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Rotational Energy Dispersions: Analytic Descriptions 

LAWRENCE L. LOHR 

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 

Closed-form analytic expressions parametric in the centrifugal displacement are presented for 
the dependence of the classical rotational energy of a harmonic oscillator (HO), Morse oscillator 
(MO), and Lennard-Jones 6-12 oscillator (LJO) upon the rotational angular momentum. Power- 
series expansions of the energy in terms of the angular momentum are used to construct PadC 
approximants for the rotational energy dispersion which approximate well the exact parametric 
solutions and which may be used for fitting experimental spectroscopic data. @ 1992 Academic 

Press, Inc. 

1. INTRODUCTION 

The distortion of a rotating molecule from its equilibrium geometry and its effect 
upon energy levels has been recognized for a long time by molecular spectroscopists. 
Interest in these centrifugal effects, as they are often called, has increased in recent 
years due to the development of high-resolution spectroscopic techniques and to major 
advances in the theoretical description of highly excited rotational states of molecules. 
In a series of recent studies (1-5) we presented a new approach to centrifugal distortions 
and their associated rotational energy stabilizations which exploits ab initio electronic 
structure computational methods. This approach is direct, bypassing in the simplest 
applications the explicit calculation of spectroscopic constants such as vibrational 
frequencies as this information is implicitly contained in the ab initio electronic energy 
hypersurface. Specifically the method is particularly useful at any computational level 
for which analytic gradients of potential-energy hypersurfaces are available. Results 
were presented in our first study ( I ) for Hi, NH,, CH4, BFs, and SF6. More detailed 
studies followed (2-4) of H20, 03, and PH3, as well as an outline of a generalized 
extension of the method (5). The procedure is structurally oriented, that is, it focuses 
on the question of the size and shape of molecules with nonzero rotational angular 
momentum. Centrifugal distortion spectroscopic constants are a very useful form of 
our computational output, providing an important and indispensable basis for com- 
parison to experimental observations, yet their computation is in a way secondary to 
the main task. Stated differently, our studies are an exploration of molecular energy 
in those regions of the nuclear-coordinate hyperspace which are accessible by centrifugal 
distortions from the equilibrium geometry. 

Several questions remain from our ab initio studies. First, what is the best functional 
form of the rotational energy dispersion to use for extrapolating the calculated cen- 
trifugal stabilization energies to zero angular momentum and thus for obtaining cal- 
culated quartic (and higher) spectroscopic coefficients? Second, why are calculated 
effective quartic constants approximately linear, rather than quadratic, functions of 
the angular momentum? Third, why are the decreases in rotational energy associated 
with centrifugal distortions approximately but not exactly twice the accompanying 
increases in potential energy? As the answers to these and related questions will also 
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provide a foundation for obtaining better expressions to be used in the fitting of ex- 
perimental spectroscopic data, we present here mathematical analyses of the rotational 
energy dispersions for classical nonvibrating harmonic (HO), Morse (MO), and Len- 
nard-Jones 6- 12 (LJO) oscillators. Insofar as possible, we consider exact relationships 
for a given model, thus enabling us to distinguish between those features which are a 
consequence of the choice of a model and those which are a consequence of some 
approximate description of that model. 

II. ANALYSES 

A. General 

Let the energy of a rotating nonvibrating linear molecule be represented by E(r, 
J), where 

E(r, J) = V(r) + PJ(J + 1)/2&, (1) 

where V(r) is the potential energy for separation r, m is the appropriate reduced mass, 
and A 2 J( J + 1) is the square of the angular momentum. Note that for reasons of 
convenience in later applications we use this “quantum” form for the angular mo- 
mentum even though J here is a continuous rather than a discrete variable. Replacing 
r by I,( 1 + x), where r, is the equilibrium value of r for J = 0 and x is a dimensionless 
displacement variable, defining B, as A 2/2mrZ, and dividing by an appropriate ref- 
erence energy (see below) leads to the dimensionless form 

where y is defined by 

e(x, J) = v(x) + y/( 1 + x)*, (2) 

y = (~B,/o,)~J(J+ 1) = cu*J(J+ 1); (3) 

