path from the start
node to a set of goal nodes in a finite OR-graph,
where:

1. There is a vector of rewards associated with
each arc in the graph.

2. The reward vector associated with a path is
not necessarily the sum of the reward vectors of
the arcs that comprise the path.

3. Path preference is based on a multiattribute
preference function.

We present a so-called 'best-first' search algo-
rithm, referred to as U *, that searches for a most
preferred path using estimates of path reward
vectors. These estimates are referred to in the
Artificial Intelligence literature as heuristics.
When these heuristics are used in an algorithm,
such as U*, the result is a procedure that ap-
pears to be hybrid of branch-and-bound and dy-
namic programming algorithms commonly en-
countered in the Operations Research literature.
In the following work, we represent the reward
vector estimates by a set of vectors referred to as
a heuristic set.

One solution approach is to determine the set
of all nondominated paths (perhaps using GOZ* ,

Stewart, 1988) and then to rank these paths using
the preference function. A disincentive to this
approach is the (likely) possibility that for large
problems the number of nondominated paths is
large and their determination is computationally
intensive.

Another approach is conventional dynamic
programming. However, dynamic programming
requires that the preference function satisfy the
following monotonicity assumption in order to be
guaranteed to find the most preferred path. Let s
be the start node, F be the set of goal nodes, and
n be an intermediate node. Let PI and P2 be two
different paths from s to n, and let P3 be any
path from n to F. Let Pl u P3 be the path from s
to F through n following path P~ and then path
P3, and define P2 U J°3 analogously. The mono-
tonicity assumption is: if u[r(Pl)] >_ u[r(P2)], then
u[r(P l U P3)] > u[r(P2 U P3)]. Carraway et al.
(1990) present examples of preference functions
that do not satisfy this assumption and as a result
guide the standard dynamic programming algo-
rithm to a suboptimal path.

Carraway et al. (1990) present a concept -
generalized dynamic programming - that avoids
this pitfall, in the process further blurring the
distinction between the traditional Operations
Research concepts of branch-and-bound and dy-
namic programming.

In this paper, we provide an Artificial-Intelli-
gence based perspective on the same problem
studied in Carraway et al. (1990). Our U* algo-
rithm - and in particular our use of heuristic
information - provides a more general frame-
work within which the positive characteristics of
branch-and-bound and dynamic programming can
be combined, and hence approaches like general-
ized dynamic programming can be implemented.
Heuristic information is represented in the form
of a set, rather than a function, which has been
inspired by the problem considered by Lark and
White (1988). Our interest in adopting a heuristic
search algorithm to the problem considered in
this paper is due to the fact that a well-studied
heuristic search algorithm A* has been shown to
be significantly more computationally efficient
than dynamic programming for a variety of appli-
cations (see Pearl, 1984).

This paper is outlined as follows. The problem
is formulated in Section 2 and the U* algorithm
is presented in Section 3. In Section 4 we present

(2c. White, HL et al. / Multiobjecti~'e search in OR-graphs 359

a condition on the heuristic set which guarantees
that upon termination, U* will have found a
most preferred path. An example presented in
Carraway e t a l . (1990) is examined in Section 5.
Conclusions are presented in Section 6.

2. Problem formulation

We assume heuristic information is available
to help guide the search for a path in 3 * (s , F).
Let H c R L, where L = M × #N, # N being the
cardinality of the s~t N. We call H the heuristic
set. We think of each element h ~ H as being a
collection h = {h(n) : n ~ N} of reward vector es-
timates, where h(n) e R M is an estimate of r (P)
for some P c ~ (n , F).

Assume N is a finite set of nodes, A c_ N × N
is a set of directed arcs, where (n, n ') c A is the
arc from node n to node n' , s ~ N is the start
node, and F c N is the goal node set. Let SCS:
N--->2 N be the successor set function, i.e.,
SCS(n) = {n' ~ N : (n , n ') ~ A) , and let
S C S - t (n ') = (n ~ N : (n , n ') ~ A } . A path P=
(n~ n~) is a sequence of two or more nodes
such that (nk, n k + l) ~ A for all k = 1 K - 1.
Let ~ be the set of all paths in the graph, and
assume that the graph is acyclic, i.e., n~ :~ n K for
all (n ~ , . . . , n ~) ~ 3 . Let ~ (n , S) c_~ be the set
of all paths beginning at n ~ N and ending in
S _oN; if the set S is a singleton, then let 9 (n , S)
- - ~ (n , n ') , where S = {n'}. For simplicity, we
assume throughout that for all n ~ F, ~ (n , F) :g
qS, where ~h is the null set. 9 (s , F) is the set of
solution paths.

