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Abstract--Thermodynamic foundations of the thermal entropy production are rested on the concept of lost 
heat, (Q/T)6T.  The thermomechanical entropy production is shown to be in terms of the lost heat and the 
lost work as 

= 1 Q 

where the second term in brackets denotes the lost (dissipated) work into heat. 
The dimensionless number 1-I s describing the local entropy production s" in a quenched flame is related 

to 

l'I~ ~ (Pe°) -e 

where 1-1~ = s"~2/k, E = otis ° a characteristic length, k thermal conductivity, ct thermal diffusivity, S o the 
adiabatic laminar flame speed at the unburned gas temperature, Pe°D = S°uD/C~ the flame Peclet number, 
D the quench distance. The tangency condition dPe°/OOb = 0, where 0 b = Tb/T~b , T b and T~b denoting 
respectively the burned gas (nonadiabatic) and adiabatic flame temperatures, is related to an extremum in 
entropy production. The distribution of entropy production between the flame and burner is shown in terms 
of the burned gas temperature and the distance from burner. 

A fundamental relation between the Nusselt number describing heat transfer in any (laminar, transition, 
turbulent) forced or buoyancy driven flow and the entropy production is shown to be 

Nu ~ I-I~/2. 

In view of this relation, the heat transfer from a pulse combustor becomes a measure for the entropic 
(thermal) efficiency of pulse combustion systems. 
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NOMENCLATURE fl body force 
g function defined by Eqs (105) and (107) 

B equilibrium intensity G Gibbs function, constant defined by Eq. (107) 
h heat transfer coefficient 

c speed of light H enthalpy; heat transfer number 
specific heat at constant pressure J averaged intensity 

c~ thickness of reaction zone; change in a 
property k thermal conductivity 

D quench distance; hydraulic diameter ~0 a characteristic length 
E activation energy t°~ unit vector in x~ 

E b black body emissive power Nu Nusselt number 
E, integro-exponential function of order p pressure 

n = 2, 3, 4 P Planck number 
f Fanning friction factor Pe Peclet number 

Pr Prandtl number 

429 
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q heat flux Subscripts 
qi heat flux in x i 
Q heat 
R universal gas constant b burned 

Re Reynolds number D quench distance 
g generation 

s entropy/mass L lost 
s" raterate of°f deformationentr°py generation/volume M mean; mechanical 
s~ P Planck mean 

entropy R Rosseland mean 
Su laminar flame speed at unburned gas 

temperature RMS root mean square 
St Stanton number s, S entropy 

t time u unburned 
T temperature w wall 
u internal energy/mass or volume; velocity; x local 

0 thermal radiative pressure 
u" rate of energy generation/volume oo ambient 

I first order Ferguson and Keck model 
U internal energy II second order Ferguson and Keck model 
Ui mean velocity in x i III Clarke model 
U0 velocity oscillation amplitude 
v specific volume 
vi velocity in x i Superscripts 
V volume 
W work 

x, x~ coordinate axis A alternative scale 
C convection y coordinate axis perpendicular to wall K conduction; kinetic 
0 adiabatic; stagnation 
P potential 
R radiation 

instantaneous value 
Greek Symbols - mean value 

~t thermal diffusivity i. INTRODUCTION 
7 function defined by Eq. (107) 

60 Dirac delta function The foundations of  entropy production go back to 
A thermal boundary layer thickness 

V 2 Laplacian Clausius and Kelvin studies on the irreversible aspects 
emissivity; turbulent dissipation of  the Second Law of Thermodynamics. Since then 

~/ momentum sublayer thickness; the theories based on these foundations have rapidly 
Kolmogorov scale; similarity variable grown, first by the efforts of natural philosophers 

r/o Batchelor scale 
0 dimensionless temperature; turbulent followed by astrophysicists, and later by those of 

temperature applied scientists and engineers. However, the part of  
® mean turbulent temperature; temperature entropy production resulting from a temperature dif- 

defined by Eq. (107) ference continues to remain untreated by the classical 
x absorption coefficient thermodynamics. This part of  thermal (conduction 
). Taylor scale 

dynamic viscosity and/or  radiation) energy is the lost heat into entropy 
v kinematic viscosity production. 

variable defined following Eq. (85) Clearly, all forms of entropy production result from 
FI~j radiative tensor dissipative processes (involving mass, species, momen- 
FI entropy production; entropy number 
p density turn and/or  heat transfer, electromagnetic or nuclear 
tr Stefan-Boltzmann constant transport). Less known is the fact that the dissipation 
T optical thickness; dimensionless time; shear may have a diffusive or hysteretic origin, the diffusion 

stress being directional and the hysteresis being cyclic. 
rij stress However, except for a few cases (such as strain har- 
X weighted nongrayness 

entropy flow dening and the electromagnetic saturation), the 
~P~ entropy flux majority of dissipative processes, including the dissi- 
o~ frequency pation of radiation, is of  a diffusive nature, and is the 

co o cut-off frequency for frequency enhancement concern of the present review. 
effects The review consists of 11 sections: following this 

introduction, Section 2 explores the thermodynamic 
foundations of the entropy production; Section 3 
develops the local entropy production in terms of the 

Script Symbols radiative stress; Section 4 relates the turbulent pro- 
duction of thermal energy to turbulent dissipation of 

turbulent diffusion thermal energy or, equivalently, to turbulent produc- 
turbulent production; Planck number tion of thermal entropy; Section 5 develops a thermal 
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microscale based on this relation; Section 6 employs 8 w 
this scale in the establishment of  the fundamental I ~ / ~  .... ~ I  
relation between turbulent heat transfer and entropy 
production; Section 7 applies the entropy production 
to flame quenching and interprets the tangency con- 
ditionoflaminarflamequenchingbyanextremumin / ~ ~ ~ . ~ / ~  
entropy production; Section 8 deals with the distil- 0 
bution of entropy production in quenched laminar 
flames; Section 9 applies a thin gas model to the / \ ca~ 
forced convection boundary layer over a horizontal 
flat plate and relates the wall entropy production to FIG. 1. Two laws for a differential control volume. 
the local Nusselt number; Section 10 applies the 
entropy production to pulse combustion systems; and for the lost (irreversibly dissipated) energy. In terms of 
Section 11 concludes the study, this production, the Second Law for any (reversible or 