w, is the harmonic vibrational “frequency” in the same units as B,. The quasi-equi- 
librium separation for a given y (or J) is found by setting dr/dx = 0; substitution in 
Eq. (2) gives an effective reduced energy e,e( y) or E,K( x) . Its first form as ces( y) may 
be considered as the rotational energy dispersion (energy as a function of angular 
momentum). While in general this form cannot be found analytically, closed forms 
can often be found for .z,s( x), which, together with closed forms for y(x), comprise 
analytic parametric representations of the energy dispersion. Closed forms can also 
often be found for related quantities, such as d2C/dx2 evaluated at the quasi-equilibrium 
separations. While this general approach is familiar, many of the results we present 
below are not. 

B. Harmonic Oscillator 

To provide a reference for our studies of the Morse and Lennard-Jones oscillators 
we first consider the rotating harmonic oscillator (HO). Table I gives the reduced 
energy E(X) , the effective energy ~,s( x) , and the reduced angular momentum squared 
y(x); the latter two parametrically define the exact dispersion. For the HO we have 
taken the reference energy to be krz/2, the energy required to compress the HO to r 
= 0. We also tabulate the expression for the reduced form of the centrifugal stabilization 
energy divided by DOIJ(J + 1)12; this effective quartic constant quantity is a4A&/ 
&y2 with a0 = Do/(krz/2), D,, = 4B~/w~, and A& = ~0 - E,R, with ~~ the reduced 
rigid rotor energy. Definingf( y) by c,f( y) = &( y), the quantity c~~Ae/6~y~ is simply 
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TABLE I 

Rotational Energy Dispersion Relationships 

,b x* + y/( 1 + x)2 

%n x(1 +2x) 

Y= x(1 +x)3 

a%6&d ((1 + x)3 + x]/(r +x)3 

E” e (2 + 8x)/( 1 + x) 

[l - exp(-bx)]z + @y/(1 + x)3 

[l - exp(-bx)](l + [b(l + x) - l]exp(-bx)) 

exp(-bx)[l - exp(-bx)](l + x)3/b 

(exp(-bx)[l +b(l +x)(x2+2x)]- l)/((l +x)91 -exp(-bx)]exp(-2bx)) 

2b%xp(-bx)[(2exp(-bx) - 1) + 3[(1 - exp(-bx)yb(l+x)]) 

LJO E 23(23 - 2) + 1 + 36yz. 7. I l/(1 + x)2 

%I zq-523 + 4) + 1 

Y (1 - Z3)2% 

a4A.e$)y* [6(2* - z5) + (52” 4z3 - l)]/(l - 23)*+ 
E” 24z4(5z3 - 2) 

ax E(r. r& 
b E I E/(kre2/2) for HO and E/D, for MO and WO 
c y - a*J(J + 1) with rr I (2B&,). 

d S, q Dd(kre2/2) for HO and DdDe for MO and LJO. AE i E,, - Q, 

e E” = (&dx2) evaluated for y = f(x) 

f For MD b - (WPD,)“%, (dimensionless), 

( 1 -f)/y. Although e,~( y) and hencef( y) are not attainable in closed form, we may 
obtain either by a power-series expansion of y(x), reversion to obtain a series for 
x(y), and then substitution in &,tf( x) to obtain the reduced dispersion c,~F( y) andf( y) 
in the form of a power series. We present in Table II for reference purposes the resulting 
series for e& y) [or E&J)] with the coefficients c, being integers. Unlike the traditional 
approaches (6)) ’ no power-series expansion of the potential energy is required. 