The graph has the following multicriteria re-
ward structure. Let M be the number of criteria
or objectives under consideration. There is a re-
ward function r: ~ --* R M and a commutative bi-
nary operator ' o ' on R M such that, for any path
P3 comprised of two subpaths P~ and P2, r(P3)
= r(P~) o r(P2). Furthermore, the binary opera-
tor o is order-presert, ing; i.e., r~ _<r 2 implies
r~ o x_<r 2 ox, for r~ , r2x~R M. Let e be the
identity vector for o ; i.e., e is such that e o r = r
for all r. Each scalar element of r(P) corre-
sponds to the attribute score of a particular ob-
jective, and 'more is bet ter ' for all attributes. We
remark that since A c_~, each arc in the graph
has associated with it a reward vector.

With respect to preference structure, there is a
multiattribute preference function u: RM--* R. We
assume that u is isotone. If P* ~ (n , S) is such
that u[r(P*)] > u[r(P)] for all P e ~ (n , S), then
we say that P* is a most preferred path in
~ (n , S). Let ~ * (n , S) be the set of all most
preferred paths in ~ (n , S). Our objective is to
determine a most preferred path in 9 (s , F), i.e.,
a path in P * (s , F).

3. The U* algorithm

We now present a best-first algorithm for de-
termining a path in ~ * (s , F). Let LABEL(n ' , n)
be the set of nondominated accrued costs of
paths starting at s and having arc (n, n ') as the
last arc on the path. Let G(s)= {e}, and for all
n ' :~ s, let G(n') be the set of all nondominated
accrued costs from s to n ' at a given stage in the
search. That is, G(n ') is the nondominated subset
of {0 LABEL(n ' , n):n ~ SCS-I(n ')} .

Step 0. Initialization.
Set OPEN = {s}, G(s)= {e}, and LABEL(n ' , n)
= ¢h for all (n, n ') c A , so that G(n)= ¢h for all
n ~ N ~ {s}, where ~ is the set difference opera-
tor.

Step 1. If OPEN = &, then terminate with fail-
ure.

Step 2. Node selection for expansion.
Select n ' ~ OPEN for expansion such the IE(n ')
> IE(n) for all n ~ OPEN, where

I E (n) = s u p { u [g o h (n)] : g ~ G (n) , h ¢ H } .

If n ' e F, then perform a final culling step on
G(n'), use the LABEL sets to trace back from n'
to s in order to determine a path in .~(s, n'),
and terminate successfully. If n ' e F, then re-
move n ' from OPEN and add all successors of n '
to OPEN; i.e.,

O P E N = { O P E N ~ {n'}} u S C S (n ') .

For all n" ~ SCS(n'), let

G(n") = G (n ") O { r (n ' , n") o g':

g ' ~ G (n ') } .

Step 3. Reward vector culling.
Remove g ' from all label sets LABEL(n ' , .),

360 C. C White, IIl, et al. / Multiobjective search in OR-graphs

n' ~ OPEN, if there exists a g" ~ G(n"), n"
OPEN, such that

u[g' o h (n ')] <u[g" o h(n")]

for all h ~ H. If, during the culling process, G(n')
becomes null for any n' ~ OPEN, then remove n
from OPEN. Go to Step 1.

Assume that the performance function u is
such that g '<g" and g ' ~ g " implies u (g ') <
u(g"). Then assuming that g', g" ~ G(n'), n'
OPEN, g ' < g" and g ' ~ g", it is easy to show
that g ' will be culled from all sets LABEL (n', •),
and therefore from G(n'). Thus, G(n') will con-
tain only nondominated elements after comple-
tion of the culling process.

