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Abstract: Let b(t), 05 t< 03, denote Brownian motion with unknown positive drift p. The problem of 

setting a fixed width confidence interval for B= l/p is considered. The intervals studied are of the form 

[gC - h, e, + h], where { is a stopping time and & = [/b(c). Stopping times rh are derived so that these 

intervals have coverage probabilities converging to a set value y as h + 0. This convergence is uniform 

for p near 0. Asymptotic optimality of r/, is also addressed. 
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1. Introduction 

Let b(t), 05 I< 03, denote Brownian motion with unknown positive drift p and 

continuous sample paths. Then the expected time to reach a given level I is I/,u, so 

that estimation of 0= l/p is of interest. 

Natural estimators for ,D and 1!9 based on %[ = cr(b(.s); O<s< t) are 

The problem of setting a fixed width confidence interval for 19 will be considered. 

Specifically, a stopping time c will be sought such that for all ,DE(O, 03), 

P,(Q E [e, - h, 0[ + h]) = y, 

where h, the desired half width of the interval, and y, the desired coverage prob- 

ability, are set by the investigator. By Slutsky’s theorem, 

fi(B, - 0) * N(0, e4) 

as t-m, for any ,uE(O,m). From this approximation, I& - 0 1~ h) = 
1 - 2@(-h fi/e2) which equals if = where y)) @ is 

037%3758/92/$05.00 B.V. rights reserved 



2 R. W. Keener, M. Woodroofe / Estimating the reciprocal drift of Brownian motion 

the standard normal cumulative distribution. This suggests that sampling should be 

continued until c&!/l/r~ h. To avoid problems with early stopping and negative 

estimates, it is convenient to modify this rule to 

-2 

z= rh = inf tzq4: o[>O and *sh 

fi 1 

= inf{trq4: b(t)r~t~‘~), 

where 
C 

a= -, 

f h 
q = q(a) 2 log, 

a 
and 

lim *r = 0. 
0-m a 

In Section 2, the performance of rh and the associated confidence interval is 

studied as h 10, or equivalently as a + 03. Since 6’+ 00 as p 10, there is concern that 

approximations for coverage probabilities may break down for p near zero. Perhaps 

surprisingly this is not the case: Theorem 2.1 shows that coverage probabilities for 

the confidence intervals based on Th converge to y uniformly for ,U in any bounded 

subset of (0, a~) (actually uniformity holds over sets which grow quickly). In Sec- 

tion 3, the optimality of r,, is addressed. If competing stopping times &, have 

coverage converging to y, then Ep [h cannot be better than E,T,, asymptotically. 

The use of sequential methods to produce a uniform limit theorem, where fixed 

sample size procedures cannot, has been studied by Lai and Siegmund (1983) and 

Siegmund (1982) in other contexts. 

2. Performance of 7 

Let 

The main result may now be stated. 

Theorem 2.1. 

liylpf yh* 2 y 

and 

(2.1) 

(2.2) lim sup IYh(p)-YI = 0. 
h10 O</iuco’ 
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Lemma 2.2. For all lla<m, O<p<m and q4sr<tlm, 

P,{r<r<t} 5 2(1- @(aq-pq2))+ 
‘I a 

1 
3/4 @(as”4 - p 6) ds. 

,s 

Proof. For fixed a and I-( and for q4 5 r< 03, let 

cr = inf { tl0: b(t) L ar3’4}. 

[a,41q4} U {0~4>q4,r<r~t}. 

The density for or under Pp is well known - see Section 3.2 of Siegmund (1985) 

for a derivation based on likelihood methods, or Section 7.3 of Karlin and Taylor 

(1975) for a derivation based on reflection arguments. Integrating this density, 

P,{oq4>q4,r<55t} 5 P,{r<a,st} 

= I;$@($-j$)dr. 

It follows easily that the measure v defined by v(B) = PD { oq4> q4, T E B} for Bore1 

sets BC IR is absolutely continuous with respect Lebesgue measure A and that 

g(r) = 1;‘i 
P,{a,4>q4,r<~It} 

t-r 
G-@(ar1’4-,ufi) 

r3/4 

for a.e. rE (q4, a). The lemma follows easily. 

Proposition 2.3. For all 1 <aCoo, O<psa/q and O<x<m, 

Pp>;+;] I l-@(X). 

Also, for all O<p(la’ and a>e4, 

Pp 
l 
2’4Sa-i 

Lcfi 1 
5 ll(1 -@(fi))+4a@(fi-1). 

Proof. For the first assertion, let 

r1/4 
2+xq. 

P a 

Then 
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I Pp{b(r)<ar3’4) 

= 1 - @(p fi- UP). 