It is by now well established ( 7-17) that conventional power-series representations 
of the dispersion are poorly behaved for large J values (particularly for hydride mol- 
ecules which have large values of CY as defined in Eq. (3)) and that rational function 
representations, particularly of the PadC form, are more satisfactory. In Tables II and 
IV we present Pad& forms for E,~( y) andf( y), respectively, as constructed from the 
HO series in Table II to degrees n = 3, 4, and 5. Specifically, from a power series 
(Table II) forf( y) truncated to degree n, where c,& y) = ( ,&/a2)yf( y), we construct 
(Table III) the Pads approximants [L/M] = [(n/2)/(n/2)] for even n and [((n + 
1)/2)/ (( n - I)/ 2)] for odd II, where L and Mdenote the degrees of the highest terms 
in the numerator and denominator, respectively ( 18). The Pad& approximants in 
Table IV for ( 1 -f)/y are thus of degrees [(L - 1 )/Ml. The coefficients of y in these 

’ The HO expansion coefficients in Table II match the leading term in each Dunham coefficient Y,, 
where 0 and j are the powers of (u + f ) and J(J + I ), respectively. 
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TABLE II 

Rotational Energy Expansion Coefficients” 

n C”w9 c,(MO)b c,(~W 

0 1 1 1 

1 1 1 1 

2 3 -b + 3 4 

3 13 5b2/3-9b+13 6al3 

4 66 -7dI2 + 107b214 - 72b + 66 632l3 

5 399 42b4/5 - 165t?/2 + 1273b214 - 570b + 399 3024 

a HO, MO, and LJO oscillator values for c, in 

q,dJ) = P,J(J+l )nfb t-1 )“c,la2J(J+1 )I” or c&) = (P$a*)yf(y). 

where a 5 (2B&) (dimensionless), p8 is the (dimensionless) rotational cmstant 
2B&r,2 for HO and B$D, for MO and LJO, and y = a*J(J+l). 

b b = (W2D,)lnre (dimensionless) 

c For LJO. (-1)” in E&J) is replaced by -1 for all n 2 1 

rational functions are themselves rational. We compare these various HO results to 
their MO and WO counterparts in a later section. 

C. Morse Oscillator 

Results similar to those for the HO are presented in Tables I-IV for the reduced 
MO. The reference energy is the dissociation energy 0,; the reduced energies E and 
.zcff, as well as quantities derived from them, contain a dimensionless parameter b 
equal to pr, = (k/2 De) “*r,, where k is the curvature of V(r) at r = r,. Some repre- 
sentative b values as calculated from spectroscopic constants (19) are ‘H3%Z1, 2.380; 
‘H ‘*‘I, 2.817; 14N2, 2.95 1; and ‘*‘I*, 4.952. The power-series coefficients c,, in Table 
II are polynomials in b with rational coefficients, leading to lengthy Pad& expressions 
for c,~( y) andf( y) in Tables III and IV, respectively. The tables give Pad& forms for 

TABLE III 

Pad& Representations’ of Rotational Energy Series 

n HO MO wo 

b=2 b.6 

4 
1+ 39y,4 + 9p 1 *y-a% 1-11y+19y2 l-13y*my% 

1 + !29y/4 + 3$/4 w 1_lcv*rly2 1-12y+5@3 

5 1 +*my135+71y2n-79y%5 1+53y/10+11y%-43&5 1471y650+115*125-707y365 1 - 992yn6 + 415y2l7 - 274&21 

1+313yn3+593y%9 1 + By,,0 + 15yk ~-7eayE69+1~m 1-997yB5+W&35 
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TABLE IV 

Pad6 Representations of Relative Centrifugal Stabilization Energiesa 

209 

n Ii0 MOb wo 

b=2 br6 

I +4yn 
3- 

1+2yi3 l-lop3 I-mfn 

1 + 13y13 l+5@ I-lsyi3 I-22m 

4 
1 + 17y,4 

1 + 29Yl4 + 35314 

l+Y 

1 + 2y + y2/3 

I-7y 

r-1vy+11y’ 
1 -sy 
l-12y+55+3 

5 
I + 208y135 + 79y2i35 1 + 53~00 + ay?rs 

1 + 313y135 + 5I33)%5 I +63y/ro+tsy2n 

1 - 5971yB50 + 707)%5 1 - 417ynS + 274y%l 

I- 7s21y/550 + 19463~/55fl I - 557yn5 + I 65$ns 

b TM IFW~I MO exwssbn for n - 3 is [I + (4 -XI t &3,y/(3 - b)]/[l + (13 - 9b + 5t%)y/(3 - b)]: thaf for n I 4 is 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

whit8 that for ” - 5 (to0 W!lhy to prim) may be generated fmm sa11es in TaMI II. 

the special values b = 2 and b = 6, while the table footnotes give general expressions 
as obtained from series of degrees )2 = 3 and 4. 