irreversible) cycle may be expressed as 

2. T H E R M O D Y N A M I C  F O U N D A T I O N S  ~J2 - -  ~IJi = ['[- (6) 

For a reversible cycle 
The concept of entropy production is now assumed 

well understood (see, for example, Arpaci 1'2 and Bird, H = 0 (7) 
Stewart, and Lightfoot3). The renewed interest in the and 
concept is towards its utilization for engineering 
problems. Because of  its size, no attempt is made here W~ = q'2 = Constant 
for a review of the literature (see Bejan ~ for a review which is identical to Eq. (2). 
on the application to problems of fluid mechanics and To illustrate the concept of lost energy further, 
heat transfer). Yet, an inspection of this literature consider a thermomechanical process through an 
reveals that, for a thermomechanical process, the infinitesimal control volume. The Fist Law applied to 
concept of lost heat as opposed to that of  lost work this control volume gives (Fig. la) 
appears to remain untreated except for the recent 
studies by Arpaci, 7-9 Arpaci and Selamet, I°'ll and dH ° = 6Q - 6W, (8) 
Selamet and Arpaci. ~2 The purpose of this section is to where 
introduce the concept of lost heat, show the relation 

H 0 = U -Ji- p V dff UK .~_ Up (9) between this concept and the part of entropy pro- 
duction, and identify the effects of conduction and is the stagnation enthalpy, V the volume, Ux and Up 
radiation by this production, the kinetic and potential energies. Now, recall the 

Consider a reciprocating engine. For each cycle of definition of entropy flow (Eq. 3) and, express heat 
this engine, the First Law states flow in terms of entropy flow, 

Ql - Q2 = w. (1) ~Q - 6(T~F), (10) 

The usual approach to the efficiency of this engine or, explicitly, 
operating under a reversible cycle leads to a scale for 6Q = T t ~  + ~ tT ,  (11) 
the absolute temperature (Kelvin) 

or, 
Ql Tl 
Q2 T2' (2) 6Q = 6Qs + 5QL, (12) 

and to the definition of entropy flow, 6Qs being the entropical part of heat explicit in the 
Second Law and t~QL is the dissipated or lost heat into 

Q = ~.  (3) entropy. After a sign change, let 6 W be split, in a 
similar manner to 6Q, as* 

The classical Second Law for an engine states that 6W = - ( t W u  + 6WE), (13) 

Ql ~< Q2 T-~ -~2' (4) where 6 Wu is the part of mechanical work balanced 
in the mechanical energy and 6 WE is the part dissi- 
pated or lost work into heat. Then, Eq. (8) becomes 

or,  

d(U + UK + Up) = 6(Q s + QL) 
~F, ~< ~2, (5) 

- d(pV) + 6(WM + WE) (14) 
the equality being for a reversible cycle and the 
inequality being for an irreversible cycle. (with the sign change introduced in Eq. 13 the work 

This inequality suggests, from the view of a balance 
principle, an entropy production 1-I which is a measure * The explicit tensorial form of 6 W is left to Section 3. 
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Sw..,~WL ~ ÷cSo~ 8W_~L 

8 W u ~  
, , ~  ~ Velocity x No~on's Law- FIG. 3. Two alternatives of second law for a differential 

A , "  <,,,,~ ~ Mechanical Energy control volume. 

/ ~ : ~  or, 

~}OKp dG = bQL + 6WE -- rbl-I. (19) 

Under local thermodynamic equilibrium, 
8wL 

2 Q t ~  " G = U + p V -  T S  (20) 
Temperature x Second Law s 

~ / ~ " ~  \ Then~aJ En,rgy defines the Gibbs function, and 

/ ~ dG = O, (21) 

+dS) or, because of locally uniform p and T, 

d U  = T d S  - p dV.  (22) 

Then 
FIG. 2. First L a w -  Velocity x Newton's L a w -  Tern- 1 

perature x Second Law. 6H = T (6QL + 6WL). (23) 

terms now reflect the opposite sign convention for Now, the Second Law given by Eq. (16) may be given 
pressure and shear stress), alternative forms in terms of the lost heat and work as 

The mechnical energy balance, obtained either by 
1 eliminating thermal effects from Eq. (14) or from the dS = ~ + ~ (6QL + b WE), (24) 

mechanical energy associated with Newton's Law, is 

d(UK + Up) = -- Vdp + b W  M . (15) or, in view of 

Note that 6WL, being dissipated into heat, is a 6Qs = T6q', 
thermal term. Also, p d V reversibly affects the 
internal (thermal) energy. As is well known, Eq. (15) as (Fig. 3a) 
is reduced to the Bernoulli equation for steady, 6Qs 1 
incompressible and inviscid flow. dS = T + "T (t~QL 4- bWL), (25) 

The Second Law (proposed) for the control volume 
(Fig. lb) is or, in view of Eq. (12), as (Fig. 3b) 

dS = 6~ + 6H. (16) 6Q 6WE (26) 
For a reverisble process, 61-I = 0, T = Constant, and dS = -~- + T 

Eq. (16) is reduced to the usual form of the Second The explicit forms of 6QL and 6 WE will be given in the 

Law, next section which deals with the rate of First and 
bQ Second Laws of Thermodynamics. dS = - - .  (17) 
T When the First Law includes all (heat, work, radi- 

Now, for a thermomechanical process, consider the ative, electromagnetic, chemical and nuclear) forms of 
energy difference (Fig. 2) energy, Eq. (23) is generalized to 

First law - Mechanical Energy - T(Second Law), Entropy production = 

or, 1 (All forms of lost energy) 
(Total - Mechanical - Thermal)Energy I 

which, in terms of Eqs (14), (15) and (16), yields and Eq. (24) becomes 

d U  + p d V  - T d S  = 6QL + 6WL -- T 6rl,  1 
(18) dS = 6W + ~ (All forms of lost energy), (27) 
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or, with the definition of or, 

Lost energy (except for heat) --- Dissipated Rate of (Total - Mechanical - Thermal) energy 

energy into heat, (35) 

becomes leads, in terms of Eqs (30), (32), (34) and the conser- 
vation of mass, 6Q 1 

dS = --~ + -~ (Energy dissipation into heat). 
Dp Ovi 

(28) ~ + P~-~x~ = 0, (36) 

As already mentioned in the introduction, only the to 
diffusive dissipation i's the concern of this review. 

