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Abstract-A new algorithm is presented for finding maximal and maximum value flows in directed 
single commodity networks. The algorithm gradually converts a combination of blocking preflows and 
backflows to a maximal flow in the network. Unlike other maximal flow algorithms, the algorithm 
treats the network more symmetrically by attempting to increase flow on both the ForwardStep and 
the BackwardStep. The algorithm belongs to the so called phase algorithms, and is applied to Dinic- 

type layered networks. With an effort of at most 0(n3) for maximum value flow, the algorithm ties 
with the fastest maximum flow algorithms in dense networks, where m % n*, and can therefore be 

seen as a significant alternate technique. The algorithm is based on the Karsanov [l] algorithm, and 
shares features with the algorithm of Tarjan [2], The first version of this algorithm was presented by 
the author in [3]. 

INTRODUCTION 

This paper presents a new Karzanov-type [l] algorithm for finding maximal flows and maximum 
value flows in directed single commodity networks. The maximal flow is found in two phases. 
In the first phase, a layered network is generated using the Dinic algorithm [4], or any Dinic- 
type algorithm that generates and maintains acyclic layered networks. In the second phase, the 
proposed algorithm is applied to the layered network to find the maximal flow in that network. 
Repeated solving of maximal flows in such networks leads to finding the maximum value flow in 
an original network. We assume some familiarity with Dinic-type layered networks, as they are 
used in aiding the solution of maximal and maximum value flow problems. 

In [4], Dinic showed that a maximum value flow problem requires in the worst case the gener- 
ation of n - 1 layered networks, where n is the number of nodes in the original network. Because 
of this relationship between the maximal flow in a Dinic network and the maximum value flow in 
an original network, it is sufficient, without loss of generality, to consider solving maximal flows 
in such Dinic-type networks. 

We assume that, when using the two phase process, in the Phase 1, a Dinic-type layered network 
has been generated. The presented algorithm is then, in the Phase II, applied to such a layered 
network. Only the requirements of layer structure and acyclicity are necessary for the presented 
algorithm. This makes it possible to use any algorithm that generates acyclic layered networks 
from an original network in the Phase I. 

The next section outlines briefly the history of max-flow algorithms. In the third section the 
notation and background are discussed. The fourth section describes the algorithm. The fifth 
section gives the algorithm in detail. The sixth section discusses the computational aspects of 
the algorithm. In the seventh section, a small numerical example is given, and the section eight 
concludes the paper. 

SUMMARY OF MAX-FLOW ALGORITHMS 

Below, the history of max-flow algorithms is summarized with respect to the author(s), year of 
publication, reference and computational complexity. It has to be noted that the best max-flow 
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Ford and Fulkerson 
Dinic 
Edmonds and Karp 
Karzanov 
Cherkasky 
Malhotra, Kumar and Maheswari 

Galil 
Galil and Naamad 
Sleator 
Shiloach and Vishkin 
Sleator and Tarjan 
Tarj an 
Goldberg 
Waissi (and this paper) 

Goldberg and Tarjan 

Ahuja and Orlin 

(1956) PI 
(1970) PI 
(1972) PI 
(1974) PI 
wm 
(1978) PI 
(1980) PI 
(1980)[10] 
(1980)[11] 
(1982)[12] 
(1983)[13] 

(1984) [21 
(1985)[14] 

(1985) PI 
(1986)[15] 
(1989)[16] 

O(nmU) 
O(n2m) 
O(nm2) 
O(n3> 
O(n2&i) 

w3> 
O(n+mP) 

O(mn(log n)“) 

O(mn log(n)) 
O(n2 log(n)) 
O(mn log(n)) 
0(n3) 
0(n3) 
O(n3) 
O(nm log( $)) 
O(nm + n2 log(U)) 

algorithms still require a computational effort of 0(n3) for dense networks where m ti n2. All the 
algorithms below that offer some improvement computationally in sparse networks result actually 
to a worse than 0(n3) complexity in dense networks. 

NOTATION AND BACKGROUND 

The Problem 

The finding of a single commodity maximum value flow in a directed network implies that we 

are attempting to send as much flow as possible from one or more origin nodes to one or more 
destination nodes. 

It suffices, without loss of generality, to consider the maximum value flow problem in directed 
single source single sink networks. The problem may be formulated and solved as a linear program 
(LP). However, in this paper we develop a fast polynomial network flow phase algorithm for this 
problem. 

