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Abstract-Within the cuntext of the small-strain approach. combined mode I. II and III near-tip 
fields of stationsry cm&s in power-law hardening materials are investigated. We use a finite element 

technique to obtain asymptotic angular stress solutions for cnmbined mode I and II perturbed from 
mode III. These perturbation solutions with the same stress singularities as those of pure mode III 
;trc prcsentcd for ditkrcnt hnrdcning m;tteri&. The perturbation results further supgcst that the 
or&r of crack-tip stress sinyularitics varies smoothly with changing mode mixity. We also employ 
full-ticld linitc elomcnt computations to study the small-scale yielding near-tip fields for several 
combinxlions of prcscrthcd rcmotc mode I. II and III clastiu R iiclds. These soluGons verify an 
intcrcsting pattern which at;rccs w&h fhc previous solutions for combined mode I and Iii loading 
;W well as thrtsc for oomhiacd mode II and fl I kadiny : wdl within the plastic zone. under near 
mode I n~i~c~l-tll~)~lc lo;rdinps, the in-pbnc stnzzses arc slightly more singular than r- ‘x”* ” white 
the out-of-pktnc shtzr strcsscs arc slightly Icss singular than r ‘A”’ ‘I. whcrc I is the r;tdial distance 

tu the tip and I, is the strain hardctting cxponcnt of the m:ttcrial. To explain the complex behavior 
of’thc nc:lr-tip strcsscs. uc introduce an c:iTcctivc in-pl;mc shcnr strczs and :tn clliictivc out-of-plume 
shear stress to quantify the in-plane amI out-of-plant plastic shear at dilkrcnt orientations in ;I 
consistrnl m;lnncr. Ths full-licltl solutions also corroborate the obscrvntion that the singularities of 
ths iu-pl;lnc strcsscs and the out.of-pl:tnc shear stresses vary smoothly with mode mixity. 

I. IN1‘KOLMJCTION 

Asymptotic plane-strain anti plane-stress crack-tip stress and strain fields for POWW-I:IW 

}>:tr&ning materials and perfectly plastic materials have been obtained under pure mode 1 
and pure mode II conditions ~Hutchinson, 196&t, b; Rice and Rosengren, 1968; Rice, 

1%~:~) and under pure mode III conditions (Rice, 1968b). However, cracks in typical 

engineering structures are generally subject to combined mode I, II and III loading. Under 
combined mode I and II conditions the asymptotic crack-tip stress and strain fields for 
power-law hardening materials and perfectly plastic materials have been presented by Shih 
(1973, 1973). The results ofshih’s full-field finite element computations indicate that within 

the plastic zone the mode I opening stress ahead of the tip is enhanced due to material 
plasticity. Further investigations of the material elasticity efiects on combined mode I and 

II crack-tip fields for perfectly plastic materials can be found in Nemat-Nasser and Obata 

(1983). Sakn et al. (1986) and Dong and Pan (199Oa. b, c). 
Within the small-scale yielding formulation, Pan and Shih (1990~1, b) have obtained 

the near-tip fields by finite element methods under remote combined mode I and III K fields 
and unclcr remote combined mode II and If1 K fields. Under combined mode 1 and III 
conditions the in-plane stresses well within the plastic zone are more singular than the HRR 
singularity while the out-of-plant shear stresses are less singular than the HRR singularity. 
In contrast, under combined mode II and III conditions, the in-plane stresses within the 
plastic zone arc slightly less singular than the HRR singularity while the out-of-plane shear 
strcsscs arc more singular than the HRR singularity. The qualitative nature and quantitative 
computational results of the angular and radial variations of both the in-plane stresses and 
the out-of-plant shear stresses agree well with those of the perturbation analysis of Pan 
(1990). This suggests that the perturbation analysis can clarify the nature of the crack-tip 
singularity under combined in-plane and out-of-plane shear loading conditions. It should 
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be noted that the separable stress function assumption for both in-plane and out-of-plane 
shear stresses in Pan (1990) are only valid when either the in-plane loading or the out-of- 

plane shear loading is smaller than the other, as shown in the finite element solutions of 

Pan and Shih (1990a. b) for their particular mode mixtures. 

Based on the work by Pan and Shih (1990a. b) and Pan (1990), we make these 

observations regarding the structure of the combined mode I. II and III near-tip fields: 

under near mode I loading conditions the in-plane stresses should have a singularity stronger 

than that of the out-of-plane shear stresses. and under near mode II loading conditions the 
in-plane stresses should have a singularity weaker than that of the out-of-plane shear 
stresses. This leads to a question of the existence of the same singularity for both the in- 
plane stresses and the out-of-plane shear stresses asymptotically at the tip. The singularity 

must be the HRR singularity according to the J integral argument of Rice (1965) and Rice 

and Rosengren (1965). In this paper \ve investigate the asymptotic structure of crack-tip 

fields under combined mode 1. 11 und III and attempt to ;mswer the question ofesistence 

of the HRR singularity under combined mode I. II and III loading conditions by ;I 

perturbation analysis and full-field finite element computations. 
We begin by reviewing an asymptotic analysis of combined mode I and II crack-tip 

fields perturbed from pure mode III ~1s in Pan (1990). This Icads to the tirst-order perturbed 
stress-strain relation for use in a tinitc element technique (Symington c’f (II.. 1990) to obtain 
the solutions of the perturbed crack-tip fields. Pcrturbcd combined modu I and II solutions 
with the HRR singularity ;Lrc proscntccl for ditTcrunt hardening csponcnts. Ttxsc solutions 
yield the exact mode mixities where the in-plant strcsscs and the out-of-plant shear strcsscs 

