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Abstract: We consider the problem of determining a most preferred path from a start node to a goal 
node set in an acyclic OR-graph, given a multiattribute preference function, a multiobjective reward 
structure, and heuristic information about this reward structure. We present an algorithm which is shown 
to terminate with a most preferred path, given an admissible heuristic set. The algorithm illustrates how 
Artificial Intelligence techniques can be productively employed to solve multiobjective problems. 
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I. Introduction 

Decision making often involves the considera- 
tion of multiple, conflicting, and noncommensu- 
rate objectives. Decision making techniques that 
have been developed to explicitly consider multi- 
ple objectives include the determination of the 
set of all nondominated decisions (Geoffrion, 

* This research has been supported by ARO Contract DAAG 
29-85-K0089, NSF Grant ECS8708183, and JPL Contract 
957721. 

1968), the use of a multiattribute preference func- 
tion (Keeney and Raiffa, 1976), and various inter- 
active techniques (e.g., Zionts and Wallenius, 
1977). The interactive techniques are usually 
based on concepts associated with nondominated 
decisions and a, perhaps implicit, preference 
function. 

It is possible to represent many real-world 
decisions problems - particularly those involving 
a sequence of interrelated decisions - as what is 
referred to in the Artificial Intelligence commu- 
nity as a finite OR-graph (Pearl, 1984). Here, 
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'OR'  refers to the fact that if a path in the graph 
reaches a particular node, then extending that 
path beyond that node requires selecting pre- 
cisely one of the arcs emanating from the node. 
(When a graph is such that a path can be defined 
as including more than one arc emanating from 
the same node, then it is called an AND-graph.) 
In a finite OR-graph, a nondominated path can 
be described as follows. Assume r(P) is the vec- 
tor of rewards accrued by path P, each scalar 
element of r(P)  corresponds to the attribute 
score of a particular objective, and 'more is bet- 
ter' for all attributes. We say path P is nondomi- 
nated if there does not exist a path P '  such that 
r(P' )  > r(P) and r(P' )  -¢ r(P). 

A preference function u provides a scalar-val- 
ued measure of preference based on rewards. We 
say reward vector r is at least as preferred as 
reward vector r '  if and only if u(r)>_ u(r'). In 
order to be consistent with the 'more is better '  
assumption, u is assumed to be isotone (mono- 
tonically nondecreasing); i.e., r >_ r '  implies u(r) 
>_ u(r'). Thus, candidates for the most preferred 
reward vector are the nondominated reward vec- 
tors. 

In this paper, we consider the problem of 
finding the most preferred path from the start 
node to a set of goal nodes in a finite OR-graph, 
where: 

1. There is a vector of rewards associated with 
each arc in the graph. 

2. The reward vector associated with a path is 
not necessarily the sum of the reward vectors of 
the arcs that comprise the path. 

3. Path preference is based on a multiattribute 
preference function. 

We present a so-called 'best-first' search algo- 
rithm, referred to as U *, that searches for a most 
preferred path using estimates of path reward 
vectors. These estimates are referred to in the 
Artificial Intelligence literature as heuristics. 
When these heuristics are used in an algorithm, 
such as U*,  the result is a procedure that ap- 
pears to be hybrid of branch-and-bound and dy- 
namic programming algorithms commonly en- 
countered in the Operations Research literature. 
In the following work, we represent the reward 
vector estimates by a set of vectors referred to as 
a heuristic set. 

One solution approach is to determine the set 
of all nondominated paths (perhaps using GOZ* ,  

Stewart, 1988) and then to rank these paths using 
the preference function. A disincentive to this 
approach is the (likely) possibility that for large 
problems the number of nondominated paths is 
large and their determination is computationally 
intensive. 

Another approach is conventional dynamic 
programming. However, dynamic programming 
requires that the preference function satisfy the 
following monotonicity assumption in order to be 
guaranteed to find the most preferred path. Let s 
be the start node, F be the set of goal nodes, and 
n be an intermediate node. Let PI and P2 be two 
different paths from s to n, and let P3 be any 
path from n to F. Let Pl u P3 be the path from s 
to F through n following path P~ and then path 
P3, and define P2 U J°3 analogously. The mono- 
tonicity assumption is: if u[r(Pl)] >_ u[r(P2)], then 
u[r(P l U P3)] > u[r(P2 U P3)]. Carraway et al. 
(1990) present examples of preference functions 
that do not satisfy this assumption and as a result 
guide the standard dynamic programming algo- 
rithm to a suboptimal path. 

