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We derive a normalized version of the indicators of Savit and Green, and prove that these normalized statistics have, 
asymptotically, a normal distribution with a mean of zero and standard deviation of one if the time series is random in the 
sense of being liD (independent and identically distributed). We verify this result numerically, and study the magnitude of 
the finite size effects. We also show that these statistics are very sensitive to the existence of deterministic effects in the 
series, even if the underlying deterministic structure is complex, such as those generated by a chaotic system. We show that 
with moderate amounts of data, the statistics can easily indicate the presence of an underlying attractor even in the 
presence of IID noise which is as large as, or greater than the signal. Finally, we discuss the generalization of our approach 
to include (1) other null hypotheses besides liD which express assumptions of specific dependencies and (2) the study of 
deterministic effects between more than one time series. 

1. Introduction 

T h e  analys is  of  sys tems wi th  b r o a d  b a n d  

o u t p u t  is no to r ious ly  difficult .  C o m m o n  tech-  

n iques  b a s e d  on  the  ca lcu la t ion  of  F o u r i e r  spec-  

t r a  o r  co r r e l a t i on  funct ions  of ten  p rov ide  l i t t le  

ins ight  in to  the  unde r ly ing  dynamics  of  such a 

sys tem,  i n d e e d ,  using these  t r ad i t iona l  m e t h o d s  

it is o f t en  difficult  to even dis t inguish  b e t w e e n  

r a n d o m  and  n o n r a n d o m  systems.  Wi th  the  

g rowth  in in te res t  in n o n l i n e a r  sys tems,  the  need  

to  u n d e r s t a n d  the  unde r ly ing  dynamics  of  

sys tems  gene ra t i ng  c o m p l i c a t e d  t ime  ser ies  

b e c o m e s  even  m o r e  press ing.  

R e c e n t l y ,  an a p p r o a c h  to this  p r o b l e m  has 

b e e n  d e v e l o p e d  [1,2]. This  a p p r o a c h ,  which  was 

insp i red  by  the  w o r k  of  B rock ,  D e c h e r t  and  

S c h e i n k m a n  [3,4], is b a s e d  on  the  cons t ruc t ion  o f  

cond i t iona l  p robab i l i t i e s  for  the  pe r s i s t ence  of  

c loseness  o f  sets  of  va r i ab les  in a t ime  ser ies .  In  

its s imples t  i nca rna t ion ,  one  can def ine  a set  of  

quant i t i es  which ind ica te  the  d e g r e e  o f  de t e r -  

minis t ic  d e p e n d e n c e  of  an e l e m e n t  o f  a t ime  

ser ies  on the  j t h  lag of  the  ser ies ,  g i v e n  tha t  one  

has used  the  i n f o r m a t i o n  in the  i n t e rven ing  lags. 

C o n s i d e r  a t ime  ser ies  x(i).  Def ine  the  d-  

d imens iona l  vec tor ,  whose  c o o r d i n a t e s  a re  d 

sequen t i a l  e l emen t s  of  the  t ime  ser ies  as 

v(i)  = ( x ( i ) , x ( i -  1) , . . . , x ( i -  d + 1)) 
(vl(i), v2(i),...,  Vd(i)). (1.1) 

1 Current address: Computer Science Department, Uni- 
versity of Minnesota, Minneapolis, MN 55455, USA. 

N o w  choose  a pos i t ive  n u m b e r  e, and  def ine  the  

G r a s s b e r g e r - P r o c a c c i a  co r r e l a t i on  in tegra l  as 
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Ca(e ) = I_ ~ lu(e) (1.2) 
. 

pairs 

with 

d 

/ u ( e )  = 1-[ O ( e  - I rk( i )  - v k ( j ) l )  • ( 1 . 3 )  
k = l  

v is the number  of distinct pairs of d-dimensional 
vectors constructed from the time series accord- 
ing to (1.1) and 19(x) is the Heaviside function. 
In words, Ca(e ) is the probability that each pair 
of the d Cartesian components  of the two ran- 
domly chosen d-vectors are within e of each 
other ,  respectively. 