( Du_~ T DSDt "-~Dv ) vxiOT Finally, let the internal energy, heat and work P - + P = - W i ~ - -  
associated with the optical limit of electromagnetics 
or the gas radiation be U R, QR and W R, respectively. + rijs 0 + u" - Ts" (37) 
As is well known 

where sij is the rate of deformation. For a reversible U R ,~ U, QR ~ QK, W R < W, 
process, all forms of dissipation vanish, and 

provided the characteristic transport velocity remains 
Du Ds Dv much less than the velocity of light. Then, under the = 0 (38) 

influence of radiation, Dt T - ~  + p 

Q = QK + QR, (29) which is the Gibbs Thermodynamic relation. For an 
irreversible process, Eq. (38) continues to hold 

QK being the heat flow by conduction, provided the process can be assumed in local equi- 
librium. Then, Eq. (37) gives the rate of local entropy 

3. LOCAL ENTROPY PRODUCTION production 

The entropy production discussed in Section 2 is s" = 1 1 °/i(0~xTi) ] 
extended here to moving media which requires as well - + %sij + u" , (39) 
the consideration of the momentum balance. For the where the first term in brackets denotes the dissi- 
Stokesean fluid, this balance in terms of the usual pation of thermal energy into entropy (lost heat), the 
nomenclature is second term denotes the dissipation of mechanical 

Dv i 3p c3zij P Dt ~?xi + ~ + Pfi. (30) energy into heat (lost work), and the third term 
denotes the dissipation of any (except for thermo- 

In terms of the entropy flux, mechanical) energy into heat. When radiation is 
appreciable, qi denotes the total flux involving the sum 

qi (31) of conductive flux and radiative flux, 

qi = q~ + qg. (40) 
the entropy balance (the rate of Second Law balanced 
by the rate of local entropy production)is In terms of the radiative stress rI~j based on the 

specular moments of the transfer equation, the radia- 
DS ~ i  m P Dt 0xi + s , (32) tive flux of Eq. (40) becomes 

where s" denotes the local entropy production. Also, qR __ 1 drlij (41) 
the conservation of total (thermomechanical) power XR dXj ' 
(or the rate of First Law) including the heat flux and can be interpreted as a generalized diffusion 
expressed in terms of the entropy flux, process for any optical thickness. A procedure for the 

evaluation of rlij in terms of the Wallis Integrals is 
c3qi - ~3 (~i T) = T a~i aT (33) described in Unno and Spiegel} 3 After lengthy mani- 
OX i -- OX i ~Xi  -~- It/i ~Xi, pulations, this procedure leads to 

is ~.~ 2n-~ V "(2nOi~j + V260)B 
~3 FI~j = x2r~(2n + l)(2n + 3) ' (42) n=0 

fl N U -1" 5 aX i ~ X  i (P'Oi) 
where B = 4Eb, Eb = aiO being the Stefan-Boltzmann 

g (zijvi) + pfiv~ + u'.  (34) law, xM = 0cpxR) 1/2 the mean absorption coefficient, 
+ ~xj and ai = O/Oxi and Oj = a/Oxj are used for notational 

Now, the fundamental difference of power, convenience. The same result may be found also in 
earlier works (see, for example, Milnet4). The formal 

Rate of Total energy - (Momentum)iv~ similarity of Eq. (42) to the Hookean constitution for 
- (Rate of  Entropy)T, elastic solids should be noted (see ArpacilS). 
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I I \ .  I / I I local entropy production is found to be 
0.6- x. / __I 

, /~ , ,~Thick gas .~ s" 1 

Thin gos / ~ I : 

o . 2  - I ( whose radiative part needs to be related to tempera- 
/ I I I I I I 11 ture through Eqs (42)or (46). Also, the considerations 

O0 0.2 0.4 "I- 0.6 0.8 .0 of only the first term of Eq. (46) yields 

l 
FIG. 4. Exact and approximate radiative fluxes, s" = -- 

T 

An alternative form for this stress may be given in × k ~X i + ~ K  R ~ X  i ~X i "~ ~ijSij "~- U'tt 
terms of the isotropic radiative pressure u R. First, (49) 
invoking the assumption of isotropy, 

whose radiative part is Eddington approximated and 
_ 1 R 1 I.ii j = 3 u 6ij ~ - -  --Prij, (43) needs to be coupled with 

c (V 2 - 3x~,)J = - 12x~,Eb (50) 

where p is the (isotropic) pressure of radiation and c (see, for example, Arpaci and G6ziimlS). The next 
is the speed of light. Then, from the trace of 1-lij, section relates the entropy production to the turbulent 
noting that g'k:k = 1, thermal dissipation which is a measure for the entropic 

(thermal) efficiency of turbulent flows and systems. 
" e 

r[kk : J = (44) 
,,=o ~K3"MM,] (2, + 1)" 4. TURBULENT DISSIPATION AND ENTROPY 

PRODUCTION 
Now, in a manner similar to the incorporation of the 
isotropic pressure into the development of viscous Consider an incompressible turbulent flow. Let the 
stress from elastic stress, (see, for example, Arpaci and instantaneous turbulent temperature be decomposed 
Larsen2), adding the identity into a mean value and fluctuations, 

~ J r i j  - -  ~T'Ikkrij  =- 0 (45) 0 = (9 + 0. 

to Eq. (42), the YI~j-tensor may be rearranged in terms A positive measure for these fluctuations is ~ .  The 
of the radiation pressure, equation governing ~ may be obtained in a manner 

similar to the equation for the balance of kinetic 
1 f 2nV2n-2(g3iOj - ~V2diij)B energy (see, for example, Arpaci and Larsen2). The 

r l i j  ---- ~ Jfij + x~(2n + 1)(2n + 3) " (46) result is 
rim0 

--~,O ( ~ )  = 0X"--~O ( ~ ° ) ' + ~ ' - - ' °  (51) The formal similarity of Eq. (46) to the viscous UiT~ - 
(Stokesean) stress and the electromagnetic (Maxwell) 
stress should be noted (see ArpaciJS). This similarity is where 
to be expected in view of the assumed isotropy for the 0 / 

elastic, viscous and electromagnetic continua (see, for (~0)i ½~r'~ui - 2 
example, Stratton 16 and Pragerl7). The use of the first Ox~ 
term of Eq. (46) in place of Eq. (42) is the well-known is the mean thermal transport (turbulent thermal 
Eddington approximation which leads to a diffusive flux), 
heat flux, 