The last expression is at most 1 - @p(x) since 

For the second assertion, assume e4sa< m and O<,u~a’ and let 

By Lemma 2.2 with r=q4 and first principles, 

Pp 71/45f-r 
pfi 1 I P,{q4<71t} +P,{7=q4} (2.3) 

r3(1-@(a~-p$))+ 

The first term here is easy to bound: since pula’, 

1 - @(aq -pq2) 5 1 - @(all - a’y2) = 1 - @(y&j). (2.4) 

The argument g(s) = as1’4 - p fi of @ in the integral in (2.3) is a quadratic function 

of s”~ which achieves its maximum at s,, = (a/(2,u))4 and decreases for srs,. Since 

g(t)=L-I+&120 
IITL 

and since @ is decreasing on (0, co), @(g(s))s@(g(t)) for SE (s,,, t). Therefore 

=4at”4@ ?-l , ( > fi 
To simplify this bound, note that x2@(x- 1) has derivative -x(x+ 1)(x- 2)@(x- 1) 

which is negative for x>2. Since a>e4 gives fi>2, 

su 
X? a7 Yp 

x*@(x- 1) = arp$(jiii- 1). 

Consequently, since ,LI 5 a’ implies ,u < a/q and a/fi > fi, 
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= 4aYjqqfi- 1). (2.5) 

To bound the integral in (2.3) over s~(yl~,.s~), note that for SSS~, g(s)= 

a~“~( 1 - ~s”~/a) 1 a~“~(1 - ,~&‘~/a) = a~“~/2 L 0. Hence 

I J 

’ U% 
= 4 

I 
@(3x) dx 

I ov 

5 8( 1 - @(+aq)) 

5 8(1 - Qqh)), (2.6) 

the last inequality since fi>2. Proposition 2.3 now follows using (2.4), (2.5) and 

(2.6) in (2.3). 

Define 

and let 

for 0~ t< 03. Note that {b*(t)}120 is a standard Brownian motion under Pp for any 

a>0 and any pu(O,w). 

Corollary 2.4. For any E > 0, 

lim sup P,{lr*-ll>E} =O. 
(1’03 O<pcca’ 

Also, 

lim sup EJr*-11 =O. 
a-m o<p<a 

Proof. The first assertion follows easily from Proposition 2.3. Then for the second 

assertion, uniform integrability for the variables (T* - 1)’ is sufficient, and this also 

follows easily from Proposition 2.3. 

Proposition 2.5. For any E>O, 

lim sup PV{ la2((7-8)-6*(1)l ZE} = 0. 
a-m O<fl<a’ 

Proof. Observe that on {r> v”}, 
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1 
&_(j=~-__= /Y-b(r) ,fJ- b(r) 

b(r) p M(r) = par3’4 
and 

3/4 

b*(s*), 

so 
3/4 

[b*(r*)-b*(l)]+ [(;y”-l]b*(l). 

Assume now that 6< 3. For XE [$, t] the function x -3’4 has derivative between -3 
and 0, so {lr*-11<6} implies /r*-3’4 -11~36. Hence on {jr*-11<8,rr>q4}, 

,rsy,~s Ib*(O-b*(l)1 +36/b*U)l, < 
and therefore (taking advantage of the fact that probability statements concerning 

b* are independent of p) 

3/4 

sup lb*(t) - b*(l)1 >+E . 
it-ll<d 

The proposition follows using Corollary 2.4, letting a + 03 and then Sl 0. 

Proof of Theorem 2.1. Since a*h=c, 

and (2.2) follows directly from Proposition 2.5 because b*(l) has the standard nor- 

mal distribution. So it suffices to show (2.1) with infe,,,, replaced by inf,,,,,,. 

The proof is similar to that of Proposition 2.5. Let 

and 

b,(t) = 
NV40 -r~~~f 

rl* 

for 0s t< co, so 6, is standard Brownian motion for any PE (0, 03). In this case, 

a’l&el la 2 Ltr-Ns) I I alb*(r*)l I Ib*(T*)l = 
a,u73’4 wlCy4 ry( 1 - 1 /j/G/) 
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for all ,u E (a’, m). So it suffices to show that r, + 1 in P,-probability, uniformly for 

p E (a’, a~). This follows because Z,Z 1 and if P 1 a’ and E> 0, 

P,{r:‘421+~) 5P,,{b(~4(1+~)4)1a~3(1+c)3} 

= @{aq(l +s)-aa’q2(1 +E)‘} 

which is independent of ,D and approaches zero as a + 03. 