Carraway et al. (1990) present a concept - 
generalized dynamic programming - that avoids 
this pitfall, in the process further blurring the 
distinction between the traditional Operations 
Research concepts of branch-and-bound and dy- 
namic programming. 

In this paper, we provide an Artificial-Intelli- 
gence based perspective on the same problem 
studied in Carraway et al. (1990). Our U* algo- 
rithm - and in particular our use of heuristic 
information - provides a more general frame- 
work within which the positive characteristics of 
branch-and-bound and dynamic programming can 
be combined, and hence approaches like general- 
ized dynamic programming can be implemented. 
Heuristic information is represented in the form 
of a set, rather than a function, which has been 
inspired by the problem considered by Lark and 
White (1988). Our interest in adopting a heuristic 
search algorithm to the problem considered in 
this paper is due to the fact that a well-studied 
heuristic search algorithm A* has been shown to 
be significantly more computationally efficient 
than dynamic programming for a variety of appli- 
cations (see Pearl, 1984). 

This paper is outlined as follows. The problem 
is formulated in Section 2 and the U* algorithm 
is presented in Section 3. In Section 4 we present 
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a condition on the heuristic set which guarantees 
that upon termination, U* will have found a 
most preferred path. An example presented in 
Carraway e t a l .  (1990) is examined in Section 5. 
Conclusions are presented in Section 6. 

2. Problem formulation 

We assume heuristic information is available 
to help guide the search for a path in 3 * ( s ,  F). 
Let H c R L, where L = M × #N,  # N  being the 
cardinality of the s~t N. We call H the heuristic 
set. We think of each element h ~ H as being a 
collection h = {h(n) : n ~ N} of reward vector es- 
timates, where h(n) e R M is an estimate of r ( P )  
for some P c ~ ( n ,  F). 

Assume N is a finite set of nodes, A c_ N × N 
is a set of directed arcs, where (n, n ' )  c A  is the 
arc from node n to node n' ,  s ~ N  is the start 
node, and F c N is the goal node set. Let SCS: 
N--->2 N be the successor set function, i.e., 
SCS(n )  = {n' ~ N : ( n ,  n ' )  ~ A) ,  and let 
S C S - t ( n ' ) = ( n ~ N : ( n , n ' ) ~ A } .  A path P= 
(n~ . . . . .  n~)  is a sequence of two or more nodes 
such that (nk, n k + l ) ~ A  for all k = 1 . . . . .  K -  1. 
Let ~ be the set of all paths in the graph, and 
assume that the graph is acyclic, i.e., n~ :~ n K for 
all ( n ~ , . . . , n ~ ) ~ 3 .  Let ~ ( n ,  S) c_~ be the set 
of all paths beginning at n ~ N  and ending in 
S _oN; if the set S is a singleton, then let 9 ( n ,  S) 
- - ~ ( n ,  n ') ,  where S = {n'}. For simplicity, we 
assume throughout that for all n ~ F, ~ ( n ,  F)  :g 
qS, where ~h is the null set. 9 ( s ,  F )  is the set of 
solution paths. 

The graph has the following multicriteria re- 
ward structure. Let M be the number  of criteria 
or objectives under consideration. There is a re- 
ward function r: ~ --* R M and a commutative bi- 
nary operator  ' o '  on R M such that, for any path 
P3 comprised of two subpaths P~ and P2, r(P3) 
= r(P~) o r(P2). Furthermore,  the binary opera- 
tor o is order-presert, ing; i.e., r~ _<r 2 implies 
r~ o x_<r  2 ox,  for r~ , r2x~R M. Let e be the 
identity vector for o ; i.e., e is such that e o r = r 
for all r. Each scalar element of r(P) corre- 
sponds to the attribute score of a particular ob- 
jective, and 'more  is bet ter '  for all attributes. We 
remark that since A c_~, each arc in the graph 
has associated with it a reward vector. 