have the same I I RR singularity. l~urthcrmvrc, the porturtxition solutions suggest th;lt the 

rclativc sin@ritics of in-plane stresses to the out-of-plane shear strcsscs tlcpcnd on rnoclc 
rnixity. Next ivc discuss scvcral cornbincd mode I. I I and II I full-ti~lcl tinitc clamant solutions 

obtained under sm;lll-sc;Ilc: yicltling conditions. Thcsc small-sc:llc yielding solutions not 
only indicate that the crxk-tip singul;lritics for curtain rnixitics of moclc I. II :~ntl III ;irc 

very clvsc to the i-IRK singularity. but ;tlso point to some complex bch;lvior of in-plane 
strcsscs under nc;ir niotlc I loading clue tu the dominant nature of mode I Io;iciing 2nd 

plasticity. l:iri;illy wc inlrotlucc ;in cltccl~vc in-pl2nc shc:ir stress and 211 clltiutivc out-ot- 

plnnc shear stress to qu:\ntify the in-pLInc and out-of-plant plastic shcxr at di!Tercnt 

0ricnt:itions in ;I consistent manner. 

2. ~IUTCHINSON-RICE-ROSENGREN (HRR) CRACK-TIP FIELDS 

To describe the elastic-plastic behavior of the materials we consider here, we use the 
Rambrrg-Osgood Iaw, which is widely employed for fitting uniaxial tensile stress-strain 

relations : 

where E is the tensile strain. a is the tensile stress, E,) and a0 arc the reference strain and 

reference stress (we take E” = a,/E ,h u erc E is Young’s modulus), r is a material constant 

and n is the hardening exponent. A generalization of eqn (1) gives the strains c,, written as 

the sum of an elastic part I::, and a volume-prcscrving plastic part I:f, : 

h, = i: :, + 1: i; (2) 

The terms in (2) arc given by 

c _ (l+v) (l-7\,) 
t:,, - -E 

---.s,,+ -yi atlO,,. 

(3) 
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where v is Poisson’s ratio. s,, (= 6,,- fo,,6,) are the deviatoric stresses, and o, [ = (3s,s,,,/Z) ’ 7 
is the effective stress. 

We consider a crack in a Ramberg-Osgood solid. as shown in Fig. I. where r and 0 

are the polar coordinates centered at the crack tip. As r approaches 0. the linear elastic part 
of the strain is negligible compared to the plastic part. The asymptotic crack-tip stress, 

strain and displacement fields can then be expressed as (Hutchinson. 1968a. b: Rice and 
Rosengren. 1968: Rice. 1968b; Shih. 1973. 197-l) 

J I ,nc I) 
(i,l = (To - ( ) mocoIr 

d,, (0 ; n, M). 

J ” (“4 I) 

6, = w, 
( ) cm++ Ir 

E,,(e:n, &I). 

J n (nc 1) 
II, -II, = x,,r 

( ) ra,,&“Ir 
fi,(n:n,M). (4) 

where the dimensionless constant I and the dimensionless angular functions d,,, E;,, and ri, 

depend upon the hardening exponent n; the state of plane-strain, plane-stress or anti-plane 

deformation ; and the mode parameter M (mode 1. mode 11, mixed-mode I and 11, or mode 

III). The constants ti, allow for a possible rigid body motion of the crack tip itself. The J 

integral (Rice, 1968a) in eqn (4) represents the amplitude of the singular crack-tip stress 

and strain fields. Recent studies of the asymptotic crack-tip fields for power-law hardening 
orthotropic materials and for power-law hardening pressure-sensitive dilatant materials 

show the same type of functional forms as cqn (4) for the asymptotic crack-tip fields (Pan 

and Shih. 1986. 198s: Li and Pan. 199Oa. b). 
Under combined mode I, II and III conditions, cqn (4) may not accurately rcprcscnt 

the liclds within physically rcasonablc radial distances to the tip for all mode mixtures since 

in gsncral the rclativc singularities ofthc in-plane strcsscs and the out-of-plane shear stresses 
dcpcntl on the radial distuncc r to the tip. l:or the convcnicncc of quantification, three 

plastic mixity factors /\/f,(r), MS,(r) am! My,(r) can bc dctincd from the ratios of the in- 
plane opening stress G,,,,, the in-plane shear stress c,,,, and the out-of-plane shear stress b,,._ 

at ;I distance f ahead of the tip as 

(5) 

Fig. I. A crack subjected to combined mode I. II and 111 elastic K fields along the circumferential 

boundary. 



and 

(6) 

(7) 

Here r is smaller than the smallest radial extent of the plastic zone. Thus. ts hen both .I/i;; 

and MS, equal 0, we have pure mode III crack-tip tields. Under pure in-plane Inad~ng 

conditions. both .VC1 and ,C( !, equal I. We need only the mixity factor ,t/;,(r) (Shih. 1973. 

197-l) to specify the mixed mode I and II crack-tip tield. The asymptotic crack-tip tieId 

esist under in-plane mixed-mode conditions (Shih. 1973. 1974): an asymptotic v;~Iue of‘ 

IV’;:(~) as r approaches 0 (within a physicall> reasonnhle radial distance to the tip) can ix 

found under small-scale yielding. The values of .ilT;(r) .\ly,(r) and .\!y:(r) ranpc bctwccn 

I and 0 for combined mode I. II and III near-tip fields. Note that only tuo of the three 

mode mixities arc needed to specify a combined mode I. II and III crack-tip field at ;1 given 

radial distance r. 