3. Optimality of z 

In this section the asymptotic optimality of r will be studied as h -+ 0. The main 

result, Theorem 3.1, shows that r is asymptotically optimal for a class of stopping 

problems under a wide class of prior distributions. From this, if ch are competing 

stopping times for which 

for all ,D E (0,03), then 

Ed ch > 1 liyLtf sup ~ _ , 
PEC &,rt, 

(3.2) 

for any nondegenerate, compact subinterval CC (0, m) (no matter how small). 

In the sequel, P will denote probability under a Bayesian model in which ,D is a 

random variable with prior density 5. The key to showing optimality of r is to find 

a stopping problem for which r is the solution. This idea is developed for fixed width 

interval estimation of a normal mean in Woodroofe (1986). Here such a stopping 

problem may be constructed by letting the loss for stopping at time t be 

L+(t) = KZ{ 1 e, - 8 1 L h} + th2p4, 

where K=c/@(c). The risk of a stopping time < is then 

rhh(i) = E&A0 

Theorem 3.1. Suppose r is absolutely continuous on R with support a subset of 
[jq,,p,], O<~,,<,LQ<CO and that 5 hasfinite Fisher information, i.e., E(r’(,~)/r(p))*< 
03. Then 

!E iyf r,(c) = ‘,i r,,(rh) = K(l - v) + c*. 

To see why the stated optimality for r follows from this theorem, suppose (3.2) 

fails for a nondegenerate, compact subinterval C,,C(O, a) and stopping times & 

satisfying (3.1). Using Corollary 2.4, there exists E> 0 and a positive sequence h, 10 
as n + 00 such that 

E, &,, I (1 - E) a4/u4 
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for all nr 1 and all UEC,,. Let to be a density which satisfies the conditions of 

Theorem 3.1 and vanishes off C,. With this density, 

lim sup rhh,( CA,,) = lim sup 
n-ca n-m I I C2U4 

’ cc 
KP,(I~~,,--ol~h,)+~~~i”” Mu)du 

1 

IK(l-y)+(l-&)C2 

by dominated convergence, which contradicts Theorem 3.1. 

The second equality in Theorem 3.1 will follow from the results of the previous 

section. So to establish the theorem an asymptotic lower bound for the risk of an 

arbitrary stopping time is needed. The general idea is to approximate the posterior 

distribution of 6’ at a time t by N(&tY?,!/f). When [ is large, this leads to the ap- 

proximation 

where 

Since 

H(x) = 2K@( -x) +x2. 

H’(c) = -2K@(c) + 2c = 0 

and for x>O, 

(3.3) 

H”(x) = 2Kx@(x) + 2 > 0, 

we have 

inf H(x) = H(c) = K(l - v) + c2. (3.4) 
X20 

Hence the main issue proving Theorem 3.1 is justifying the approximation (3.3). A 

key tool is the integration by parts formula in the following proposition which ex- 

tends Lemma 1 of Stein (1986). For a proof see Section 4 of Woodroofe (1990). Our 

notation identifies measures v with the corresponding linear operator in the usual 

way: vf= jfdv. Let GJ$ denote the class of all measurable functions g such that 

sup,,(_,,,,g(x)/(l+ IxIP)<w, and let ~=u,,, <x~. 

Proposition 3.2 (Stein’s identity). Suppose dT= f d@, f is absolutely continuous on 

R and 

.I ~f’WxPI d@(x) < 03, 

for some integer p 2 0. Then 

rg=I-lx@g+ UgxfldI- 
1 f 

for all g E ~6’~ + , , where 

‘cc 
Ug(x) = 

! 
k(y) - @g)@(u) dy/@(x). 

IX 
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The linear operator U that appears in this lemma has a number of nice properties. 

By Lemma 3 of Stein (1986), 

sup I &T(x) I 5 fizz; I g(x> 1. (3.5) 
XErn 

Also for integral ~22, integration by parts gives 

‘cc 

I 
“co 

yp@(y)dy/@(x) =xp-‘+(P-1) ! Ye-'@ dy/W), 
CX rX 

and hence 
UxP=x@+(p-1)UxY 

Hence U maps polynomials into polynomials. Since Ux= 1, this recursion gives 

Ux2=x, Ux3=x2+2 and Ux4=x3+3x. 

The following corollary shows how Stein’s identity can be used to study posterior 

distributions. Similar results appear as Proposition 4 of Woodroofe (1990) and 

Proposition 1 of Woodroofe and Hardwick (1990). The linear operator U will now 

act on functions of three arguments and we will write Uf(z,x, y) as a shorthand for 

Uf(.,x,u)(z). Let Z,=fi(p-A). 