The quantity E,~ rises steeply with x and reaches the dissociation limit eeff = 1 for 
x values as given in Table V together with the associated y values (no analytic solution 
for x or y as a function of b) . Figure 1 shows the dependence of e (for y = 0) and ceff 
on x for b = 2, 4, and 6. The maximum stable reduced displacement x is typically 
0.05 to 0.15; larger x and hence y values correspond to predissociating states. Also 
given in Table V are numerical values ofthe curvature of E( x) at the quasi-equilibrium 
for a given y; typically this curvature, taken from the expression for en in Table I, is 
about one-half of that for y = 0, meaning that the zero-point energy (ZPE) is a 
decreasing function of y. More specifically, the y-dependence of the Z PE may be 
represented approximately by a series obtained from the square root of the second 
derivative E” expression in Table I and the reversion of v(x) to yield x(y); the result 
is 

ZPE(y)/ZPE(O) = 1 - 3(b - l)y/2 + (-13b2/8 + 27b/4 - 57/8)y2.. a, (4) 

TABLE V 

Properties” of MO with E.~ = 1 

b x Y (e”/e,,“) b 

2 0.40323 0.34132 0.21635 

3 0.16952 0.12762 0.32669 

4 0.06651 0.06747 0.42751 

5 0.05341 0.04195 0.50696 

6 0.03556 0.02669 0.57294 

a See previous Tables for definitions. 

b Ratio of (d%dx2) for x(y) to that for x(0) fmm expression in Table I. 
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FIG. 1. Plot of MO reduced energy cCfl vs reduced displacement x: (a) b = 2, (b) b = 4, and (c) b = 6. 

0.0 0.2 0.4 0.6 0.6 1.0 

X 

indicating that for b > 1 the ZPE makes an effective negative contribution to the 
dispersion E(J) . That is, the energy rises less steeply with J than it would if the Z PE 
were ignored. The leading term in the effect is linear in y and hence linear in J( J + 
1) and the centrifugal displacement x. (Note that the series Eq. (4) is based on a 
harmonic fit.) 

The reduced effective quartic constant previously defined as (u~Ac/~~Y~ = ( 1 -f)/ 
y is shown in Fig. 2 as a function of reduced angular momentum y’12 = a[ J( J + 

111 ‘I2 for the MO with b = 2. The exact form is compared to its power series (n = 
4) and Pad6 ([ l/2]) approximations. For b = 2, values of y’12 greater than 0.58422 
(Table V) correspond to metastable (predissociating) states above the dissociation 
limit; we note the much better agreement of the Pad& form to the exact for y ‘I2 values 
up to this limit. Similar agreement may be seen in plots of the same reduced effective 
quartic constant vs either y = a2 J( J + 1) or the displacement x. 

F = 0.60 - E 
I I 1 I 

C 
0.0 0.1 0.2 0.3 0.4 0.5 

a[J(J+l)]“’ 

FIG. 2. Plot of MO reduced effective quartic constant a4Ae/b0y2 = ( 1 -f)/y vs y’12 = a[J(J + 1 )] ‘I* 
for b = 2: (a) exact, (b) Pad& approximant [ l/2] from Table III, (c) series approximation to n = 4. 
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D. Lennard-Jones Oscillator 

Results similar to those for the HO and MO are also presented in Tables I-IV for 
the reduced 6-12 LJO. Interest in the properties of the IJO has been stimulated by 
its use as a model for van der Waals molecules. As with the MO, the reference energy 
is taken as the dissociation energy 0,. Many of the expressions for the reduced LJO 
are conveniently written as polynomials in z, where z is 1 /( 1 + x)~. As the reduced 
LJO is completely specified, there are no additional parameters. The series coefficients 
c, in Table II are rational but not necessarily integral; unlike the HO case where the 
signs of the terms alternate (the factor ( - 1)” in the series for &,e), the LJO terms are 
all negative for n 3 1. That is, all corrections to the rigid-rotor energy are negative for 
the LJO. The MO case is like the HO case in containing the factor (- 1)” in each 
term, but the sign of the c,,‘s themselves depend upon the value of b. 