In this section. the perturbation analysis of Pan (IWO) which Icad\ to the chscnti;ll 

information for the modification of Symington (81 (11,‘s (IWO) linitc clcrncnt method for 

calcul:ttion of the pcrturbcd asymptotic crack-tip Ii&is is briclly discussed. The in-plant 

stress function C/J and the out-of-plans stress function IL ;trc assumed in scparahlc forms ;IS 

in 1’2n ( IWO) : 

whcrc K. L. .Y and I arc: constants. ;lncI &O) and IF(O) arc functions of their argument II for 

;I given power-law hardening material. The stresses derived from the stress functions ;Irc 

(I()) 

c,, - = .s$-+$-, 

CT,,,, = .s(.s - I ,$C. 

(T,,, = (I -.S,Cb.. 

5,: = Ij ‘. 

ri,,: = (I - 1,11/. (11) 

Here ( )’ represents (;( )/?o. Note that for a given po\\cr-la\v hardening material, d,,. C,,,,. 

and ir,,, are functions of 0 and .s. and 6,: and ci,,. are functions of 0 and I :\s sho\bn in 
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Hutchinson (1968a. b). Rice and Rosengren ( 1968). Shih ( 1973. 1974) and Rice ( 1968b). 

the value of s and t is 

In+ I 
S=[=- 

n+l 
(13 

for either pure in-plane modes (mode I, mode II and combined mode I and II) or a pure 

out-of-plane shear mode (mode III). When we seek solutions of the singular crack-tip 

fields of the forms (IO) and (I I) under combined in-plane and out-of-plane shear loading 

conditions. the values of s and I in general are assumed to be different. Since we are seeking 

singular solutions in the immediate vicinity of the crack tip. we are interested in the solutions 

with both s and I being less than 2. As r approaches 0. the in-plane mode will dominate for 

s c I whereas the out-of-plane shear mode will dominate for I <s. Remember that the 

assumptions of (8) and (9) are approximately valid when either the in-plane mode or the 

out-of-plane shear mode is smaller than the other for the mode mixtures investigated by 

Pan and Shih (1990a. b). 

The coupling of the in-plane plastic deformation and out-of-plane shear plastic defor- 

mation is through the effective stress uC in the constitutive equation (3). The effective stress 

(I, in the cylindrical coordinate system is expressed as 

r-r’= i(u,,-u ,,,, )2+3ar;,+3n,;+3a;:. (13) 

Substituting (IO) into (13) gives 

whcrc 

3; = j(ri,,-n’,,,, ):+3ri,?,, (15) 

and 
,-%? 
I; = 35; + sf?;:. 06) 

Note that 3, and Te are functions of 0 for a given 11. More importantly, since we assume 

that s is not equal to 1. C, cannot be rxprcsscd as a separable function of’r and 0, such as 

those stresses in (IO). We can drfnc the maximum magnitude of the U-variations SC and FC 

to be unity. Then Kand f. represent the singularity amplitudes of the in-plane stresses and 

the out-of-plane shear stresses. respectively. 

It is possible that the values ofs and I are equal to each other for certain mode mixities. 

When s = I the asymptotic governing equations can be derived and then supposedly solved 

by the shooting method. However, the shooting method will be cumbersome and difficult 

for solving this class of problems with homogeneous stress-free boundary conditions as 

discussed in Shih (1973, 1974). especially for combined mode I, II and 111 problems. It is 

also possible that we try to solve for perturbed mode III crack-tip fields from combined 

mode I and II solutions. However. the simplest task is to solve for perturbed combined 

mode I and II crack-tip fields from mode Ill since closed-form mode Ill crack-tip stress 

solutions exist (Rice, 1968b). Thcreforc WC consider the casts whcrc the contribution ofthc 

in-plane stresses to the effective stress is smaller than that of the out-of-plane shear strcsscs 

(or K/L cc I). Equation (14) can bc rewritten as 

8, = Lr’ - %,. (17) 

where ci, is now defined as 

(18) 
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As shown in the finite element computations of Pan and Shih (1990a. b), the singularities 
of the crack-tip in-plane stresses and out-of-plane shear stresses usually differ only slightly. 

Therefore. s-f in (18) can be assumed to be a small number. For small r. r”‘-” in (18) 
becomes finite and has an order of unity. Therefore, CC does have a weak dependence on r. 

Then. (k; L)’ determines the order of magnitude of the second term on the right-hand side 
of (18). Note that (K f.)‘r”‘-‘I represents a mixity factor of the in-plane mode and the out- 

of-plane shear mode. 

The strains can be expressed as 

where 

(20) 

Uridcr pure mode 111 conditions, the closed-form stress solutions given by Rice (1968b) 
;I rc 

whcrc 

(22) 

Note that TJO) = I and the value ot’r equals the HRR value for pure mode III. 

When we consider the asymptotic combined mode I and II crack-tip fields perturbed 
from mode III, the lowest order relation between the normalized in-plane strains C,, and the 
normalized in-plane stresses ci,, in matrix form is 

Note that TC is a function of (I for a given power-law hardening material. Equation (23) is 
the essential input for employing Symington er ~11:s (1990) finite element method to solve 
for the perturbed asymptotic crack-tip fields. 