- -  00 
~'o  = - u,  O 

1 aJ 
qi R = (47) 

3tiR Oxi' is the thermal production, and 

for any optical thickness. The maximum deviation of (000) 
this flux from the exact flux given by Eq. (41) is about p C p g ,  O = - -  qi 
29% at ~ = l/x/3 (Fig. 4; Arpaci~5), z being the is the thermal dissipation. 
optical thickness. For homogeneous fluctuations, Eq. (51) yields 

In terms of the usual conductive constitution and 
the radiative constitution given by Eq. (41), the rate of ~0 ~ e0, (52) 
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or, explicitly, q0 A being another thermal microscale. In terms of the 
Kolmogorov scale, _pCpUi----~O0 (00) 

~X i qi ~Xi " (53) = (V3"~ 1/4 
q \ ~ - /  , (63) 

This result, in terms of  Fourier's law, becomes 
Equation (62) leads to the explicit form of this scale, 

--O~OXi (O0)(O0~,~Xi ~,OXi/I - u i O - - 4 - - =  ~ (54) ~ = (V5/3;4[3) 1]4 
- -  . ( 6 4 )  

or, in terms of the entropy production given by 
Eq. (39), In a recent study, Arpaci e t  al. 19 develop the Kolmo- 

- -  90  gorov scale for oscillating with an imposed or induced 
- pcpuiO ~ = - - ~ s " .  (55) frequency co of a Reynolds averaged turbulent flow, 

Equation (54) or (55) is the starting point in the 

whichdevel°pmentfollows.°f thermal microscales of turbulence ~/ = ~_I 1 @ (.O ~/tV'~I/2"]I/2~ ) J (65) 

5. A THERMAL M1CROSCALE and, in terms of this scale, suggest a heat transfer 
correlation for pulse combustion systems, which will 

On dimensional grounds, Equation (54) or (55) be discussed in Section 10. In the following section, 
gives the entropy production is related to skin friction and 

heat transfer in terms of these scales. 0 02 
g o  ~ uoO'~ ~ o~ 2~ ~ e.o ~ 02So, (56) 

6. HEAT TRANSFER AND ENTROPY PRODUCTION 
where 20 is a thermal microscale, t ~ is an integral scale, 

and So is a measure for thermal entropy production. First, consider the usual definitions of the coef- 
Under the assumption of isotropy for length that ficient of heat transfer and that of friction factor in 
characterizes the thickness of thermal sublayer, terms of q0 A and r/. Thus, 

lime~ 20 ~ qo (57) q ~ hO ~ k(O/rl~) 

Equation (56) yields and 

q 
Uo ~ ~ .--.2, (58) Tw t ~ ( u l q )  v 

To 

r/ being the thickness of  momentum sublayer. 
Assuming r/to be the smallest momentum scale, the which may be rearranged as 
velocity corresponding to this scale becomes h / k  ~ (q0A) -l (66) 

v and 
u ~ - ~  Uo, (59) 

rl u /v  ~ ( ½ f ) - l r  I-1. (67) 

and the equality of Eqs (58)and (59)gives The ratio of Eqs (66) and (67) gives, under the 

rl ~ P r  1/2, (60) assumption of  similarity, 

r/0 being the Batchelor scale. If  ~/were assumed rather u/----~ = f " (68) 

to be the thickness of the momentum sublayer across The left side of this result may be rearranged in terms 
which the velocity drops from u at the core-sublayer of a characteristic length as 
interface to zero on boundary, 

Uo "" u -  -~e  = f (69) 

which in terms of Eq. (59) yields or, in terms of the Stanton number, 

qo S t  = N u / R e P r ,  

Uo ~ v -~ .  (61) and Eq. (62), as 

Then, equality of Eqs (58) and (61) results in S t P r  2/3 = ½ f  (70) 

rl P r  113, (62) which is known to be the Colburn correlation of 
q0 A ~ experimental turbulent data. 
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_•-- Reection Rearranging Eq. (75) in terms of the conduction law, 

Lumi . . . .  q~ T b -- T, (76) 
P r e h e a t  / ~ k D ' 

b 

Ti a s  
"T b 

s" k ( T b - -  Tu) 2 (77) 
~,amo ~ ~ D 

In view of the fact that most of the reaction occurs 
close to the highest temperature, Tb is used for the 

d<<D characteristic temperature in Eq. (77). Accordingly, 
/ 

( s " ~  1 -- TbJ -if,  (78) 

FIG. 5. Quenched laminar flame, or, in terms of a characteristic length E = ct/S°, ct 
being the thermal diffusivity and S o the adiabatic 

Now, proceed to the fundamental relation between laminar flame speed at the unburned gas temperature, 
heat transfer and entropy production. Under con- assuming Tu[Tb ,~ 1 and introducing dimensionless 
ditions of isotropy, Eq. (56) gives entropy production IIs, 

(71) s ''E2 
So ~ (qoA)2, Fls k (Pc°)-2 (79) 

or, in terms of an integral scale E, 
where 

l._[sSoE2 (¢ )2  
~0 A , (72) peOo = D S°D (80) 

E ~t 
where Fl s is a dimensionless number characterizing the 
entropy production. Also, from Eq. (66), is the flame Peclet number. Accordingly, 

hE E I-I s = f (Pe  °) (81) 
Nu ~ ~ ~ ~o" (73) 

where 
The comparison of Eqs (72) and (73) readily reveals 

Pe ° = f (O)  and O =f (0b ) ,  Nu ~ 111/2 (74) -~s , 
the fundamental relation between heat transfer and and l-I s depends on the flame temperature only 
entropy production. This relation holds under any through the Peclet number (or the dimensionless 

quench distance). The U-shaped nature of D = f(0b) 
(laminar, transition, turbulent) flow condition. In the is well documented in the literature (see Ferguson and 
proceeding sections, the fundamental concepts 
reviewed in the preceding sections are applied to a Keck; 25'26 Clarke and Mclntosh 27 and Mclntosh and 
number of physically significant problems and tech- Clarke 28 for the case excluding radiation, and Arpaci 
nologically important systems, and Tabaczynski 29'3° for the case including radiation; 

also, see Kooker 3~ and Sohrab and Law 32 for the 
importance of radiation on quenching process, and 

7. Q U E N C H E D  F L A M E  • 33 Lee and T~en for the effect of condensed fuels on this 
process). The Refs [25, 26, 29] and [30] follow the 