Table VI gives some special properties of the LJO; the maximum stable centrifugal 
displacement is only 0.03789 with y being 0.02872. For 40Ar2, CY = 4.642 X lop3 
(based ( 19) on B, = 0.05975 cm-’ and w, = 25.74 cm-‘), so that Jmax is approximately 
36. The barrier to dissociation for this value of y is E,,, - 1 = 0.29200 (in units of 
De). However, the maximum value for eeff (the largest value for which there is a quasi- 
equilibrium) is much higher, namely 9 / 5, or 4/ 5 relative to dissociation, at x = 0.16499. 

Figure 3 shows the dependence of the local LJO energies E(Y = 0), e( y = (4/5) 
2/3/30 for which &elf = 1 ), and .C~K on the displacement x, while Fig. 4 compares the 
exact reduced effective quartic constant to its power series (n = 3) and PadC ( [ 1 / 11) 
approximations. As with the MO, the Pad& form is far superior to the series. Note 
that this effective LJO quartic constant increases with J, and hence with x, illustra- 
ting the negative energy corrections described above; the MO value decreases unless 
b> 3. 

We now compare our results to the quantum-mechanical centrifugal constants re- 
ported ( 20, 21) for the reduced 6- 12 WO with D,/ B, = 10 4 (equivalent to specifying 
the reduced mass), corresponding to (Y 2 = 10w4/36. From Table II the reduced coef- 
ficients (in units of the well depth) through the fifth power of J( J + 1) are simply a0 
= lo-*/36 = 2.77777 X lo-“, h = -4 X 10-‘2/(36)2 = -3.08642 X 10-15, I = -88 
X 10-‘6/3(36)3 = -6.28717 X 10-20, and m = -832 X 10-20/3(36)4 = -1.65117 

CsW 

Qf=l 

TABLE VI 

Special Properties” of LJO 

~~Pm VdUe 

x (5/4)1’s - 1 = 0.03789 

Y (4v’5)m/20 = 0.02972 

(ml-l b (4/5)u3(2/3) = 0.49510 

hax 1.29200 

x(%ax) 0.51947 

Egtt=lllE# %I = 915 

x (!32)1~6- 1 = 0.16499 

Y (2/5)213/10 = 0.05429 

a See previous Tables for definifions. 

b More generally 24(5zs - 2)/3; ses Table I. 
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FIG. 3. Plot of UO reduced energies vsx: (a) Q; (b) E (y = (4/5)2’3/30), (C)E (y = 0). 

x 10-24, where the sign of each term corresponds to a negative contribution to the 
energy. By comparison quantum-mechanical results (2Z) for u = 0 are 6. = 2.93427 
X lo-“, h = -3.50081 X 10-15, Z = -7.68573 X 10m2’, and m = -2.18223 X 10-24. 
Thus our classical results, based as they are on the assumption of a single effective 
reduced bond length 1 + x for a given J and on the neglect of 2 PE, are qualitatively 
correct but systematically too small in magnitude, meaning that the energy for a given 
J is too large. However, the classical dispersion would rise less sharply (the centrifugal 
constants would increase in magnitude) if we added a J-dependent 2 PE based on a 
reduced force constant which may be taken from E” in Table I as z4( 5z3 - 2)/3 times 
the reduced force constant of 72 for J = 0, where z again is 1 / ( 1 + x) 2. This expression 
gives the ratio of &“I.$, = 0.49510 in Table VI for e,~ = 1, meaning that the ZPE 
decreases by a factor of 0.70363 as the centrifugal displacement approaches (5/4) ‘I6 
- 1. The reduced ZPE for J = 0 (y = 0) is simply &/a = 6fid12, where /3e = 36a2 is 
the ratio of B, to the well depth, so that ZPE( z) = 6pi’2z2[( 5z3 - 2)/3] ‘j2. The 
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nc. 4. Plot of LJO reduced effective quartic constant a4Ac/b0yz = (1 -f)/y vs y’12 = a[J(J + l)] ‘I’: 
(a) exact, (b) Pad6 approximant [ 1 / 1 ] (Table IV), (c) series approximation to n = 3. 
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LJO 2 PE may be obtained as a function of y from the reduced force constant and 
the series reversion of y( z) or y(x), and is given in units of 6@:” by 