Symington et 01. (1990) constructed a finite element method for computing the angular 
variation of asymptotic singular crack-tip stresses and strains. In their formulation the 
asymptotic stress and strain ticlds must bc of a separable form in polar coordinates. The 
radial dependence of stresses and strains is assumed to be known. Their finite element 
method is based on a weak form of the compatibility equation with the homogeneous 
boundary conditions at the stress-free crack faces. We adopt their method to calculate the 
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perturbed crack-tip fields. Here we onIy present the necessary rn~i~~ation of their finite 
element method in eqn (13) for the present perturbation problem. Interested readers are 
referred to Symington et al. (1990) for the detailed finite element formulation. Under 
combined mode I and II loading. the stress and strain singularities [denoted by fi and p in 
Symington YI nf. (1990)] are known from the f integral argument by Rice (1968b) and 
Symington ef al. (1990) actually solved a system of nonlinear equations using the Newton- 
Raphson method. 

For the present perturbation problem. the compliance matrix between the normalized 
in-plane strains E;, and the normalized in-plane stresses 8,: in eqn (33) is a function of the 
angular location 6 only. Here. /I = 2 --s and p = t- s-n(r - 2) where the value of t of 
unperturbed pure mode III is the HRR value. The value of s depends upon the in-plane 
mode mixity. Inversely. the in-plane mode mixity depends upon the value of s. If a value 
ofs is given. then the system of governing equations based on the formulation of Symington 
et al. (1990) with eqns (23) becomes linear and no iteration is required to solve for the 
angular variation of the perturbed asymptotic crack-tip fields. In other words. for a given 
value of s, the finite element computation rvitl result in an angular variation of stresses with 
a mode mi.xity evaluted at fl = 0. 

The finite element model of the domain from -n to 7c is constructed by 360 Z-node 
elements with Hermitian interpolation functions. Discussions of the mesh refinement on 
~omput~ltion;ll results can be found in SyRiington of (11. (1990). The values of s for input 
to the finite element calculations were se&cd from the solutions of perturbed mode I and 
mode II by Pan (1990). The finite element results agree well with those obtained by the 
shooting method. Next we used values of s bctwoon those for perturbed mode I and mode 
II. For thcsc values ofs wc obt~lin~~t solutions with the mode mixity factors 1%1’;~ ranging 
from I for pcrturhcd mode I and 0 for pcrturhcd mode II. In the intcrcst of space we prcscnt 
the cornbincd motlc I iltld II solutions with the HRR singularity for n = 3 and II = IO in 
Fig. 2. The wlucs of M1;: for the pcrturbcd crack-tip liclds with the tlRR singularity shown 
in I:ig. 2 arc 0.56 and 0.46 for tl = 3 and N = IO. rcspuctivcly. The value of IV’;? for the 
pcrturbcd crack-tip licltls with the HRR singularity is 0.38 for II = 20. Obscrvc that the 
motlc mixity for the pcrturbcd crack-tip ticld with the HRR singularity decreases with the 
incrcasr: of the hardening exponent II. This is qualitatively in agrrcmcnt with the general 
trend that the cnhanccmcnr of the in-plant opening stress increases with the increase of n 

under both combined mode I and II conditions and combined mode I and III conditions. 
Note that ci,, at IYO’ and - ISO’ has the same magnitude. A simple perturbation of the 
analysis in Budi~~nsky and Rice (1973) can indicate that the perturbed radial stresses at the 
stress-frcr crack faces must have the same magnitude but not necessarily the same sign. 

1. SMALL-SCALE YIELDING CO~fPUT~~TfONAL MODEL 

We consider the small-scale yielding problem dcpictrd in Fig. I, where a crack in a 
circular domain is shown. Along the remote circular boundary, displacement fields based 
on the mode I, and II and III asymptotic crack-tip solutions for linear elastic materials are 
applied. The in-plane displacements it, (i = 1, 2) and the out-of-plane displacement uJ are 
prescribed LIS 

and 

(24) 

where G represents the shear modulus. and K,, Kit,, and Ic,,, represent the far-field mode I, 
II and III stress intensity factors. respectively. The dimensionless functions u’j(0, v), 

Y(s 29:22-n 
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Fig. 2. I‘hc normdid angular stress functions ofcombined mode I and II with the tlRR singulariry 
(pcr~urtxd from mode III) for (a) rr = 3, and (h) n = IO. 

li:‘(O, v) illld fi’:‘(O) are the well-known linear elastic asymptotic displacement solutions 

[for example. see Kannincn and Popelar (IWS)]. 

The elastic far-tield is completely specified by the three stress intensity factors, K,, K,, 
and K,,, (recall that the angular functions Cf(O, ~9, rif’(0. v) and C’,“(U) are known). Alter- 

nittively. we can use another set of three parameters, the J integral and two elastic mixity 

factors, to specify the elastic far-field. The J integral is related to A;, K,, and K,,, by 

J_ I -II’? 
- f‘ -(K,‘+K’,?,)+ &KS,. (26) 

The elastic mixity factors :\I; j and A/ :, rclatcd to the mixity of the in-plane modes and the 
out-of-pliinc shear modt for the small-scale yielding formulation are defined as 

and 
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According to eqns (27) and (28). M’,, and M2 c3 equal 0 for pure mode III. When both 

.\f; J and .tE, equal 1. a mixity factor n-l; 1 (Shih. 1973) is required to describe the combined 

mode I and II crack-tip field. 