We can now construct a set of indicators, 6j, 
defined as 

6 j = 1  C2 
C j _ I C j + I  . (1.4) 

In terms of conditional probabilities, it is not 
difficult to show [1] that 

6j = 1 P(ti+lltJ . . . . .  t2) 
p( t~+l l t i , . . . ,  tl ) , (1.5) 

where t k stands for the statement IVd-k+~(m)-- 
Va_k+1(n)l <--e, for a randomly chosen m and n. 
The extent  to which 8j differs from zero is a 
measure of the extent to which new deterministic 
information is contained in the j th  lag of the 
series, which is not contained in the 1st, 
2nd . . . .  , ( j  - 1)st lags. More precisely, suppose 
we consider two sets of j -  1 successive elements 
of the time series, and we require that each 
element  of one set be within e of the corre- 
sponding element of the other  set. We then 
calculate the probability that the next elements 
in the two sets will also be within e of each 
other.  We repeat  the calculation with j, instead 
of  j -  1 elements and compare the results. If 
these conditional probabilities are equal, then 
8j = 0, and we say that there is no new informa- 
tion contained in the j th  lag. The extent to which 
they are not equal is a measure of the extent to 

which there is statistical dependence in the time 
series on the ]th lag. The larger 8j. is, the more  
information there is in the ] th lag. This is a quick 
summary of the meaning of the 8j's. These same 
ideas can be generalized to study statistical 
dependencies among different time series. For  
more information consult refs. [1,2]. 

This method has been shown to work extreme- 
ly well in a wide range of broad band time series 
[5-7]. It can often discriminate very well be- 
tween series that are random in the sense of 
being IID (independent  and identically distribut- 
ed) and those that have an underlying deter- 
ministic structure, even if they are highly cha- 
otic. The methods also work well in the presence 
of noise. Even with noise which is the same 
order  of magnitude as or larger than an underly- 
ing deterministic process, these methods are 
quite sensitive to the underlying signal. 

The existence of nonrandomness in the sense 
discussed above is indicated by nonzero values of 
some of the 6/s. But in any realistic finite time 
series the 8j's will not be identically zero even if 
the series has an IID nature. This raises the 
statistical question of what constitutes a signifi- 
cant nonzero value of 6/. One approach is to 
compare computed values of 8j for the time 
series of interest, with a distribution of values of 
8j computed for times series of the same length 
and same overall probability distribution, but 
which are known to be IID. This can readily be 
accomplished by scrambling the series of interest 
with a good random number  generator a number  
of times, calculating 8j for each scrambled series. 
One thus produces a realistic null distribution for 
~. This is an example of a method known in the 
statistical literature as bootstrapping. In section 4 
we shall briefly discuss this further. In addition, 
however, the 8j's have some very nice asymptotic 
statistical properties. It tums out that the 6/s are 
related to quantities which are known as U- 
statistics and for which powerful asymptotic 
theorems exist [8]. In particular, it is possible to 
derive a kind of central limit theorem for proper- 
ly normalized versions of the 6i's. One can then 
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prove that if a very long time series is IID, these 
normalized 8j's are well behaved, normally dis- 
tributed statistics with mean of zero and standard 
deviation of one. In addition to their aesthetic 
and theoretical appeal, these asymptotic results 
are very useful reference points in the empirical 
analysis of finite size data sets. 

Before presenting the technical details of our 
work, it may be useful to place our results and 
their significance in context. Those readers inter- 
ested in a wide ranging discussion of methods for 
testing nonlinearities in time series are encour- 
aged to consult refs. [9-11]. Here we remark on 
the relationship of our work to previous work on 
three aspects of the problem of analyzing non- 
linear effects in time series. First, we shall briefly 
discuss the use of Lyapunov exponent estimates 
as a method for indicating the presence of chaos 
in a time series. This approach is quite distinct 
from ours, but is used to analyze many of the 
same systems and so is worth briefly discussing. 
Second, we shall comment on more general 
methods of testing for "neglected structure" in 
time series. The work in the present paper falls 
into this category. Third, we shall discuss the 
relative merits of bootstrapping and analytic 
asymptotic results in determining the significance 
of statistical indicators. 

First, there has been a good deal of work on 
the use of estimates of Lyapunov exponents as 
indicators of chaotic structure in time series. The 
statistical inference issues of this approach, as 
well as comparisons with other methods is dis- 
cussed in ref. [12] (hereinafter referred to as 
BGHJ) .  They argue that a good way to test the 
null hypothesis of chaos consists of three steps: 
(i) Estimate the deterministic part, F(.  ), of the 
dynamical system 

x ( t  + 1) = F i x ( t )  . . . . .  x ( t  - L)] + e ( t  + 1),  (1.6) 

where {e(t)} is independently and identically 
distributed with mean 0, using a consistent 
estimation method (i.e., one that converges to 
the true deterministic dynamic, F( .  ), as sample 

length tends to infinity). Call this estimate P (P 
denotes an estimate of F).  (ii) Estimate the 
largest-Lyapunov exponent of P by a consistent 
method. Call it A(P) and show this converges to 
A(F) as sample length goes to infinity. (iii) Test 
the null hypothesis of chaos by testing 
H0: A(F)>  0. The BGHJ strategy delivers a test 
of the null hypothesis of chaos, such that prob- 
ability of rejection of chaos when chaos is true 
goes to a for a level a test as sample length goes 
to infinity. A level t~ test rejects the null when 
the test statistic lies in the 1-a tail of the null 
distribution #1. For any alternative hypothesis H x 

with deterministic part G such that A(G) < 0, the 
BGHJ  strategy is to deliver a test that will reject 
H x with probability one as sample length tends to 
infinity. 