With respect to preference structure, there is a 
multiattribute preference function u: RM--* R. We 
assume that u is isotone. If P*  ~ ( n ,  S) is such 
that u[r(P*)] > u[r(P)] for all P e ~ ( n ,  S), then 
we say that P*  is a most preferred path in 
~ ( n ,  S). Let ~ * ( n ,  S) be the set of all most 
preferred paths in ~ ( n ,  S). Our objective is to 
determine a most preferred path in 9 ( s ,  F), i.e., 
a path in P * ( s ,  F). 

3. The U* algorithm 

We now present a best-first algorithm for de- 
termining a path in ~ * ( s ,  F). Let LABEL(n ' ,  n) 
be the set of nondominated accrued costs of 
paths starting at s and having arc (n, n ' )  as the 
last arc on the path. Let G(s)= {e}, and for all 
n ' :~ s, let G(n')  be the set of all nondominated 
accrued costs from s to n '  at a given stage in the 
search. That  is, G(n ' )  is the nondominated subset 
of {0  LABEL(n ' ,  n):n  ~ SCS-I(n ' )} .  

Step 0. Initialization. 
Set OPEN = {s}, G(s)= {e}, and LABEL(n ' ,  n) 
= ¢h for all (n, n ' ) c A ,  so that G(n)= ¢h for all 
n ~ N ~ {s}, where ~ is the set difference opera- 
tor. 

Step 1. If OPEN = &, then terminate with fail- 
ure. 

Step 2. Node selection for expansion. 
Select n '  ~ OPEN for expansion such the IE(n ' )  
> IE(n)  for all n ~ OPEN, where 

I E ( n )  = s u p { u [ g  o h ( n ) ] : g ~ G ( n ) ,  h ¢ H } .  

If n ' e  F, then perform a final culling step on 
G(n'), use the LABEL sets to trace back from n' 
to s in order to determine a path in .~(s,  n'),  
and terminate successfully. If n '  e F, then re- 
move n '  from OPEN and add all successors of n '  
to OPEN; i.e., 

O P E N  = { O P E N  ~ {n'}} u S C S ( n ' ) .  

For all n" ~ SCS(n'),  let 

G(n")  = G ( n " )  O { r ( n ' ,  n") o g':  

g ' ~ G ( n ' ) } .  

Step 3. Reward vector culling. 
Remove g '  from all label sets LABEL(n ' ,  .), 
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n' ~ OPEN, if there exists a g" ~ G(n"), n" 
OPEN, such that 

u[g' o h ( n ' ) ]  <u[g" o h(n")] 

for all h ~ H. If, during the culling process, G(n') 
becomes null for any n'  ~ OPEN, then remove n 
from OPEN. Go to Step 1. 

Assume that the performance function u is 
such that g '<g"  and g ' ~ g "  implies u ( g ' ) <  
u(g"). Then assuming that g', g" ~ G(n'), n' 
OPEN, g '  < g"  and g '  ~ g", it is easy to show 
that g '  will be culled from all sets LABEL (n',  • ), 
and therefore from G(n'). Thus, G(n') will con- 
tain only nondominated elements after comple- 
tion of the culling process. 

4. Admissibility 

We now present a condition, the admissibility 
of the heuristic set, that guarantees the admissi- 
bility of U*.  U* is admissible if it terminates 
having identified a path in ~ * ( s ,  F). Thus, when 
we demonstrate that U* is admissible, we show 
that it produces optimal solutions in spite of the 
heuristic nature of the information it uses. The 
heuristic set H is admissible (with respect to U*)  
if there is a h * ~ H ,  h * = { h * ( n ) : n ~ N } ,  that 
satisfies the following conditions: 

1. For all n ~ N ,  there exists a path P c  
.~*(n ,  F )  such that h*(n) < r(P). 

2. There is a path such that equality holds in 
Condition 1; i.e., there is a path ( n ~ , . . . ,  n~:) 

~ * ( s ,  F )  such that h*(n~)= r[(n~ . . . . .  n~:)], for 
all k = 1 . . . .  , K. 