(79) 

The values of ff:,. MS, A and Ml2 lie between 1 and 0 for any combination of mode I. II 

and III loadings. In fact, only two mixity factors are needed to fully describe a mixture of 
three modes. For a combination involving only two modes. a single mode mixity suffices 

to quantify the mode mixture. Note that these mixity factors are defined in terms of the 
relative contributions of the in-plane opening stress. the in-plane shear stress. and the out- 

of-plane shear stress ahead of the tip. Under small-scale yielding conditions, they can be 

expressed as functions of the ratios of the stress intensity factors as in (27)-(19). 

The finite element model of the circular domain is constructed using 9-node quadri- 
lateral Lagrangian elements. Wedge-shaped 9-node elements are used in the immediate 

crack-tip region. The size of the wedge-shaped elements in the radial direction is denoted 

as r,. These elements are surrounded by circular strips of elements; four strips of elements 

span each decade of r,/rn. where r,, dcnotcs the radius of the circle as shown in Fig. 1. We 

take r,,‘rr, = IO--’ in this jnvesti~~~tion. Thcrcforc, _ 35 strips of clcmcnts. which are generated 

by ;I logarithmic scale, span the domain hctwccn r/r,, = IO ’ and T/T,, = I. Within each 

strip, the angular distance from -n tcl rc is spnnncd by 20 clcmcnts of quaI six. Thcrcfore. 

the total number of clcmcnts is 580. 

The finite olcmcnt formulation for this work will hc discussed only bricffy hcrc. The 

fi’-hcrr nwthocl (Hughes, 1980) is used to construct the strain tlisplaccmcnt matrix of our 

9-noclc rluadril;ttcr;ll L:Igritngian clcmcnts. This mcthocl allcviatcs the poor pcrformancc Of 
our ~~~~~~~lrif;ltcr~~l L~~~r~in~~~lrl ctcmcnts in the fully plastic range (Niagtcgaal tpt rrl., 1974). 

fn this study, WC cmploycd the parnmctcr tracking mcthcxl (Shih and Nccrilcman, 19X4). 

Wc begin by obtaining the linear elastic solution at a load. This solution is then used as the 

initial cstimatc in the iteration I;)r a mildly nonlimxr problem with, say, II = 2. WC then 

USC the conver~eftt solution for the mildly nonlinear problem as the initial estimate for a 

more nonlinrar problem. in this manner. solutions can bc obtained for high-hardenin!: to 

low-hardening materials. Ccnerally speaking, after four to live itcriltiOnS, il convergent 
solution, with a Euclidean error norm of about IO I’, for ;t slightly lower hardening solution 

is obtained from a slightly higher one. 

5. SMALL-SCALE YIELDING NUMERICAL RESULTS 

Under combined mode I, I1 and III loading conditions, the in-plane stresses and out- 
of-plant shear stresses within the plastic zone are coupled through the elrective stress in the 

plastic stress-strain relations. We have systematically examined the elTect of this coupling 

on near-tip fields. To elucidate the rather complicilted nature of the near-tip fields for a 

complete range of combined-mode loadings, numerical solutions must bc presented in an 

;rppropriately normalized form, TO this end, deformation plasticity solutions for a number 

ofcombinations of mode I, II, and III and for hardening cxponcnts tf in the range I-IO are 

obtained. in these co~~put~ltions, WC set v = 0.3 and cx = 0. I. Our finite element solutions 

produced the correct HRR singularities. namely r - ‘if’r “I , for the special cases of pure mode 
I. pure mode Il. pure mode 111 and combined mode 1 and II rcmotc loadings. For the lincar 

elastic problems. the numerical solutions produced the prccisc elastic l/,/r singularity and 

the associated angular functions for various combinations of mode I, II and 111 loadings. 

Furthcrmorc. for each of the convcrgcnt solutions. our J values, as culculatcd by the domain 

integral method (Li et (II., I9S5: Shih ct rrl., 1986; Moran and Shih. 1957) for each of the 
circular strips, differed by less than I % from the prcscribcd value as determined by (26). 

The path-independence of the computed J values and the excellent agrecmcnt with (36) 

attest to the quality of our finite element solutions. 
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By the process of parameter tracking. ue ha\e obtained solutions for the full range 
of n values (I 6 n 6 10) and various mixtures of mode I. II and III. To examine the depen- 

dence of the near-tip stresses on the radial distance r (at fixed ti), we plot the normal- 

ized stresses as functions of the normalized radial distance to the tip using a log-log 
scale. The numerically determined stresses are di\-i&d by the HRR singularity such that 

Z,, = G,, [a(,( J XG,,EJ)’ ‘” - “I. The radial distance is normalized by the length of the plastic 
zone. r?. at the angle of interest. To examine the angular cariatlons of the near-tip stress 
fields. \ve plot the normalized stresses 6, (in the r. t) And : coordinates) as functions of ti 

at a radial distance of r rp 2 IO ‘. For each problem ~nal>srd. the magnitude of the far- 
field displacement field is chosen so that the maximum sstent of the plastic zone {as a 

function of 8) is no more than IO “L of r,,. Thus the stresses deep \\ ithin the plastic zone can 

be investigated under the small-scale yielding condition>. 
In the interest of space, only solutions for II = ? ;~nd IO and for remote displacement 

boundary conditions correspondin, ~7 tn three mode mixities arc presented. We select the 

three representative cases tvhere the out-of-plane shear contribution and the in-plane con- 
tribution to the remote ii ticlds can be said to bc txlu;~l to each other. Spccificully. we define 

an equivalent in-plane K paramctcr. K = (iif + Kf,)’ I. The three rcprescntative casts have 

R/K,;,, = I. The in-plant mixity factors .\lj .‘ of the three casts ;lrc v;lricd. They arc 0.53. 
0.5 and 0.17. which rcprcsent K,,iK, = 0.77. K,, K, = I .~nrl A-, A-,, = 0.27. respectively. The 
three elastic misity factors for Cax I arc .\IC,: = O.S.7, ,L/‘, i = 0.49 and .\C1 = 0. 16. The 

elastic mixity factors for Cast 2 arc .\l:: = 0.5, .\J: i = 0.39 and .\I:, = 0.39. The elastic 

mixity factors for Cast 3 ;krc ,I/:: = (1. 17. .1/i, ( = 0. I6 :1nd .t/; : = 0.J’~. 