Consider a flat flame anchored to a porous-plug usual practice and evaluate the minimum quench 
flameholder, suggested originally by Hirschfelder and distance from the tangency condition, 
co-workers 2°-22 for experimental studies. Such flame- 
holders were designed and utilized earlier by Botha ~ (Pc °) = 0, (82) 
and Spalding, 23 and Kaskan 24 and recently by 00b 
Ferguson and Keck. 25'26 The local entropy production 
in such a flame, obtained from dimensional consider- which actually corresponds to' an extremum in the 
ations on the thermal part of Eq. (39), is entropy production, that is, 

l(q___~)( ,1~ dl-I~ 2 0 ( P e ° ) =  O. (83) s" ~ T0 - 7", (75) (Pe°) 3 t30b 

D being the quench distance (the thickness of reaction This result, in view of the fac,t that Pe°o # O, is equi- 
zone is d, and d <~ D), 7", and T 0 unburned and valent to Eq. (82) and provides the physical justifi- 
burned gas temperatures, respectively (Fig. 5). cation for the tangency condition. 
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8. ENTROPY PRODUCTION IN A QUENCHED FLAME 40 0.08 

So far we discussed the foundations of entropy 
production in flame quenching following some dimen- 
sional considerations. Now we proceed to a quantita- ao 0.06 
tive distribution of this production by referring to a 
thermal model for steady plane flames on a porous 
plug. A number of simple models have been proposed, pe ° n s 
all describing the chemistry by a single-step global 2o 0.04 
Arrhenius reaction, and differing especially in the way 
the heat losses are taken into account. Among these, 
Carder, Fendell and Bush ~ use a step function heat 
sink in the preheat zone whereas Clarke and co- 10 o.oa 
workers 27"2s'35 follow the model proposed earlier by 
Hirschfelder and co-workers. 2°-22 The close agreement 
between these models, except for the interpretation of 0 
"cold boundary" (see, for example, Williams, 36 o.5 0.6 0.z o.a 0.a 1.0 
p. 145) and the model by Matkowsky and Olagunju 37 ab.rb/T O 
based on a modified step function which yields results 
different in some important respects, is well known. Fro. 6. First and second order Pe°o and I-I s versus 0b = 
Also, there exists two models, proposed by Ferguson Tb/~. 
and Keck 25'26 for interpretation of their experimental 
studies. The last two models are conveniently utilized where 
here for a qualitative demonstration of the entropy ~x dx '  
production in flames. Following Ref. [25], we have the ~ = P"S°cp J0 k " 
first order model 

0 Rearrange the temperature distribution in terms of 
peOn = puS, cpD T (1 - 0~'~ 

k 0 = ~-b and Pen = In \ ~ ]  (86) 

(oh- 
= \ 1 -  0bJexP[2----~b(~---b - 1)]  toobtain 

(84) 0(~) = 0u + 0b--  1 + (1 - 0b)e ~ (87) 

and 
where 0u = T. [~  and 0b = Tb/~ are dimensionless 
temperatures, T~b being the adiabatic flame tempera- dO 

- -  = (1 - -  0b)e  ~. ( 88 )  
ture, E is the activation energy and R is the universal d~ 

gas constant. Also, following Ref. [26] we have the Now, for the thermal part of entropy production, 
second order model, Eq. (39) gives, 

PeOn= puS°ucpf[ dx [ (1  - 0~'~] s,,,d2 d2 (dT~2 
-~- = l n \ l  - ObJ] Hs - k = ~ ~ x x , ]  ( 89 )  

x exp - 1 . (85) which may be rearranged as 

1 [  dO 12 
Now, employing Eqs (84) and (85), we get the distri- Hs = ~ t_ d(x/d) ] " (90) 
bution of entropy production from Eq. (79) and plot 
the results in Fig. 6. On the same figure, also shown is In terms of d = ct/S ° and for a constant k, 
the variation of Peclet number. The Peclet and x pucpS°ux  _ Sux/~t  

entropy production curves labelled by I and II corre- -d = k Su/S °' 
spond to the first and second order models evaluated 
respectively from Eqs (84) and (85). The U-shape of or, 
the PeOn- Ob relation and the inverse quadratic x 
dependence between 1"I~ and PeOn (recall Eq. 79) readily ~ = sjsO. (91) 
explain the maximum as well as the relatively squeezed Now, in terms of ~, Eq. (90) becomes 
shape of  the FI, - 0b relation. 

FI~ 1 (  d0 ~ ( S. / \2 (92) For the spatial distribution of entropy production 
between the burner and flame, consider the tempera- = ~ \ ~ ]  _ _ 
ture distribution from Ref. [26] which, with the experimental correlation 

T b - Tu'~( e ' - - 1  S. 1 
T~br- r,To = ( ~  r , ]  - - -  - -  = e x p [ -  e 

- ke e ' ° -  1)  S~ 2----~b (Ob 1)]  (93) 
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FIG. 7. Spatial distribution of entropy production. 

can always be stabilized over a burner by adjusting 
of  Kaskan, u yields the stand-off distance and thereby the heat-loss rate; 

1 (d0~2exp[ E ( 1 ) ]  the flame may be blown off but not quenched by a 
rl, = 7 k df,] ~ ~ - 1 . (94) discharge rate exceeding the laminar flame speed. 

However, the objective of the review is not to side 
Finally, referring to Eqs (87) and (88) for 0 and d0/d~, with one of  the views but is rather to demonstrate the 
Eq. (94) may be rearranged as entropy production (and entropic efficiency) of flames 

r (1 - 0b)e ¢ ]2 in terms of a simple model. Among the flame models 
Hs = L 0u + 0b -- 1 + (l 0b) e~ J existing in the literature, the foregoing Ferguson and 

- Keck models were employed merely because of their 
I E ( 1 )1 simplicity. A third and somewhat more involved 

x exp - ~ Ob -- l . (95) model, based on studies of Clarke and co-workers, 27as'35 
and resting on the flame speed 

Notethatfor S, fTb~2 [ E ( l  )] 
0 u - I -  0 b = 1 (96) ~ = \~bbJ exp - ~ ~ - ] (98) 