4. Admissibility

We now present a condition, the admissibility
of the heuristic set, that guarantees the admissi-
bility of U*. U* is admissible if it terminates
having identified a path in ~ * (s , F). Thus, when
we demonstrate that U* is admissible, we show
that it produces optimal solutions in spite of the
heuristic nature of the information it uses. The
heuristic set H is admissible (with respect to U*)
if there is a h * ~ H , h * = { h * (n) : n ~ N } , that
satisfies the following conditions:

1. For all n ~ N , there exists a path P c
.~*(n , F) such that h*(n) < r(P).

2. There is a path such that equality holds in
Condition 1; i.e., there is a path (n ~ , . . . , n~:)

~ * (s , F) such that h*(n~)= r[(n~ n~:)], for
all k = 1 , K.

For example, let H(n) ___ R M contain the set of
all nondominated elements in { r (P) : P c

~ (n , F)}, and define H = ×n~NH(n). Then it is
straightforward to show that H is admissible.

We now present the main result of this sec-
tion.

Proposition. Assume H is admissible. Then U* is
admissible.

Proof. Let path P = (n~ n~:) ~ * (s , F) be a
path that satisfies the second condition in the
definition of the admissibility of H. Note that
IE(y) < u °PT, for all 3' ~ F, where u °PT = u[r(P)]

for any P ~ 9 * (s , F). We claim that at any time
* E P before U* terminates, there exists a node n k

n OPEN such that r[(n?,.. . , n~')] ~ G(n~) and
IE(n~) > u °PT and that termination always iden-
tifies a path in 9 * (s , F). Proof of this claim is
based on an induction argument. Initially, s is
expanded, n~ is placed in OPEN, and r[(n?, n~)]
becomes a member of G(n~). The culling process
does not remove r[(n~, n~')] from G(n~) since
there exists an h ~ H, namely h*, such that

u [r (n ~ , n ~) o h*(n~ ')] > u [g (s , n) o h * (n)]

for all n ~SCS(s) . Note that the LHS of the
above inequality equals uOPT; thus, IE(n~ ')>
H OPT.

Assume there exists a node * nk_ 1 ~ P N OPEN
such that r [(n~ ' , . . . , n*k_ l)] ~ G(n~_t) and
IE(n~_l) >-uOPT" If n*k_l is not chosen for ex-
pansion and U* terminates, then since IE(n~_ 1)
> u °PT, some path in ~ * (s , F) other than P has
been found, and the result holds. If nk_ 1 . is
chosen for expansion and is not a member of F,

• becomes or remains a member of OPEN then nk
and r[(n~ n~')] becomes or remains a mem-
ber of G(n~). The culling process will not remove
r[(n~,.. . , n~)] from G(n~) since there is an h
H, namely h*, such that

u[r(n~ n~) o h * (n ~)] >u[g ' o h * (n)]

for any g ' ~ G(n), for any n ~ OPEN. Again, the
LHS of the above inequality equals uOPT; there-
fore, IE(n~) > u °PT. If nk_ 1 . ~ F, i.e., if K = k -
1, then U* terminates having successfully found
P~,~*(s , F). Thus, termination is always suc-
cessful, and hence U* is admissible. []

5. Example

We now illustrate application of U* by consid-
ering Example 1 in Carraway et al. (1990). This
example is a two-criteria, best-path problem,
where on each arc the first criterion represents
the length of the arc and the second criterion
represents the probability that the arc can be
successfully traversed. All probabilities are as-
sumed independent across the arcs. The objective
is to find the nondominated paths from node 1 to
node 6, where we wish to minimize distance and

C.C. White, II1, et aL / Multiobjecm'e search in OR-graphs 361

maximize the probability of successfully reaching
node 6. Specifically, let

N = {1, . . . ,6} ,

S = I ,

F = {6},

A = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4),

(3, 5), (4, 5), (4, 6), (5, 6)},

r[(1, 2)] = (- 3 , 0.9),

r[(1, 3)] = (- 2 , 0.75),

r[(2, 3)] = (- 1 , 1.0),

r[(2, 4)] = (- 4 , 0.75),

r[(3, 4)] = (- 4 , 0.8),

r[(3, 5)1 = (- 2 , 0.6),

r[(4, 5)] = (- 2 , 0.8),

r[(4, 6)] = (- l , 0.8),

r[(5, 6)1 = (- 1, 0.95),

o = (+ , .),

u [(r l , r2)] = r l + 20r 2.