For example, let H(n) ___ R M contain the set of 
all nondominated elements in { r ( P ) :  P c  

~ ( n ,  F)}, and define H =  ×n~NH(n). Then it is 
straightforward to show that H is admissible. 

We now present the main result of this sec- 
tion. 

Proposition. Assume H is admissible. Then U* is 
admissible. 

Proof. Let path P = (n~ . . . . .  n~:) ~ * ( s ,  F )  be a 
path that satisfies the second condition in the 
definition of the admissibility of H. Note that 
IE(y)  < u °PT, for all 3' ~ F, where u °PT = u[r(P)] 

for any P ~ 9 * ( s ,  F).  We claim that at any time 
* E P  before U* terminates, there exists a node n k 

n OPEN such that r[(n?,.. . ,  n~')] ~ G(n~) and 
IE(n~)  > u °PT and that termination always iden- 
tifies a path in 9 * ( s ,  F). Proof of this claim is 
based on an induction argument. Initially, s is 
expanded, n~ is placed in OPEN, and r[(n?, n~)] 
becomes a member of G(n~). The culling process 
does not remove r[(n~, n~')] from G(n~) since 
there exists an h ~ H, namely h*, such that 

u [ r ( n ~ , n ~ )  o h*(n~ ' ) ]  > u [ g ( s , n )  o h * ( n ) ]  

for all n ~SCS(s) .  Note that the LHS of the 
above inequality equals uOPT; thus, IE(n~ ' )>  
H OPT. 

Assume there exists a node * nk_ 1 ~ P N  OPEN 
such that r [ (n~ ' , . . . , n*k_ l ) ]  ~ G(n~_t )  and 
IE(n~_l)  >-uOPT" If n*k_l is not chosen for ex- 
pansion and U* terminates, then since IE(n~_ 1) 
> u °PT, some path in ~ * ( s ,  F )  other than P has 
been found, and the result holds. If nk_ 1 .  is 
chosen for expansion and is not a member of F, 

• becomes or remains a member of OPEN then nk 
and r[(n~ . . . . .  n~')] becomes or remains a mem- 
ber of G(n~). The culling process will not remove 
r[(n~,.. . ,  n~)] from G(n~) since there is an h 
H, namely h*, such that 

u[r(n~ . . . . .  n~) o h * ( n ~ ) ]  >u[g '  o h * ( n ) ]  

for any g '  ~ G(n),  for any n ~ OPEN. Again, the 
LHS of the above inequality equals uOPT; there- 
fore, IE(n~)  > u °PT. If nk_ 1 .  ~ F, i.e., if K = k - 
1, then U* terminates having successfully found 
P~,~*(s ,  F). Thus, termination is always suc- 
cessful, and hence U* is admissible. [] 

5. Example 

We now illustrate application of U* by consid- 
ering Example 1 in Carraway et al. (1990). This 
example is a two-criteria, best-path problem, 
where on each arc the first criterion represents 
the length of the arc and the second criterion 
represents the probability that the arc can be 
successfully traversed. All probabilities are as- 
sumed independent across the arcs. The objective 
is to find the nondominated paths from node 1 to 
node 6, where we wish to minimize distance and 
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maximize the probability of successfully reaching 
node 6. Specifically, let 

N =  {1, . . . ,6} ,  

S = I ,  

F =  {6}, 

A = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), 

(3, 5), (4, 5), (4, 6), (5, 6)}, 

r[(1, 2)] = ( - 3 ,  0.9), 

r[(1,  3)] = ( - 2 ,  0.75), 

r[(2,  3)] = ( - 1 ,  1.0), 

r[(2, 4)] = ( - 4 ,  0.75), 

r[(3, 4)] = ( - 4 ,  0.8), 

r[(3,  5)1 = ( - 2 ,  0.6), 

r[(4,  5)] = ( - 2 ,  0.8), 

r[(4, 6)] = ( - l ,  0.8), 

r[(5, 6)1 = ( -  1, 0.95), 

o = ( + ,  .), 

u [ ( r l ,  r2)]  = r l + 20r  2. 