Figures 3 5 shou the norrn:~li/cd in-plaw strc~w~ C,,. Z,,. :~nd 6,,. the normalized 
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Fig. 4. C:~se Z (W,J = 0.5. W, I = 0.39 and A/;, = 0.39) : the normalized strews d,, at I) = -9” as 
functions of r/r,, plortcd m ;L log-log scalr: for (a) n = 3. and (b) II = IO. 

effective stress d,, and the normalized out-of-plane shear stress 6,: at 0 = -9’ as functions 

of r/r, in a log-log scale for Case I , :! and 3, respectively. In Figs 3-5. outside of the plastic 

zone [log (r/r,) > 01, the variation of the stresses with the radial distance is in agreement 

with the elastic singularity. In general, in Figs 3-5, as r/r, decreases within the plastic zone, 

the stresses tend to level otf. Since the numerically determined stresses are normalized by 

the HRR singularity, the levelling-oRmeans the radial variation of the stresses is in accord 
with the HRR singularity. However. depending upon the mode mixity, the singularities of 
the stresses may be slightly different from the HRR singularity. In general, the in-plane 
stresses are more singular than the HRR singularity and the out-of-plane shear stresses are 

less singular than the HRR singularity when near mode I loading conditions prevail. This 
effect decreases as the mode II contribution increases. 

Figure 3 shows the results for Case I where the remote loading has a small mode II 
contribution and is close to combined mode I and III conditions. The trends of the stress 
singularities can bc seen more clearly for r~ = IO in Fig. 3b. Deep within the plastic zones, 
the singularities of the in-plant strcsscs r3,,. (i,, and 8-,, are slightly stronger than the HRR 
singularity and the singularity of the out-of-plnnc shear stress 6,., is slightly weaker than 
the HRR singularity. Howcvcr, there is ;I complicating factor in addition to the coupling 
effect of the in-plane and out-of-plant shear plastic deformation. Specifically. the asymptotic 
value of Mf2 is larger than the value of MC , 1 under in-plane mixed-mode conditions (Shih, 
1973. 1974). This means that as r dccrcascs. material plasticity enhances the in-plane 
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opening stress rL‘lativc to the in-plant shear stress ahcad ot’ the tip. This ckt is more 

pronounced for low-hardening materials. Here, L 2s r/r, dtxrcascs, CT,,, for )1 = 3 dccrcases in 

Fig. 3;~. and c?,, f’or II = 10 also dccrsascs initially in Fig. 3b. But as r/r, further dccrcasrs, 

c?,~ for N = 3 tends to Irvcl oH’ in Fig. 3;1 while (3,,. for II = IO increases in Fig. 3b. This can 

be cxplaincd by the stronger rnhancement ot‘ the dominant mode I etrccts by the presence 

of mode III loading. Also. low hardening enhances this coupling efYect as shown by the 

larger dccrcasc ofr?,.: for /I = 10 in Fig. 3b in comparison with that of~?,.~ for )I = 3 in Fig. 

3a as r,!rp decrease. 

Solutions ror Case 2 Lvhcrc the mode II contribution to the loading is more than that 

of‘ Case I arc shown in Fig. 4. All the strcsscs seem to lcvcl otl’ to approach the HRR 

singularity ;ls r/r,, dtzcrcasa. How~cr. when WC’ examine the results closely. WC find that 

the singul;trity of the in-plant shear stress is slightly wcakcr than the HRR singularity. 

Figure j shows the results for Cast 3 whcrc the rcmotc loading has a small mode I 
contribution and is close to combined mode Ii and III conditions. In this GISC. all the 

strcsscs scan to lcvcl off to approach the H RR singularity as r/r,, dccrcascs. However. when 

WC cxaminc the results closely, wt’ tind that the singularity of the in-plane shear stress is 

slightly wc;lkcr (kin the H R R singularity and the singularity of the out-of-plane shear stress 

is slightly stronger than the HRR singularity. This trend agrees with that under combined 

mode II and I II conditions. 

Figures 64 show the normalized strcsss I?,, at about r!rp z IO 1 as functions of ti for 

Cast I. Z and 3, rcspectivcly. As shown in these figures. and out-of-plant shear stresses (77,: 
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and cur do not have the anti-symmetry with respect to the crack line due to the coupling 

eff’ect of the in-plane and out-of-plane shear plastic deformation under asymmetric in-plane 

loading conditions. Further, these tigures show that the elevation of the triaxiality for IOW- 

hardening materials (with large n) due to plasticity is higher under near mode I mixed- 

mode loading conditions. When we compare the angular functions of the in-plane stresses 

in Figs 6-8 with Fig. 2, we find that the angular functions in Fig. 7a for n = 3 with 

M’;* = 0.51 are similar to those in Fig. 21 for n = 3 with My2 = 0.56. Also, the angular 

functions in Fig. 8b for n = 10 with Mp ,: = 0.33 are close to those in Fig. Zb for n = 10 

with M’;? = 0.46. These plastic mixity factors are obtained from the stresses at 0 = 0, which 

are interpolated from the finite element results at Gauss points. Under the condition that 

the values of M’;: are nearly in accord, the qualitative agreement between the angular 

functions of the full-field finite element results (at ii radial distance with a near HRR 

singularity) and the perturbation solutions with the HRR singularity attests to the quality 

of both finite element computations. It also provides support for the utility of perturbation 

analysis to this class of problems to predict the singular behavior of in-plunc stresses and 

out-of-plane shear stresses. 