Therefore, if r = (q , r 2) and x - - (x 1, x2), then
u(r o x) = u [(r 1 + X l , r 2 " x 2)] = (r 1 + x 1) + 2 0 (r 2
• x2). Observe that u[r(1, 2, 3)] = 14 > 13 =
u[r(1, 3)] but that u[r(1, 2, 3, 5, 6)] = 2.60 < 3.55
= u[r(1, 3, 5, 6)], thus indicating that u violates
the monotonicity assumption required for dy-
namic programming to find a most preferred path.
In fact, Carraway et al. (1990) show that a con-
ventional dynamic programming algorithm selects
path (1, 2, 3, 5, 6) over (1, 3, 5, 6).

Furthermore, let H = ×.~NH(n) , where:

H(2) = { (- 5 , 0.6), (- 6 , 0.64), (- 4 , 0.57)},

H(3) = { (- 5 , 0.64), (- 3 , 0.57)},

H(4) = { (- 1 , 0.8)},

H(5) = { (- 1 , 0.95)},

H(6) = {e}.

The choice of H(1) is of no consequence and
can be made arbitrarily. We remark that H(n), n
= 2 5, represents the set of all nondominated
reward vectors associated with paths from node n
to F, which should be particularly effective infor-
mation on which to base our search. Application
of U* proceeds as follows.

Initialization
OPEN = {s} = {1}, G(1) = (0, 1), LABEL(n' , n)

= Q V(n, n') c A.
Iteration 1.

Node 1 chosen for expansion.
OPEN = (2, 3).
LABEL(2, 1) = {(-3 , 0.9)}, LABEL(3, 1) =

{(- 2, 0.75)}.
The culling step eliminates no reward vectors.
IE(2) = 3.20, IE(3) = 3.55.

Iteration 2.
Node 3 chosen for expansion.
OPEN = {2, 4, 5}.
LABEL(2, 1) = {(-3, 0.9)}, LABEL(4, 3) =

{(- 6 , 0 . 6) } ,

LABEL(5, 3) = {(-4 , 0.45)}.
The culling step eliminates all reward vectors

in G(2) and G(4). Therefore, the OPEN set
is modified as follows:

OPEN = {5}.
Iteration 3.

Node 5 chosen for expansion.
O P E N = { 6 } .

LABEL(6, 5) = {(- 5, 0.4275)}.
Iteration 4.

Node 6 chosen for expansion. Thus, U* termi-
nates with the path(l, 3, 5, 6) having preference
function value 3.55.

Consider U* now operating on the basis of
the following less ambitious (admissible) heuristic
set H = × ,~NH(n) :
H(2) = {r : r _< (- 1, 1.0)}.
H(3) = {r : r < (- 4, 0.8)} U {r : r < (- 2, 0.6)}.
H(4) = {r : r < (- 1, 0.8)}.
H(5) = {r: r < (- 1, 0.95)}.
H(6) = {e}.

We note that H(n), n = 2 , . . . , 5 , has been in-
duced by the reward vectors associated with arcs
(n, n') c A for all n' E SCS(n). Application of
U* proceeds as follows.

Initialization
OPEN = {1}.

Iteration 1.
Node 1 chosen for expansion.
OPEN = {2, 3}.
LABEL(2, 1) = {(-3 , 0.9)}, LABEL(3, 1) =

{(- 2, 0.75)}.
The culling step eliminates no reward vectors.
IE(2) = 14, IE(3) = 6.

362 c.c. White, III, et al. / Multiobjective search in OR-graphs

I terat ion 2.

Node 2 chosen for expansion.
OPEN{3, 4).
LABEL(3, 1)= {(-2, 0.75)},

LABEL(3, 2) = {(-4, 0.9)},
LABEL(4, 2) = {(- 7, 0.675)}.

The culling step eliminates no reward vectors.
IE(3) = 6.4, IE(4) = 2.8.

I terat ion 3.

Node 3 chosen for expansion.
OPEN = {4, 5}.
LABEL(4, 3) = {(- 6, 0.6), (- 8, 0.72)},

LABEL(4, 2) = {-7, 0.675)},
LABEL(5, 3) = {(- 4, 0.45), (- 6, 0.54)}.

The culling step eliminates no reward vectors.
IE(4) = 2.8, IE(5) = 3.55.

I terat ion 4.

Node 5 chosen for expansion.
OPEN = {4, 6}.
LABEL(4, 3) = {(- 6, 0.6), (- 8, 0.72)},

LABEL(4, 2) = {(- 7, 0.675)},
LABEL(6, 5)= {(-5, 0.4275), (- 7 , 0.513)}.