Eq. (95) reduces to readily yields 

E l _  1 { l - O u ' ]  E 1 
rl, = exp [-- ~ (0"bb 1)] (97) peon = 0"~b In \ 1-~--'~b j exp 12----~--~b (0"bb- l ) ] ,  

which, for a fixed EIRT~b and 0b, becomes constant. (99) 
Figure 7 shows I-I, versus ~/PeD for 0u = 0.2 and or, 
E[RT~b = 10. The entropy production between the (Pe°)m = Of 2(Pe°)n (100) 
flame and burner appears to be almost uniform. Since 
the quench distance is rather small, say 0.5-1 ram, 26 and 
this result is not surprising. For 0b = 1 -- 0u, this (Hs)nl = /~b(l-Is) n (101) 
production becomes exactly uniform. However, for 
0b > 1 -- 0u, the behaviour of  production drastically where subscripts II and III respectively refer to the 
changes as demonstrated in Fig. 7 with 0b = 0.96. second order Ferguson and Keck model and the 
The uniformity of as well as the drastic change in Clarke model. A numerical comparison between these 
entropy production do not accept a ready interpreta- models shows that, in spite of  its relative complexity, 
tion. It may be more of a property of  the model rather the Clarke model relative to the Ferguson and Keck 
than the reality. The quantitative difference between models appear to provide a limited improvement in 
the model and experimental results (see Fig. 6 of Ref. approximating real flames (Fig. 8). 
[26]) for 0b > 1 -- 0, add some credence to this The range of O, is O.12-O.25 and the range of E / R ~  
statement, for ordinary hydrocarbon fuels (say, methane, propane 

Law and co-workers 38'39 have recently disagreed and octane) reacting with air is 
with the Keck quench models by stating that a flame E/RT~b = 5-15. 
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4 0 ~  t0.1e the approach to the limiting cases of  Pr  ,~ 1 and 
Pr >> 1 are discussed in Arpaci and Larsen. 2 Since the 
case of Pr ,¢ 1 is for opaque fluids and has no 
application to radiation-affected problems, and the 

0.12 case of Pr >> 1 is known to approximate for all fluids 30 
with Pr >/ 1, only the latter case is considered below. 

Replacing the longitudinal velocity by its tangent 
ao 0.oe ns on the wall and using this velocity in the conservation 

of mass to determine the transverse velocity, and 
including the radiation effect, the thermal energy 

" balance gives 

a 2 r  aq~ 
= k t3y 2 ~y (102) 

0.5 0.6 0.7 018 019 1.0 
Ob.Ta/T~ subject to (Lord and Arpac¢ °) 

t3q___~y R [ ew (Ebw-  Ebo0)E2('c)] FIG. 9. Effect of activation energy on Pe°o and l-l,. t~y = 4Xp (Eb -- Ebb) -- ~- 

Figure 9 shows the variation of Pe ° and YI s based on (103) 
the second order Ferguson and Keck model. Here, where z, denotes the wall shear stress, xp the Planck 
E/RT~b = l0 qualitatively represents (for the stoic- mean absorption coefficient, Eb the emissive power, ew 
hiometric mixture with air) a lower bound for propane the wall emissivity, E 2 the second exponential integral, 
and an upper bound for (n-Octane), and E/RT~b = 15 and z the optical thickness. The boundary conditions 
an upper bound for methane. Actually, there remains to be satisfied are 
a considerable disagreement in the literature on the 
activation energy of methane (see, for example, the T(0, y) = To~, T(x, O) = Tw, T(x, ~ )  = T~. 
tables in Kanury, 4° p. 109; Mullins, 4~ pp. 201-220; and (104) 

Kaskan24). This disagreement is a result of  the com- A similarity variable including both conduction 
plexities associated with CH4 oxidation (Westbrook and radiation is not feasible because of intrinsic lack 
and Dryer 42 and Glassman, 43 p. 81). Here, we utilized, of similarity between conduction and radiation. 
somewhat arbitrarily, the values suggested by However, the effect of  thin-gas radiation on conduc- 
Kaskan'24 tion is small. This fact suggests the use of the simi- 

It has recently been shown by Law and co- larity variable for conduction by which the radiation 
workers 3s'39"44-47 that the accurate determination of the effect can be treated locally similar. 
laminar flame speed requires the consideration of a Introducing r/ = y/g(x) (see, for example, Arpaci 
more realistic kinetic schemes than the one used in and Larsen2), into Eq. (102) leads to the equation 
this review. Among these, the models by Kee et al. and satisfied by g(x), 
Warnatz 4s both agree with the experimental data of 
E g ° l f ° p ° u l ° s e t a l " 9 ° v e r s ° m e c ° n c e n t r a t i ° n a n d  ( ~ )  dg3 3 3 d ( ~ )  
pressure ranges. Yet, there remains small but impor- ~ + 2 g ~ = cc 
tant differences on some of the predictions of these 

which readily gives models. Further code developments are needed to 
resolve these differences. Therefore, any study based [ .j~ 11/3 
on these models has to be delayed until the resolution cc (~,//~),/2 dx 
of these differences, g(x) = ('Cw//~) '/2 

(~w/~)'/2y 
9. ENTROPY PRODUCTION IN A BOUNDARY LAYER and,1 = [ f:l~ x (Tw/]j)I/2 dx]'/3" (105) 

Consider a radiation affected forced convection 
boundary layer over a horizontal flat plate. For heat In terms of Eq. (105) and the approximation E2 "" 
transfer studies, rather than velocity profiles, a good exp (-~/r3z), Eqs (102) and (103) are combined to 
approximation of these profiles near boundaries is give 
convenient. This approach, in the absence of radia- 
,ion isw0,l  nown nd has  ens, diodex=sivo,y ' ( ) 
(see Curie 49 for an early reference, and Arpaci and ~ + g r/ ~ = xl~2x 0 4 - e -~'2~ 
Larsen 2 for a later reference). Also, the extension of (106) 
,IPEL'$ lib f~F 
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subject to 0(0) = l and 0(oo) = 0. Here, X = (rp/ production has been shown to be 

~R) 1/2 is the weighted nongrayness, ~R the Rosseland [ dO'x 
mean absorption coefficient and ~ 

o = ~ - _  To' r,w__E__rv, ~ = g o +  T . -  r= /  

g = Gx  ~/2, a = Lo .332u~(u~/v )~ /2  007) x - ~ - ~  + . . o ( T ~  + T~) (T~  + T ~ )  . 