The elastic mixity factors for Case I arc I%/; 2 = 0.83. MT 1 = 0.4Y and ;\I;! = 0.16. At 
about r/r, z IO-‘, the plastic mixity factors are ~21:~ = 0.89, icl’;, = 0.62 and MS, = 0.17 
for n = 3 and My2 = 0.93. M’;, = 0.74 and AI;? = 0.16 for II = IO. At about r/rp z 10-j, 
the plastic mixity factors are MT2 = 0.90, I\/‘;~ = 0.66 and /LIP,, = 0.17 for n = 3 and 

My2 = 0.94. M’;, = 0.79 and M 2, = 0. I7 for )I = IO. These trends of’ the plastic mixity 
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factors continue at a smaller r/r,. The trends for the three cases are essentially similar: the 
plastic mixity factors My2 an d M?, increase as r/rp decreases. This effect is more evident 
for near mode I loading and for low-hardening materials (with large n). The trend of the 
plastic mixity factor M$, as a function of r/r, depends upon the competition of the 

strengthening of the in-plant mode due to the presence of mode I loading and the weakening 

of the in-plane mode due to the increase of mode II contribution. Low-hardening and near 
mode I loading promote an increase of ,Vf 5, as r/r, decreases. On the contrary, as the mode 
II contribution increases, as in Case 3, the plastic mixity factor .\Ip2, slightly decreases as 
r/r,, decreases. As we continue to invcstigatc the radial variation of the stresses to very small 
and physically unreasonable radial distances at r,‘rp z 10 -’ for the three cases by using a 
very refined mesh, the rcsulrs show that My2 and Ml, increases as rjr, dccrcascs. This 
suggests that the mode mixtures in Casts 2 and 3 do not have the mathematically exact 
HRR singularity. 

Figures 9~1. b show the plastic zone sizes and shapes for the three cases in the normalized 
coordinates .c ( = .wi ‘JE) and g ( = jv;iJE) for II = 3 and IO. rcspcctively. The normalized 
plastic zones for the three cases exhibit no symmetry with respect to the crack lint; this is 
similar to those under combined mode I and II conditions but in contrast to those under 
pure mode I. pure &de II. pure mode [Il. combined mode 1 and III and combined mode 
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Fig. 8. Cast 3 (My I = 0.17. A/;, = 0.16 and MI,, = 0.49) : the normalized SW.XXS d,, at r,rP c IO-’ 
plotted as functions of 0 for (a) n = 3 and (b) n = IO. 

II and III conditions. As the mode 11 contribution increases, the plastic zone becomes 
increasingly symmetrical with respect to the crack line. The plastic zone shifts ahead of the 
crack as the hardening exponent n increases. This trend agrees well with those of the pure 
mode I, pure mode II. pure mode III, combined mode I and II, combined mode I and III, 
and combined mode 11 and III cases. Note that the radial extents of the plastic zones as 
functions of 0 for the three cases vary smoothly due to the presence of mode III loading. 
These features are different from those that develop under pure in-plane loadings but are 
similar to those for the corresponding combined mode I and III. and combined mode II 
and III cases. 

6. DISCUSSIONS AND CONCLUSIONS 

As previously discussed. the in-plane and out-of-plane shear stress and strain fields are 
coupled through the effective stress. In general. this coupling is rather complex and the 
stresses for both in-plane and out-of-plane shear modes do not conform to a separable 
form over distances to the tip which are physically reasonable. However, when either one 
of the in-plant or out-of-plane shear modes is dominant. the perturbation analysis based 
on separable stress functions (Pan, 1990) does correctly predict the asymptotic behavior of 
the full-field solutions (Pan and Shih, 1990a. b). When the contributions of in-plane and 
out-of-plane shear modes are comparable. no separable asymptotic in-plane and out-of- 
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plane shear stresses are expected except that both in-plant stresses and out-of-plane shear 

stresses can have the same r ’ “I + ” singularity. Consequently, we do not expect to find the 

same asymptotic behavior (or either the in-plane stresses or the out-of-plane shear stresses 

at all iltlglCS at every mode mixity. 

It is an acceptcd procedure to delinc mode mixities in terms of the ratios of the in- 

plane opening stress. in-plane shear stress and the out-of-plane shear stress ahead of the 

crack. This is the reason for displaying the radial dependencies of the stresses ahcad of the 

tip in Figs 3- 5. Howcvcr thcsc stresses do not provide relaticc measures of the in-plane 

versus out-of-plant shear modes when the liclds along tl # 0 arc examined. To carry out 

comparisons of liolds at dilfcrcnt ilIlglCS, it is helpful to use consistent stress quantities 

rcprcscnting the out-of-plant and in-plane shcnr. Consistent stress measures can be derived 

by considering the efl’cctivc stress which is an invariant of the dcviatoric stress. The effrctive 

stress in the cylindrical coordinate system, (T,. is dcfincd as 

0; = !(IT,, _ - n,,,,)2 + ~(~,r,, - (7,,):+~(6,,--,,)l+3~,~,+3~,~+3~~r. (30) 