Therefore, if r = (q ,  r 2) and x - - ( x  1, x2), then 
u(r  o x ) = u [ ( r  1 + X l ,  r 2 " x 2 ) ] = ( r  1 + x  1 ) + 2 0 ( r  2 
• x2). Observe that u[r(1, 2, 3)] = 14 > 13 = 
u[r(1, 3)] but that u[r(1, 2, 3, 5, 6)] = 2.60 < 3.55 
= u[r(1, 3, 5, 6)], thus indicating that u violates 
the monotonicity assumption required for dy- 
namic programming to find a most preferred path. 
In fact, Carraway et al. (1990) show that a con- 
ventional dynamic programming algorithm selects 
path (1, 2, 3, 5, 6) over (1, 3, 5, 6). 

Furthermore, let H = ×.~NH(n) ,  where: 

H(2)  = { ( - 5 ,  0.6), ( - 6 ,  0.64), ( - 4 ,  0.57)}, 

H(3)  = { ( - 5 ,  0.64), ( - 3 ,  0.57)}, 

H(4)  = { ( - 1 ,  0.8)}, 

H(5)  = { ( - 1 ,  0.95)}, 

H(6)  = {e}. 

The choice of H(1) is of no consequence and 
can be made arbitrarily. We remark that H(n), n 
= 2 . . . . .  5, represents the set of all nondominated 
reward vectors associated with paths from node n 
to F, which should be particularly effective infor- 
mation on which to base our search. Application 
of U* proceeds as follows. 

Initialization 
OPEN = {s} = {1}, G(1) = (0, 1), LABEL(n' ,  n) 

= Q V(n, n')  c A. 
Iteration 1. 

Node 1 chosen for expansion. 
OPEN = (2, 3). 
LABEL(2, 1) = {(-3 ,  0.9)}, LABEL(3, 1) = 

{( - 2, 0.75)}. 
The culling step eliminates no reward vectors. 
IE(2) = 3.20, IE(3) = 3.55. 

Iteration 2. 
Node 3 chosen for expansion. 
OPEN = {2, 4, 5}. 
LABEL(2, 1) = {(-3,  0.9)}, LABEL(4, 3) = 

{( - 6 ,  0 . 6 ) } ,  

LABEL(5, 3) = {(-4 ,  0.45)}. 
The culling step eliminates all reward vectors 

in G(2) and G(4). Therefore, the OPEN set 
is modified as follows: 

OPEN = {5}. 
Iteration 3. 

Node 5 chosen for expansion. 
O P E N  = { 6 } .  

LABEL(6, 5) = {(-  5, 0.4275)}. 
Iteration 4. 

Node 6 chosen for expansion. Thus, U* termi- 
nates with the path(l,  3, 5, 6) having preference 
function value 3.55. 

Consider U* now operating on the basis of 
the following less ambitious (admissible) heuristic 
set H =  × ,~NH(n) :  
H(2) = {r : r _< ( - 1, 1.0)}. 
H(3) = {r : r < ( - 4, 0.8)} U {r : r < ( - 2, 0.6)}. 
H(4) = {r : r < ( -  1, 0.8)}. 
H(5) = {r: r < ( -  1, 0.95)}. 
H(6) = {e}. 

We note that H(n), n = 2 , . . . , 5 ,  has been in- 
duced by the reward vectors associated with arcs 
(n, n')  c A  for all n' E SCS(n). Application of 
U* proceeds as follows. 

Initialization 
OPEN = {1}. 

Iteration 1. 
Node 1 chosen for expansion. 
OPEN = {2, 3}. 
LABEL(2, 1) = {(-3 ,  0.9)}, LABEL(3, 1) = 

{( - 2, 0.75)}. 
The culling step eliminates no reward vectors. 
IE(2) = 14, IE(3) = 6. 
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I terat ion 2. 

Node 2 chosen for expansion. 
OPEN{3, 4). 
LABEL(3, 1)= {(-2, 0.75)}, 

LABEL(3, 2) = {(-4, 0.9)}, 
LABEL(4, 2) = {(- 7, 0.675)}. 