0o9) 
4 ¢ r (7~-  T~) Emission 

P = 3 k ( T .  - T~)~c M - Conduction over 1¢~ ~ For illustrative purposes, assuming a wall tempera- 
ture of T. = 500 K, Fig. 11 depicts the variation ofs~" 

~¢M = (~P ~R)]/2 being the mean absorption coefficient, against q, for pure conduction, conductive, and total 
As P ~ 0, the effect of radiation diminishes and (conductive + radiative) components in combined 
Eq. (106) reduces to the case of  pure conduction, as conduction and radiation problems. 
expected. For the heat transfer in boundary layers, consider 

Equation (106) has been solved by Selamet and the total heat flux on boundaries, 
Arpaci n who use the finite difference code PASVA3 q.  = q~ + q~, (11o) 
developed by Lentini and Pereyra 51 as well as the 
single step code DVERK based on a fifth and sixth qC being available from a usual boundary approach 
order Runge Kutta-Verner approximation developed and q~ being the spectral average of the monochro- 
by Hull et al. 52 The results obtained separtely from marie wall heat flux to be evaluated next. From 
PASVA3 and DVERK have been found to agree to 0zi~ik, 53 Siegel and Howell, ~4 or Sparrow and Cess, 5~ 
five decimals. Figure 10 shows the variation of 0 [ ~ ] 
against t/, for pure conduction which can be obtained q~ = e, Eb, -- 2 EbE2(z') dz' . (111) 
by letting the right hand side of Eq. (106) equal to 
zero, and combination of conduction and radiation as After splitting the interval into two domains as [0, zn] 
expressed by Eq. (106). and [z~, eel, zA denoting the thickness of the conduc- 

In terms of r/ and 0, the conductive constitution tion boundary layer, the integration of Eq. (111) 
becomes yields 

f,A dEb E ~ '  ~ 
q~ = - k d O ( T .  - T~), (108) q~ " - 2 ~ j 0  ~ ~" ,d 'c ' .  (i12) 

g d~/ 
A third order polynomial in ~ for Eb satisfying the 

where r/ and g are defined by Eqs (105) and (107), apparent conditions, 
respectively. Inserting T, the thin-gas radiative heat 
flux, and the conductive heat flux expressed by E~(0) = Ebb, E~(zn)~ Eb~ and dE~(~)/d~ ~ 0, 
Eq. (108), into Eq. (39), the volumetric local entropy (! 13) 
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and the limit of weak radiation, where, after neglecting the effect of thin-gas radiation 
d2Eb(0)/d¢ 2 0, (114) on the thermal boundary layer, zA = rMA = XM6[ 

Prm. From approximate studies on viscous boundary 
yields layers, ~ ~ 5.0x/Relx/2, and zA = 5.0zx/Relx/2pr 113. 

Also, from thermal boundary layer studies, 

Ebw-  Ebo~ = 2 ~ - - ~  ~ . (115) Nux = 0.629(-dO/d~l[w)ReJx/2Pr ~I3, (124) 

In terms of Eq. (115), the wall heat flux from Eq. (112) which, for the pure conduction case 

yields (-d0/dqlw) K = 0.538, 

qw R = ~w(Ebw -- Ebo~) (1 -- ~a ) .  (116) gives 

This relation apparently excludes the effect ofconduc- Nu~ = 0.339Re~x/2 Pr ~/3 and za -~ ]zx/Nu~x • (125) 
tion. To include this effect, reconsider the conditions 
given by Eq. (113), and, in place of Eq. (114), now Thus 
utilize the wall balance of the thermal energy, Nux (-dO/dy[w) 

k d--Sw d2 T = dq~dy w (117) Nu~x ( -  dO/dylw)K 

which in terms of Eq. (103) may be rearranged to give + ~ ew P 1 4 Nu~ 

k _d_7 w d  2 T = 4rp ,(1 - _~:3 (Eb~ -- Ebb). (118) isand the local thermal entropy production on the wall 

Also, from the (linearized)Stefan-Boltzmann law 1 K ( dT'] 
Sx" - ~ (qw + q ~ ) k ~ j .  (126) 

d2Eb 4aT~ d2T (119) Introducing a wall local entropy production number, dy2 = dy----r, 
Fix = s'~"x2/k, Eq. (126) can be rearranged into 

where TM = [(ewT~ 4 + T~)[ (~  + 1)] 1/4. The elirnin- 
ation of thermal curvature between Eqs (ll8) and ( T~)~(  q_.~g)[ (__OT/Oy)[~_ "]2 
(119) gives l-I x = i - ~ 1 + q~ (Tw - T ~ ) / x l "  

d l ' 2  w - -  12Z~ 1 - (Ebw -- Eb~o), (120) With the definition of local Nusselt number 

where ~ = 4trT~/3kTMXM. Then, the polynomial qC q~ (t3T/8Y)lw 
approximation subject to Eqs (ll3) and (120) yields Nu~ = q--¢ = q~x - (T~ - T~) /x  (128) 

Eb -- Ebw 1 1 ~ + ~0 Eq. (127) is expressed as 
Ebw - -  Eb~ 2 -- 3 + ~ ~o zA 

q~'~ N ~ .  (129) l-Ix = ( 1 - - ~ w )  ~(1 + q~/] +(1- 2 0) (121) 
Next and finally, the fundamental concepts reviewed 

where ~'0 = 12Z~(1 - e~/2)z]. In terms of Eq. (121), in the first six sections are applied to pulse combustion 
Eq. (112) results in systems. 

qR = ew(Ebw -- Ebb) 
10. PULSE COMBUSTION SYSTEMS 

Pulse combustion heating systems have many 
which shows the explicit effect of conduction on the advantages over conventional burners, such as 
radiative heat flux. However, for the thin-gas radia- thermal efficiencies of 95% or more, low pollutant 
tion, za~  ~ 1, rA '~ 1, and, to first order, the explicit (NOx and CO) emissions, self aspiration, and a high 
effect of conduction on the radiation flux is negligible, rate of  convective heat transfer in the tailpipe. The 
and Eq. (122) reduces to Eq. (116) which is the upper reason for high rates of heat transfer is the large flow 
limit of the radiative flux obtained from pure radiative oscillations caused by the acoustic resonance of the 
considerations. Now, in terms of this flux, the total combustor. However, until recently, there has been 
heat transfer becomes considerable confusion in the literature over the effect 

of flow oscillations on heat transfer rates in turbulent 
_ k  Or qw = Oy , + e~(Ebw -- Ebb) (1 -- ¼z~), flows. Heat transfer rates in pulse combustor tailpipes 