Notation 

Let an original, directed, single commodity network be G = (N, A, A, c, s, t). Here N denotes 

the set of nodes, A the set of arcs, A a vector (Xi,j : (i, j) E A) of lower bounds for flows on 
the CWCS, c a vector (ci,j : (i, j) E A) of capacities for flows on the arcs, and s, t the specified 

source and sink nodes. Each arc in the network is an ordered pair (i,j), i # j, with i,j E N. 
Nodes i, j are called the tail and head nodes of arc (i, j). The arc (i, j) is available for shipping 
the commodity from node i to node j. 

Flow Feasibility and Flow Conservation 

A flow vector in G is a vector f = (fi,j : (i, j) E A) where fi,j denotes the units of commodity 
shipped from node i along the arc (i, j) E A to node j. Given the flow vector f = (fi,j) in G, 
define 

f (in, i) = C(fj,i : over j such that (j, i) E A), 

f (i,out) = C(fi,j : over j such that (i, j) E A). 

The flow vector f is said to be a feasible flow vector if 

f(s,out) - f(in,s) = f(in,t) - f(t,out), 
f (in, i) = f (i, out), for all i E N, and i # s or t, 

A<f<c. 
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The first two constraints are called the flow conservation constraints, and the third is the flow 
bound constraint. When the second constraint holds for some node, say node i, then the flow 
vector f satisfies flow conservation at node i. 

If f is a feasible flow vector in G, the common value of the quantities in the first equation is 
called the value of the flow vector f, and denoted by v(f). 

The Acyclic Layer Network 

An acyclic network with a layer- or level-structure is generated from an original network G using 
the algorithm presented in [3], or the Dinic Algorithm [4]. Any other algorithm that generates 
and maintains the acyclicity and the layer structure can be used with the proposed algorithm. 
Many algorithms [l-3,7-12,17-20] use the Dinic-type layered network algorithms to solve one 

phase of the problem. There are other algorithms, e.g., Goldberg [14], Goldberg and Tarjan [15], 
and Ahuja and Orlin [16], that do not use the Dinic algorithm’s layered network concept, but 
instead use distance labels to direct flows closer to the sink. The algorithm of Goldberg and 
Tarjan [15] was called in [16] a “preflow-push algorithm”. The “excess-scaling algorithm” of 

Ahuja and Orlin [16] ’ p im roves this preflow-push algorithm. 
Let H = (V, R, 0, 6, s, t) be an acyclic layered network constructed from the network G using 

for example the Dinic algorithm. Here V denotes the set of nodes, R the set of arcs, zero lower 
bound for flow on the arcs, K the vector of capacities for flows on the arcs, s the source node, 
t the sink node. It is assumed that V is partitioned into mutually exclusive sets LO, Li, . . . , L,,, 
with Lc = (~1, and L,,, = {t], such that for each (i, j) E R, i E L, and j E L, for some r 

andp > r+l. Thesetsofnodes Lo,Ll,... ,L,,, are the layers in H, and num, the number of 
layers, & called the length of the network H. Each arc in R joins a node in a layer to a node in 
a higher layer. The partitioning of the network H into such layers can always be done because 
the network H is acyclic. 

DESCRIPTION OF THE ALGORITHM 

Suppose that the feasible flow vectors in H are denoted by g = (gi,j). The algorithm can be 
initiated with zero or any other known feasible flow vector in H. Suppose that g is a feasible or 
nonfeasible flow vector in H. Define gin,i and gi,out for a node, say i, as follows: 

@hi) = C(gj,i : over j such that (j,i) E R) 

d&out) = C(gi,j : over j such that (i, j) E R) 

g is said to have a PREFLOW at node i E V if gin,i > g+ut. 
g is said to have a BACKFLOW at node i E V if gin,i < gi,out. 
g is said to be a balanced flow at node i E V if gin,i = gi,out. 

The proposed algorithm finds a maximal flow from a specified source node to a specified sink 
node. It uses ForwardStep and BackwardStep. The algorithm, starting from a feasible flow, 
attempts to increase flow from a specified source node to a specified sink node during both Steps. 

During the ForwardStep the flow is gradually increased from the source on all arcs out of the 
source by processing, or pushing, the flow through the network from the first layer to the last 
layer. The BackwardStep reverses the process. During a BackwardStep, the flow is gradually 
increased on all arcs into the sink by processing the network from the sink to the source, from the 
last layer to the first layer, in reverse order, and “pushing” artificial flow through the network. 

Both steps are basically identical with the only difference being that the ForwardStep is ap- 
plied to the network from source to sink in an increasing order of layer numbering, whereas the 
BackwardStep is applied from sink to source in a decreasing order of layer numbering. The steps 
are applied in an alternating order. 