The culling step eliminates no reward vectors. 
IE(3) = 6.4, IE(4) = 2.8. 

I terat ion 3. 

Node 3 chosen for expansion. 
OPEN = {4, 5}. 
LABEL(4, 3) = {(- 6, 0.6), ( -  8, 0.72)}, 

LABEL(4, 2) = {-7,  0.675)}, 
LABEL(5, 3) = {(- 4, 0.45), ( -  6, 0.54)}. 

The culling step eliminates no reward vectors. 
IE(4) = 2.8, IE(5) = 3.55. 

I terat ion 4. 

Node 5 chosen for expansion. 
OPEN = {4, 6}. 
LABEL(4, 3) = {(- 6, 0.6), ( -  8, 0.72)}, 

LABEL(4, 2) = {( - 7, 0.675)}, 
LABEL(6, 5)= {(-5, 0.4275), ( - 7 ,  0.513)}. 

The culling step eliminates all reward vectors 
in G(4). Therefore, the OPEN set is modified as 
follows: 

OPEN = {6}. 
I terat ion 5. 

Node 6 chosen for expansion. The final culling 
step eliminates the value ( - 7 ,  0.513) from LA- 
BEL(6, 5) and, therefore, from G(6). U* then 
terminates with the most preferred path: 
(1, 3, 5, 6), having preference function value 3.55. 

We remark that for the first heuristic set, only 
one solution path was fully considered, (1, 3, 5, 6), 
and only two other partial solution paths were 
considered, (1, 2) and (1, 3, 4). The second 
heuristic set required the evaluation of two solu- 
tion paths, (1, 3, 5, 6) and (1, 2, 3, 5, 6), and three 
partial solution paths, (1, 3, 4), (1, 2, 4), and 
(1, 2, 3, 4). In contrast, exhaustive enumeration 
would require evaluation of all eight solution 
paths. Therefore, we have demonstrated the exis- 
tence of problems for which U* outperforms 
exhaustive enumeration procedures, in terms of 
the number of partial solution paths examined. 

A possibly more important point of compari- 
son for the U* algorithm is provided by the 
Generalized Dynamic Programming (GDP) algo- 
rithm of Carraway et al. (1990) mentioned earlier. 
On this same example problem, without using the 

heuristic information we have assumed here, GDP 
required the examination of two solution paths 
and three partial solution paths, just as did U* 
for the second heuristic set. However, the GDP 
solution provided by Carraway et al. required the 
construction of bounds that could be reasonably 
compared to our provision of heuristic values. 
Thus, the computational comparison between U* 
and GDP remains in question based on this sim- 
ple example. 

We might note that the description of GDP 
provided in Carraway et al. (1990) does no pro- 
vide sufficient detail as to the implementation of 
the solution procedure for the dynamic program- 
ming equations to enable us to compare opera- 
tion counts or other complexity measures. We 
also note that, in general, the functional equa- 
tions specified for GDP must be solved for all 
nodes in the graph, while our procedure could 
allow some nodes to be avoided entirely. In large 
graphs such node avoidance and potential sub- 
path pruning could possibly result in substantial 
computational savings for U* compared to GDP. 
Finally, we note that much of the culling compu- 
tation is unproductive, as can be seen from the 
small proportion of iterations in which reward 
vectors are actually eliminated with this proce- 
dure. A detailed comparison of this algorithm 
with various other approaches is a topic for fur- 
ther research. 

6. Conclusions 

In this paper, we considered the problem of 
determining a most preferred path from start 
node to goal node set in an acyclic OR-graph, 
given a multiattribute preference function, a mul- 
tiobjective reward structure, and heuristic infor- 
mation about this reward structure. We pre- 
sented an algorithm U* which is guaranteed to 
terminate with a most preferred path if given an 
admissible heuristic set. This result was applied 
to a simple example that fails to satisfy a suffi- 
cient condition for dynamic programming, as con- 
ventionally applied, to terminate with a most 
preferred path. A comparison of the performance 
of U* given different heuristics and the concept 
of consistency (see Pearl, 1984) will be explored 
in future research. 
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