Corollary 3.3. Suppose E 1 g(Z,, fir, t) / < 00 and g(.,x,t)E&? for a.e. XER. If 5 
satisfies the conditions in Theorem 3.1 then 

Proof. Let f, (z) = f, (z, ,L) denote the conditional density of Z, given & with respect 

to @. Then ft(z) is proportional to <(p, + z/l/T) and hence 

f;(z) 1 rvt + z/fi) __=_ 
ff(z) fi 5(P, +z/fi) . 

By Stein’s identity, 

rgg(z,, ,cl, t) I @[I = [ gk rLi,, Oft(z) d@(z) 

= ig(.,&t)+; t . 1 u&,/&t) ~~;~~~;$&WmJ 
= @g(.,&,t)+L 

Iii 
<‘(PO ~ 

Ug(Z,,Li,,t)- 
r(P) I 1 l * 

By the Schwarz inequality, 

! 
” IT’(x)1 d X-C [.I’ x - <( )d x]‘“[j=&dXjli2, 

so the regularity condition for Stein’s identity holds because f;(z)=<‘(fi, + z/fi) 
and for any ~10, 
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I(‘(/& +x/fi)xpI d@(x) I sup 
x6(-m, m) 

lxl”@(x)j xp.\ I<‘(x)1 dx< m. 

Proof of Theorem 3.1. Since 

I;~(G) = K(l - M4)+c2~u~*l t(u) du, 

the second equality in the theorem follows immediately from Theorem 2.1 and Cor- 

ollary 2.4. To verify the other equality, let [= [,, be stopping times indexed by h. 

Since these stopping times are arbitrary, it is sufficient to show that 

liylrrf r, (0 1 K( 1 - v) + c2. 

The previous corollary to Stein’s identity gives a useful approximation for condi- 

tional risks for a stopping time [ when 5 is large. When 4’ is small a separate argu- 

ment is needed. Let 

a conditional density of p given g[, and let 

AT = sup sup r&9* 
t57- ~ElLbPII 

and hence A,< 03 almost surely, since b(t) is continuous in t. Since the conditional 

density for ~9 given gr is at most [,/pi, conditioning on SC, 

P[IB;-BJlh,51T]~Eminll,~AT/~~}+0 

as h 10. By a diagonalization argument we can find 15 T,, + 03 such that 

as h 10, which implies 

P[I8^--l>h,r~T,]-P(r~T,)~O 

as hi0. 

Next, define functions g, and gl by 

(3.6) 

and 

g,(Z,, PI, t> = t(PI + z,Qh4 = w4. 
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By Corollary 3.3, for i= 0 or 1, 

U&7(&, i&9 0; i> Gl 

By (3.9, lg0l 5 1 implies 1 UgOI <1/2x and therefore 

as h10. Hence 

KEko(Z,, Pi, 0; i> Gl -ZW@Pgo(- 7 PC, 0; i> r,l -+ 0 

as h-10. On {O<j&<l/h}, 

Now Q(x) - Q(y) -+ 0, uniformly in x and y as x/y + 1. Consequently 

- 2WflhP;) 
I 

By the strong law of large numbers, I’(& $ [~Po, 2.~~1, [> T,‘,) + 0 as h 10, SO 

fWgo(Zr,Pc, 0; C> T/J - 2W@P(-jh@; C> Thl + 0 (3.8) 

as h 10. From the formulae for Uxp, 

Us,(Z,, F[, 0 = flPl(U Pi) +Pz(K F&vL 

wherep,(p,,i+) =,~‘$+,ii~p+& p2+,u3 andp,(p,&)= 3,u+ 5&. Since <has compact 

support and since sup,, 1 I ,$ - p I h as moments of all orders, sup hE[p2@,&)] < 03 

for any polynomial p. Hence 
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as h 10. Consequently 

h2Hs,(&P,,M> &I -H@g,(. ,&O;P r,l+ 0 

as h 10. Direct calculation gives 

@g,(. ,P5, 0 = @; + 6Pi’+ 3/c, 
SO 

and 

h2Ek,(Zg, Pi, 0; i> Tjl- h2E[O$ C> Thl + 0 

as h10. Using this equation, (3.6) and (3.8) in (3.7), and using (3.4), 

liy,pf Fh([) 2 liyLpf {KP(jr Th) + E[2K@(flh@)+ [h2$; [> T’]} 

The last inequality 

proves the theorem. 

21i~L~f{KP([ST,)+(K(1-y)+c2)P([>T/,)} 

2 K( 1 - y) + c2. 

follows from (3.4) since K=H(O) 2 H(c) =K(l - y) + c2. This 
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