The flow may be infeasible after both the ForwardStep and the BackwardStep. During each of 
the steps unbalanced nodes of the previous step are balanced by reducing flow to regain feasibility. 
If the flow was increased during the ForwardStep so that the flow into a node, say i, is greater 
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than the flow out of node i, then node i is balanced in the subsequent BackwardStep by reducing 
flow into node i. If the flow was increased during the BackwardStep so that the flow out of a node, 
say i, is greater than that into node i, then the node i is balanced in the subsequent ForwardStep 

by reducing flow out of node i. The sequences of ForwardStep and BackwardStep are repeated 
until no flow increase occurs and all nodes become balanced. 

All nodes in H are initially unblocked. The algorithm processes the nodes starting from source 
and increases the flow along arcs (s, i) E R to capacity. At this stage, node i, initially unblocked 
and balanced, becomes unblocked and unbalanced. Next, the algorithm attempts to balance 
node i by increasing the flow along arcs (i,j) E R out of node i. If the flow cannot be increased 
along such arcs, then it is said that the balancing attempt has failed for node i in the ForwardStep. 
Similarly, a balancing attempt can fail in the BackwardStep. 

A node i E V, where the balancing attempt has failed in the ForwardStep, and hence 
gin,i > gi,out, is assigned a flow conservation status PF-blocked, called preflow blocked. Once 
a PF-blocked node becomes balanced it is called a PF-blocked-balanced node. A node i E V 

where gin,i = gi,out is assigned a flow conservation status BAL, and it is called balanced. A node 
i E V, where the balancing attempt has failed in the BackwardStep, and hence g;,,i < gi,-,ut, 
is assigned a flow conservation status BF-blocked, called backflow blocked. Once a BF-blocked 
node becomes balanced it is called a BF-blocked-balanced node. 

A node which became PF-blocked in the ForwardStep will be balanced in the following Back- 

wardstep. A node which became BF-blocked in the BackwardStep will be balanced in the following 
ForwardStep. 

A node can be in two states: unblocked or blocked. An unblocked node can be unbalanced or 
balanced. A blocked node can be 

PF-blocked-unbalanced or PF-blocked-balanced 
BF-blocked-unbalanced or BF-blocked-balanced 

An unblocked node i E V can become PF- or BF-blocked. A blocked node becomes balanced 
in the subsequent Step, but it never again becomes unblocked. Once a blocked node becomes 
balanced it remains balanced until the end of the algorithm. It has to be pointed out that 
once a node has been assigned a flow conservation status, the flow conservation status remains 
unchanged until the end of the algorithm. Hence, a PF-blocked node, balanced or unbalanced, 
cannot change to a BF-blocked node, or vice versa, during the algorithm. 

The algorithm uses ForwardStep and BackwardStep over the acyclic layered network. During 
the ForwardStep, the flow is increased through the network as much as possible, except through 
arcs (i,j) E R where j is blocked. It starts from s E LO and saturates all arcs (s, i) E R. Then 
it moves to layer L1 to node i E V which is unbalanced and attempts to balance it by increasing 
flow out of node i. If the balancing attempt of node i E V fails, and hence gin,i > gi,out, then 
node i is made PF-blocked. If during the ForwardStep BF-blocked nodes are encountered, they 
are balanced by reducing the flow out of node i. This can be always done because the flow out 
of node i can be reduced to zero on all arcs going out of node i if necessary. 

During the BackwardStep, starting from node t, flow is increased on unsaturated arcs (i, t) E R 

to capacity where node i is not blocked. As the procedure moves one layer backwards towards the 
source s then for an unbalanced, unblocked node i an attempt is made to balance it by increasing 
flow along the incoming arcs (p, i) E R. If the balancing attempt fails, and hence gin,i < gi,outr 
then node i is made BF-blocked. If during the BackwardStep PF-blocked nodes are encountered, 
they are balanced by reducing the flow on the incoming arcs. This can be always done because 
the flow into the node i can be reduced to zero on all incoming arcs if necessary. 

After both the ForwardStep and the BackwardStep, the network is pruned if all nodes are 
balanced, and hence, the flow is feasible. The pruning consists of eliminating all saturated arcs, 
and all nodes, say i # s, t, where either all arcs incident into, or out of, the node i have been 
eliminated. When this repetitive process leads to elimination of all arcs incident at s or t, then 
there are no flow augmenting chains, or FACs, in the network and the current feasible flow vector 
is maximal. 
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THE ALGORITHM 

ForwardStep 

STEP 1. Increase flow on all arcs (s,i) E R, out of the source s, to capacity, except on arcs 
(s, i) E R where node i is blocked. 