As in the pcrturbntion anrtlysis. WC can define an cfl‘ective out-of-plane shear stress T, as 
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Note that T, is an invariant for any coordinate systems rotating with respect to the out-of- 

plane axis. Then another invariant for these coordinate system rotations can be defined as 

s,l = !(a,, -~tlY)Z+~(a,,--al,)‘+f(~,,-a,,)~+30~. (32) 

When the elastic strain is small compared to the plastic strain and can be neglected, eqn 

(31) reduces to 

S,l = : (a,, - cJ&i) 2 + 3a,$ (33) 

according to plastic incompressibility. By virtue of (33) S, may be interpreted as an effective 

in-plane shear stress. Therefore .S, defined in eqn (33) can be regarded as the effective in- 

plane shear stress. Making use of (31) and (32) we have 

a; = T,?+S;. (34) 

The etfective out-of-plane plastic shear strain E,, and the effective in-plane plastic shear 

strain f:_. can be defined as 

f:; = ,:,‘,+p = {f.rf.r 
‘W ‘I, ‘,,, (36) 

whcrc I:, rcprcscnts the cfrcctivc plastic shear strain. Now it is clear from cqn (35) that the 

r;ltio 7;/.Y, also rcprcscnts the ratio of the elTectivc plastic shear strains, E,Jf:,,. Therefore 

the ratio 7;/.& or parameters based on TJS, can serve to characterize the relative strength 

of the out-of-plane and in-plane plastic shear for this class of problems. NOW we will show 

that the singularity behaviors of these etl&tive stresses along angles (U = -9” and 45”) arc 

consistent for the cases examined in this paper. 

In Figs IOil. b, the normalized etrective stresses for Case I are shown as functions of 

the normalized radial distance to the tip in a log-log scale for U = -9” and 45”. respectively. 

We present results for II = IO because the low hardening brings out the plasticity etrect 

more vividly. In these plots, the radial distances are normalized by the plastic zone extents 

at the corresponding angles. The hydrostatic stress b,, is also plotted to show its singular 

behavior. In Fig. 10, the general trends of these effective stresses and the hydrostatic stresses 

rrlativc to the HRR singularity at diKerent angles arc consistent: the effective out-of-plane 

shear stresses have weaker singularities whereas the efTective in-plane shear stresses have 

stronger singularities, the effective stresses have weaker singularities, and the hydrostatic 

strcsscs have stronger singularities when compared to the HRR singularity. Note that a 

field having an HRR singularity exhibits a zero slope in these log-log plots. Upon closer 

examination WC noto thcsc effective stresses and the hydrostatic stresses do not have exactly 

the same slopes at difl’crent angles. But the general trends of the singularity behaviors at 

dilycrcnt anglcsarcconsistont. It may bc rccallcd that noconsistent trendscouid bediscerned 

by studying the stress distributions in Fig. 3 where the dominant effect of mode 1 complicates 

the stress patterns that dcvclop under Cast I loading. 

f-or Case 3. the in-plant and out-of-plane shear strcsscs appear to level off approaching 

the HRR singularity as t-jr, dccrcascs, as shown in Fig. 4. However, a distinctly different 

pattern emerges in Figs I la. b. Here the radial variation of the effective stresses and 

hydrostatic stress pertaining to Case 2 for n = IO at 0 = -9’ and 45’ are shown. The 
et7’ective out-of-plane shear stresses have stronger singularity, the effective in-plane shear 
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stresses have weaker singularity, and the hydrostatic stresses have stronger singuiarity when 

compared to the HRR singularity. The dominant hydrostatic stress gives the in-plane 
stresses ahead of the tip with the singularities slightly stronger than the HRR singularity. 
Strictly speaking, we should regard Case 2 as an out-of-plane shear dominant case under 

this shear-based plasticity approach. For Case 3 where mode II is dominant, the trend of 

the singularity behavior of all the effective stresses and the hydrostatic stresses at different 
angles are the same as those of Case 2. In the interest of space, we do not show the results 
for Case 3 here. When the mode mixities are defined in the conventional way by the ratios 
of the in-plane opening stress, in-plane shear stress and out-of-plane shear stress as in eqns 

(j)-(7), both Cases 2 and 3 can bc regarded as in-plane mode dominant cases as r,‘rP 

decreases ~~symptotic~llIy to zero. However. from the shear-based plasticity viewpoint. both 
Cases 2 and 3 should bc regarded as out-of-plane shear domin~~nt tascs. 

In summary, WC have obtained asymptotic solutions of combined mode I and II crack- 
tip fields perturbed from mode ill for cracks in power-law hardening materials. Our 
solutions indicate that the perturbed combined mode I and II crack-tip fields of certain 
mode mixitics can have the HRR singularity. Our small-scale yielding results show that 
deep within the plastic zone, under near mode I mixed-mode loadings, the in-plane stresses 

can be said to be slightly more singular than r _ ’ In ’ I’ white the out-of-plane shear stresses 
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are slightly less singular than r- ‘M+ ‘I, and the plastic mixity factors M’j2 and Mf, increase 
as r/r, decreases. The results also demonstrate that the singularities of the in-plane stresses 
and the out-of-plane shear stresses vary smoothfy with mode mixity. Finally, the effective 
in-plane shear stress and the effective out-of-plane shear stress have been introduced to 
characterize and quantify the in-plane and out-of-plane shear in a consistent manner for 
this ctrtss of problems. 
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