The culling step eliminates all reward vectors
in G(4). Therefore, the OPEN set is modified as
follows:

OPEN = {6}.
I terat ion 5.

Node 6 chosen for expansion. The final culling
step eliminates the value (- 7 , 0.513) from LA-
BEL(6, 5) and, therefore, from G(6). U* then
terminates with the most preferred path:
(1, 3, 5, 6), having preference function value 3.55.

We remark that for the first heuristic set, only
one solution path was fully considered, (1, 3, 5, 6),
and only two other partial solution paths were
considered, (1, 2) and (1, 3, 4). The second
heuristic set required the evaluation of two solu-
tion paths, (1, 3, 5, 6) and (1, 2, 3, 5, 6), and three
partial solution paths, (1, 3, 4), (1, 2, 4), and
(1, 2, 3, 4). In contrast, exhaustive enumeration
would require evaluation of all eight solution
paths. Therefore, we have demonstrated the exis-
tence of problems for which U* outperforms
exhaustive enumeration procedures, in terms of
the number of partial solution paths examined.

A possibly more important point of compari-
son for the U* algorithm is provided by the
Generalized Dynamic Programming (GDP) algo-
rithm of Carraway et al. (1990) mentioned earlier.
On this same example problem, without using the

heuristic information we have assumed here, GDP
required the examination of two solution paths
and three partial solution paths, just as did U*
for the second heuristic set. However, the GDP
solution provided by Carraway et al. required the
construction of bounds that could be reasonably
compared to our provision of heuristic values.
Thus, the computational comparison between U*
and GDP remains in question based on this sim-
ple example.

We might note that the description of GDP
provided in Carraway et al. (1990) does no pro-
vide sufficient detail as to the implementation of
the solution procedure for the dynamic program-
ming equations to enable us to compare opera-
tion counts or other complexity measures. We
also note that, in general, the functional equa-
tions specified for GDP must be solved for all
nodes in the graph, while our procedure could
allow some nodes to be avoided entirely. In large
graphs such node avoidance and potential sub-
path pruning could possibly result in substantial
computational savings for U* compared to GDP.
Finally, we note that much of the culling compu-
tation is unproductive, as can be seen from the
small proportion of iterations in which reward
vectors are actually eliminated with this proce-
dure. A detailed comparison of this algorithm
with various other approaches is a topic for fur-
ther research.

6. Conclusions

In this paper, we considered the problem of
determining a most preferred path from start
node to goal node set in an acyclic OR-graph,
given a multiattribute preference function, a mul-
tiobjective reward structure, and heuristic infor-
mation about this reward structure. We pre-
sented an algorithm U* which is guaranteed to
terminate with a most preferred path if given an
admissible heuristic set. This result was applied
to a simple example that fails to satisfy a suffi-
cient condition for dynamic programming, as con-
ventionally applied, to terminate with a most
preferred path. A comparison of the performance
of U* given different heuristics and the concept
of consistency (see Pearl, 1984) will be explored
in future research.

C.C. White, III, et al. / MultiobjectiL,e search in OR-graphs 363

References

Carraway, R.L., Morin, T.L., and Moskowitz, H. (1990),
"Generalized dynamic programming for multicriteria opti-
mization", European Journal of Operational Research 44,
95-104.

Geoffrion, A.M. (1968), "Proper efficiency and the theory of
vector optimization", Journal of Mathematical Analysis and
Applications 22, 618-630.

Keeney, R.M., and Raiffa, H. (1976), Decisions with Multiple
Objecti~,es: Preferences and Value Tradeoffs, Wiley, New
York.

Lark, J.W., and White, C.C. (1988), "AC~: A generalization of
A*", Department of Systems Engineering, University of
Virginia, Charlottesville, VA.

Pearl, J. (1984), Heuristics, Addision-Wesley, Reading, MA.
Stewart, B.S. (1988), "Heuristic search with a general order

relation", Ph.D. Dissertation, Department of Systems En-
gineering, University of Virginia, Charlottesville, VA.

Zionts, S., and Wallenius, J. (1977), "An interactive program-
ming method for solving the multiple criteria problem",
Annals of Discrete Mathematics 1,551-562.