ZPE(y)/ZPE(O) = 1 - 9y - 65y2/2 - 1795y3/6 

- 28 005y4/8 - 1 103 533y5/24 + - - -. (5) 

For Be = 10e4, our corrected classical coefficients become a0 = 2.92824 X lo-“, h = 
-3.47115 X 10Pi5, Z = -7.53768 X 10e2’, and m = -2.10743 X 10-24, in perhaps 
surprisingly good agreement with the quantum-mechanical results quoted above. 

E. Further Comparisons 

The crucial quantity E,e rises steeply with x because a large fraction of it is rotational 
energy E,. The fraction E,/E,~ is given in Table VII for the HO, MO, and LJO. In each 
case the ratio is 1 in the limit x = 0 but falls as x increases. Also given in Table VII 
are expressions for the fraction A&,/U, where ACLE, is co - cr, the difference between the 
energy of the rigid rotor and the rotational energy of the nonrigid rotor (e, is not E,~), 
and U(X) is the potential energy in Eq. (2) of the nonrigid rotor. Expansions of the 
expressions for this ratio in Table VII give as leading terms 2 + 3x for the HO, 2 + 
(3 - b)x for the MO, and 2 - 4x for the LJO. Thus, both the HO and the MO with 
b < 3 give a ratio increasing from 2 as x increases. We note that the coefficient of x 
matches the expansion coefficient c2 in Table II taken together with its sign (note the 
factor of - 1 for the LJO) and is thus related to the sextic spectroscopic constant. The 
leading term of y( x) in Table I is x for the HO, MO, and LJO, so that x is proportional 
to J( J + 1) for small x in each case. Thus the ratio Ae,/ 2, is simply another measure 
of the deviation of the rotational energy from a purely quadratic plus quartic depen- 
dence. For example, in our calculations for CH4 at the HF/6-3 1 G* * level with J 11 S4 
we found (I) this ratio to increase from 2.05 to 2.30 as J increased from 34 to 84; 
the increase is approximately quadratic in J and therefore linear in the displacement. 
For BF3 at the HF/6-31G* level with JllC 3, we found the ratio to be close to 2, 
reaching only 2.01 for J = 406 as the associated displacements of the F atoms are 
small (0.03 A for J = 406). 

III. SUMMARY 

We have presented closed-form analytic expressions parametric in the centrifugal 
displacement for the dependence of the rotational energy of nonvibrating harmonic, 

TABLE VII 

Energy Ratios for HO, MO, and LJO 

RStlO S-m Expression 

e3n a HO (1 +x)/ (1 +2x) 

MO b(1 +x)&/(1 +[b(l +x). l]e-b) 

wo 6L3(1 - 23) / [z3(4 - 59) + 11, L I 1 I (1 + x)2 

HO (1 + x)(2 + x) 

MO bx(1 +x)(2+x)&x/(1 -e") 
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Morse, and 6-I 2 Lennard-Jones oscillators on the rotational angular momentum, 
thus complementing quantum-mechanical (20, 21) and semiclassical (22) studies. 
From these expressions we have obtained PadC approximants for this energy and for 
effective quartic spectroscopic constants, thus providing a basis for selecting Pad& 
forms for the fitting of spectroscopic data. These expressions may also be used in 
connection with our ab initio procedures (1-5) to obtain spectroscopic constants by 
the fitting of calculated centrifugal stabilization energies as functions of angular mo- 
mentum to the appropriate dispersion forms. If desired, the various series and PadC 
approximant forms may be augmented by J-dependent Z PE contributions based on 
the analytic E” expressions in Table I and illustrated by the MO and L.JO Z PE series 
in Eqs. (4) and ( 5 ) . Results for the LJO are of particular interest since the LJO serves 
as a model for van der Waals complexes. The maximum reduced centrifugal displace- 
ment for the 6-12 LJO is only (5/4) ‘I6 - 1 = 0.03789, with larger displacements 
corresponding to effective energies above the dissociation limit. 