STEP 2. Suppose that the last layer processed is L,_l. Go to the next layer L, and attempt to 
balance all unblocked unbalanced nodes, where the flow into the node is greater than the flow 
out of the node, and all BF-blocked nodes. 

Suppose that the node i is unblocked and unbalanced with gin,i > g;,out. Attempt to balance 
node i E L, by increasing flow out of node i along arcs (i, j) E R, where j is not blocked, one arc 
at a time in any order. If the attempt fails, and flow out of node i cannot be increased further 
along any arc (i, j), and hence gin,i > gi,out, then make node i PF-blocked. 
Suppose that node j E L, is BF-blocked. Balance node j by decreasing the flow on arcs (j, k) E R 
out of node j until node j is balanced. Reduce flow on arcs (j, %) first where node lc is not blocked. 

STEP 3. Repeat Step 2 for all unblocked-unbalanced nodes i with gin,i > gi,outr and BF-blocked- 
unbalanced nodes j, and all layers in increasing order of the layer numbering until the sink 1 is 
reached. 

STEP 4. If there are no unbalanced nodes, then prune the network. If the pruning eliminates all 
arcs incident at the source s or the sink t, terminate. The current feasible flow vector is maximal 
flow in the acyclic network. Otherwise go to the BackwardStep. 

BackwardStep 

STEP 1. Increase flow on all arcs (i,t) E R directed into the sink t to capacity, except on arcs 
(i, t) E R where node i is blocked. 

STEP 2. Suppose that the last layer processed is L,+l. Go to layer L, and attempt to balance 
all unblocked-unbalanced nodes where the flow out of the node is greater than the flow into the 
node, and all PF-blocked nodes. 

Suppose that the node i is unblocked and unbalanced with gin,i < gi,out. Attempt to balance 
node i E L, by increasing flow into node i along arcs (q, i) E R, where 

4 E W(L, : P I 7- - 1)) 

is not blocked, one arc at a time in any order. If the attempt fails, and flow into node i cannot 
be increased further along any arc (q, i), and hence gin,i < gi,out, then make node i BF-blocked. 
Suppose that node j E L, is PF-blocked. Balance node j by decreasing the flow on arcs (h, j) E R 
into node j until node j is balanced. Reduce flow on arcs (h,j) first where node h is not blocked. 

STEP 3. Repeat Step 2 for all unblocked-unbalanced nodes i with gin,; < gi,out, and PF-blocked- 
unbalanced nodes j, and all layers in decreasing order of the layer numbering until the source s 
is reached. 

STEP 4. If there are no unbalanced nodes, then prune the network. If the pruning eliminates all 
arcs incident at the source s or the sink t, terminate; the current feasible flow vector is maximal 
flow in the acyclic network. Otherwise go to the ForwardStep. 

DISCUSSION 

The validity proof follows the same steps as that of Tarjan [2]. The only difference is that here 
the algorithm is applied to increase flow starting both from source s and sink t. When a node 
is assigned a flow conservation status, PF- or BF-blocked, it means that the node cannot handle 
more flow out of the node or into the node. In subsequent steps the blocked nodes are balanced, 
and flow increase is applied on alternate paths. When all arcs incident at a node lead to blocked 
nodes no flow increase is possible. When no flow increase is possible, and all nodes are balanced, 
the algorithm halts. The maximal (blocking) flow has been found. 
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The algorithm gradually converts a combination of blocking preflows and backflows to a maxi- 
mal flow in the network. Unlike other maximal flow algorithms the algorithm treats the network 
more symmetrically by attempting to increase flow on both the ForwardStep and the Backward- 
Step. 

THEOREM. The worst case computational complexity of the maximal Aow algorithm is 0(n2). 

PROOF. In a special case when the flow is increased from source to sink it may happen that no 
nodes become blocked. If this occurs then all nodes are balanced after the ForwardStep, and all 
arcs out of the source node are at capacity, i.e., the flow is maximal after only the FomardStep. 