have been found to vary from 70% or less, ~6 to 240% 
(123) or greater: 7 than those of steady flow at the same 
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mean Reynolds number. Other oscillating flows have 50 
shown decreases 5s in the heat transfer coefficient of up _ j ~ , ,  
to 20% and increases 59 of up to a factor of 5 over AXZAI. " ' " . n ~ f f  
steady flow conditions. Part of these inconsistencies 40 ,  SWIRL . , ~  p I~\ 
may be explained by the greatly different flow con- " | ,, ~/4f LZNEAR FZT 
ditions of the studies. Also, previous studies lacked ,~ 30 ~ ~ - t ~ ' J ' " /  
systematic variation of the important flow parameters, ~ ~¢~' 
and many studies were conducted at frequencies much z ,. 
lower than the 45 to 200 Hz range, typical of pulse | 20-  
combustors. The effect of flow oscillations on pulse = 

z STEADY TURBULENT 
combustor tailpipe heat transfer has recently been = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
clarified by the experimental study of Dec and Keller 6° - - • LTNEAR FZT TO AXZAL DATA 
and that of Keller e t  al. 61'62 In this section, the experi- t 0 -  + SWIRL {Pr'tas " 7.7 kPa} 

0 AXZAL (PPnls " 7.7 kPal 
mental results of Dec and Keller 6° are correlated by [] AXTAL (7.~ < Pr'ms < 7.7 kPal 
one of the foregoing heat transfer models, q~0 t I I I I I I I I I I 

Previous modeling of oscillating flow heat transfer , 60 70 80 90 tOO it0 
has been based on quasi-steady assumptions, which 
are valid only in flows with oscillation frequencies F,-~ue,,~ [n=j 
lower than those typical of pulse combustors, and FIG. 12. Time- and space-averaged Nusselt numbers as a 
results in a heat transfer correlation which is indepen- function of frequency at a combustion chamber pressure 
dent of frequency. 6x6. That is, at any point in the cycle RMS (PRMs) of 7.7 kPa. Curves are cubic spline fits to data, 
the flow is assumed to behave as if it were steady at the and dashed line is a linear least-squares fit to the axial 
instantaneous velocity. This assumption is valid only injection data) 9 
for flows with low frequency oscillations, since it 
requires that the flow become steady within a time suggest 
much less than the cycle time. Although the frequency Nu = F[(co - ~00) U0], 

range of the oscillations in the pulse combustor where co and co0 are, respectively, the frequency and 
tailpipe are beyond the quasi-steady limit, it is the the minimum frequency for frequency enhancements 
only theory available, and therefore widely used in the effects, and U0 is the velocity oscillation amplitude, 
literature. The first known use of this approach was which is directly proportional to PRMS" 
by Martinelli. 65 Since then it has been used by several A heat transfer correlation for a complex flow 
other researchers, sT'ss'~'66 For example, Hanby s7 involving coherent oscillation (or pulsation) ,.'s difficult 
suggests to construct solely on empirical grounds. This dif- 

Nu = O.023Prl/:ffee °s ficulty has been resolved by Arpaci et al) 9 who follow 
a novel approach leading to a conceptual model based 

f 0 (  1 U° (2xQ)0.8 x + --ff cos dr (130) on the general principles and appropriate microscales 
of turbulence. Using this approach in recent studies, 
Arpaci, 6s-72 Arpaci and Tabaczynski, 73 Arpaci and 

which is a quasi-steady adaptation of the Colburn Selamet, 74"75 and Arpaci and Dec 76 have demonstrated 
correlation__ for turbulent heat transfer. Here Nu, Pr, a relationship between the appropriate microscales of 
and Re are the Nusselt number, Prandtl number and turbulence and the transport processes in a number of 
Reynolds number based on the mean velocity respect- forced and buoyancy-driven turbulent flows. Extend- 
ively, r is the time normalized by the time for a ing the approach to heat transfer in oscillating tur- 
complete cycle, and the oscillating velocity is assumed bulent flows and utilizing the microscales reviewed in 
to be sinusoidal (an assumption verified by the Section 5, Arpaci et al) 9 suggest for the flow in the 
velocity measurements67). Equation (130) provides a tailpipe of pulse combustors, 
Nusselt number correlation, independent of frequency. 

The heat transfer data of Dec and Keller, which was Nu = 0.028Re 3/4 
obtained over a range of typical pulse combustor I ( (°) ~¢-D°)D ) ]  314" 
frequencies (54 to 101 Hz), demonstrates a strong x 1 + 0.21 U0 1 + 7.36 U 
frequency dependence that cannot be explained by a 
quasi-steady model. Figure 12 shows Nusselt (131) 
numbers for several frequencies at the same PRMS, Here Re denotes the Reynolds number based on the 
approximately 7.7 kPa, and a linear least-squares fit mean velocity 0, U0 denotes the amplitude of velocity 
to the axial injection data (dashed line). Examination oscillations, and (co - o0)D denotes the velocity 
of the linear fit also shows that the Nusselt number related to the frequency a~ of the oscillations, COo being 
increase with frequency only occurs for frequencies the frequency below which quasi-steadiness holds 
above some minimum value. This fact, and the simul- (o~ 0 = 46) for the present correlation, and D being the 
taneous near linear dependence of  the Nusselt number hydraulic diameter of the tailpipe. The model is least- 
on both frequency and PRMS, lead Dec and Keller 6° to squares fitted to the experimental data available in the 
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m ~-,..,z~,~o. affected thermal boundary layer. This production is 
8o-oat.o ~ h  .Fs,~q ~ cs, trD shown to be proportional to the squared Nusselt 

_ ,~ ~ - su ~ ~ , t rD  number.  In the final case with contemporary indus- 
x - .~_  - u sz c~,,trt) ., trial significance, a recent heat transfer correlation for 

50 + -31100 - 87 Hz / 
v ~ - 74 w~ , /  the tailpipe of a pulse combustor is discussed. The 
o -'msn - n  ,z ,, ~ square of this correlation, being proportional to 

" 3 7 0 0  " 1 0 1  H z  _~l~lr//'41 
o -stoo - r r  Hffi ~ entropy production, is a measure for the thermal 

4 C -  o - 3 4 ~  - 79 ~ 
A -44an - m w . I  efficiency of pulse combustion systems. 
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