RECEIVED: March 5, 1992 

REFERENCES 

I. L. L. L~HR AND J.-M. J. POPA, J. Chem. Phys. 84,4196-4204 ( 1986). 
2. L. L. L~HR AND A. J. HELMAN, J. Compi. Chem. 8,307-312 ( 1987). 
3. L. L. BOHR, Int. J. Quantum Chem: Quantum Chem. Symp. 21,401-415 (1987). 

4. A. TALEB-BENDIAB AND L. L. LOHR, J. Mol. Specfrosc. 132, 413-42 1 ( 1988). 

5. L. L. LOHR, J. Mol. Struct. (THEOCHEM) 199,265-270 ( 1989). 
6. For example, see J. L. DUNHAM, Phys. Rev. 41,721-731 (1932). 

7. S. P. BELOV, A. V. BURENIN, 0. L. POLYANSKY, AND S. M. SHAPIN, J. Mol. Spectrosc. 90, 579-589 
(1981). 

8. A. V. BURENIN, 0. L. POLYANSKII, AND S. M. SHCHAPIN, Opt. Spectrosc. (Engl. Transl.) 53, 395-398 
(1982). 

9. A. V. BURENIN, T. M. FEVRAL’SKIKH, E. N. KARYAKIN, 0. L. POLYANSKY, AND S. M. SHAPIN, J. 
MO/. Spectrosc. 100, 182-192 (1983). 

10. A. V. BURENIN, 0. L. POLYANSKII, AND S. M. SHCHAPIN, Opt. Spectrosc. (Engl. Transl.) 54,256-259 
(1983). 

II. A. V. BURENIN AND VI. G. TYUTEREV, L Mol. Spectrosc. 108, 153-154 (1984). 

12. A. V. BURENIN, T. M. FEVRAL’SKIKH, A. A. MEL’NIKOV, AND S. M. SHAPIN, J. Mol. Spectrosc. 109, 
l-7 (1985). 

13. 0. L. POLYANSKY, J. Mol. Spectrosc. 112, 79-87 ( 1985). 

14. J. K. G. WATSON, S. C. FOSTER, A. R. W. MCKELLAR, P. BERNATH, T. AMANO, F. S. PAN, M. W. 
CROFTON, R. S. ALTMAN, AND T. OKA, Can. J. Phys. 62, 1875-1885 ( 1984). 

15. S. C. FOSTER, A. R. W. MCKELLAR, AND J. K. G. WATSON, J. Chem. Phys. 85,664-670 ( 1986). 
16. S. C. FOSTER, A. R. W. MCKELLAR, I. R. PETERKIN, J. K. G. WATSON, F. S. PAN, M. G. CROFTON, 

R. S. ALTMAN, AND T. OKA, J. Chem. Phys. 84,91-99 (1986). 
17. J. K. G. WATSON, S. C. FOSTER, AND A. R. W. MCKELLAR, Can. J. Phys. 65,38-46 ( 1987). 
18. B. W. CHAR, K. 0. GEDDES, G. H. GONNET, B. L. LEONG, M. B. MONAGAN, AND S. M. WATT, “Maple 

V Library Reference Manual,” pp. 50-5 1, Springer-Verlag, New York, 199 1. 
19. K. P. HUBER AND G. HERZBERG, “Molecular Spectra and Molecular Structure IV. Constants of Diatomic 

Molecules,” Van Nostrand-Reinhold, New York, 1979. 
20. J. M. HUTSON, J. Phys. B 14,851-857 ( 1981). 
21. J. TELLINGHUISEN, J. Mol. Spectrosc. 122, 455-461 ( 1987). 
22. S. M. KRISCHNERAND J. K. G. WATSON, J. Mol. Spectrosc. 47,234-242 ( 1973); 51,321-333 ( 1974). 