Beyond this special case the following must be considered. At the beginning of each FOT- 
wardStep the only unbalanced nodes are those which became unbalanced during the previous 
BackwardStep. Those nodes are BF-blocked-unbalanced. Similarly, at the beginning of each 
BackwardStep the only unbalanced nodes are those that became unbalanced during the preced- 
ing ForwardStep. Those nodes are PF-blocked-unbalanced. Every sequence of ForwardStep and 
BackwardStep either blocks or balances at least one node. During a ForwardStep at least one 
node is PF-blocked or a BF-blocked node is balanced. During each BackwardStep at least one 
node is BF-blocked or a PF-blocked node is balanced. A PF-blocked-unbalanced node can only 
become a PF-blocked-balanced node. Similarly a BF-blocked-unbalanced node can only become 
a BF-blocked-balanced node. Once a PF- or BF-blocked node is balanced, then arcs incident at 
those nodes are not used for flow increase in subsequent steps of the algorithm. There are at 
most (n - 2) repetitions of the ForwardStep and the BackwardStep, and at most C(i : for all i 
from 1 to n - 2) = n2 balancing attempts. 

The flow on an arc (i,j) is increased in the ForwardStep if and only if j is unblocked. The flow 
on an arc (i, j) is increased in the BackwardStep if and only if i is unblocked. Similarly, the flow 
on an arc (i,j) is decreased in the ForwardStep if and only if node i is BF-blocked. The flow on 
an arc (i, j) is decreased in the BackwardStep if and only if node j is PF-blocked. 

Hence, the flow first increases on an arc and then decreases. The increase of flow either saturates 
the arc or stops when the respective node is balanced. The decrease of flow either reduces the 
flow in an arc to zero or stops when respective node is balanced. 

In each sequence of the ForwardStep and BackwardStep, one node is blocked or a blocked node 
is balanced. Consider the rth sequence of such steps over the acyclic network. Suppose that 
during this sequence a blocked node is balanced. Suppose also that there are br arcs incident at 
that node. Each time a blocked node is balanced, the node itself and arcs incident to it are not 
considered for further flow increase in subsequent steps of the algorithm. Hence, clearly C(b, : for 
all T over n) 5 m. The total effort required by the algorithm is hence at most 0(m+n2) = O(n2). 

COROLLARY. The algorithm requires at most O(n3) effort for maximum value flow in a non- 
acyclic directed network G. 

PROOF. The maximal flow in an acyclic network requires at most O(n2) effort. The Dinic 
algorithm [4] d re uces the maximum value flow problem to solving at most n - 1 maximal flow 
problems in acyclic networks. Hence, the maximum value flow in a original network G can be 
found in at most (n - l)n2 steps, i.e., the effort is at most O(n3). 

This complexity is the same as with the fastest maximum flow algorithms in dense networks, 
where m c n2. The implementation here is different than that of Karzanov’s maximal flow 
algorithm. The algorithm clearly treats the entire network more symmetrically. Because of this 
it is likely to produce maximal flows of higher value than other maximal flow algorithms in each 
acyclic network, and hence, is likely to run faster in practice. 

EXAMPLE 

Figure 1 shows a small acyclic network presented in [3]. In Figure 2, the maximal flow algorithm 
is applied to the network. After three Steps, two ForwardSteps and one BackwardStep, all nodes 
in the example network are balanced and the flow is maximal. The maximal flow is also maximum 
value flow in the original network. 



Max-flow algorithm 71 

FORWARD 

FORWAR 

Figure 1. Example network. 
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Figure 2. Maximal flow algorithm applied to the network. 

CONCLUSION 

The algorithm gradually converts a combination of blocking preflows and backflows to a msxi- 
ma1 flow in the network. Unlike other maximal flow algorithms the algorithm treats the network 
more symmetrically by attempting to increase flow in repeated ForwardStep and BackwardStep. 

During the ForwardStep, the flow is gradually increased from the source on all arcs out of the 
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source by processing, or pushing, the flow through the network from the first layer to the last layer, 
layer by layer. During a BackwardStep, the flow is gradually increased on all arcs into the sink 
by processing the network from the sink to the source in reverse order, and “pushing” artificial 
flow through the network. The algorithm requires an effort of at most 0(n2) for maximal flow in 
acyclic networks. This ties with the fastest maximal flow algorithms in terms of the computational 
effort required in the worst case in dense networks with m M n2. 

In maximum flow applications, the algorithm solves one phase of the problem. When the Dinic 
algorithm is used to solve the Phase I, i.e., the acyclic network generation, and the proposed 
algorithm is used to find the maximal flow in the Phase II, then the maximum flow in the 
original network can be found with an effort O(n3) in the worst case. This, again, is a tie with 
the fastest maximum value flow algorithms with respect to the computational effort in the worst 
case, also in dense networks. 
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