Methods for estimating Lyapunov exponents 
include the works in refs. [14-16] and their 
references to the works of Eckmann, Ruelle, 
Wolf and others. Methods based on neural net 
estimation of the underlying deterministic map 
as discussed in refs. [14,15] appear to converge 
faster. It is beyond the scope of this paper to 
discuss the relative merits of different Lyapunov 
estimation procedures. The advantage of a 
Lyapunov exponent test for chaos is that it is a 
direct test for chaos. One major disadvantage is 
this: The sampling distribution of Lyapunov 
exponent estimates is unknown therefore "error 
bars" for estimates have to be attached on an a d  

h o c  basis. 
A second approach to the analysis of complex 

time series involves methods of testing for "neg- 
lected structure" of any form, not necessarily 
chaotic. This approach uses an estimated best 
fitting model in a given null hypothesis class and 
passes the estimated residuals through a testing 
procedure designed to detect the neglected struc- 
ture. For example, one can test the null hypoth- 
esis class of functions that depend on L-lags by 

• 1 See ref. [13] for a discussion of this kind of classical 
hypothesis testing in the context of stochastic processes 
relevant to the discussion here. 
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estimating F in (1.6) and testing the residuals for 
I ID using various tests, such as the BDS test. 
Brock and Dechert  in ref. [9] discuss when this 
approach is valid and extend it to cases where 
the {e(t)} are not independent.  When F is the 
class of linear functions this gives a procedure to 
test the null class of linear models driven by IID 
errors (noise), which we call IID-linear. The test 
of Brock,  Dechert ,  Scheinkman, and LeBaron 
[3], is especially adaptable to testing the hypoth- 
esis of IID-linearity. This is because the first 
order  asymptotic distributions of the test on the 
estimated residuals of best fitting linear models 
are the same as on the true residuals for a large 
class of l iD-l inear  processes. Call this the "in- 
variance result ' ' .2 .  Brock and Dechert  in ref. [9] 
show the invariance result holds for a large class 
of  F 's  for systems (1.6). This is a very useful 
proper ty  because most testing methods based on 
estimated residuals require a different correction 
term for each different F in (1.6). This in- 
variance property makes the BDS methods par- 
ticularly useful in testing the adequacy of fit of 
estimated models. (See ref. [17] and the article 
by Sayers in ref. [18].) 

However ,  the BDS test, while it can reject the 
null hypothesis of IID on the estimated resi- 
duals, d(t + 1) = x( t  + 1) - F ( x ( t ) , . . . ,  x ( t  - L ) ) ,  

gives little information about the nature of the 
non-IID structure of the series being tested. In 
particular, in the context of the form (1.6), the 
BDS test cannot isolate the variables in the 
est imated F, F, which are responsible for the 
rejection of l iD  for the residuals. 

Savit and Green  [1,2] developed a set of 
indicators which help detect at which lag the 
dependence is concentrated. But no distribution 
theory was developed in those papers. The 
current  paper  develops distribution theory for an 

appropriately scaled version of the Sav i t -Green  
indicators under the liD-null.  Fur thermore ,  
since the statistics treated in this paper  are 
functions of correlation integral statistics, the 
same "Taylor  series" expansion arguments used 
in the derivation of the BDS statistic (see ref. 
[4], Appendix D) may be used to show that the 
normalized Savi t -Green  statistic derived here 
also preserves the invariance property #3. This 
invariance property,  as well as the ability to 
detect at which lag the dependence occurs, 
makes our contribution a useful addition to the 
literature on detecting structure in time series 
observations. 

A third aspect of the analysis of time series 
which is relevant to our work is the method of 
bootstrapping or surrogate data [11,20]. Here  
one posits a specific null hypothesis for a series, 
and "bootstraps" from the data itself the dis- 
tribution of statistics of interest under this null 
class. For example, if the null hypothesis for a 
time series x ( n )  is that it is l iD,  then one can 
simply randomly scramble the elements x(n)  to 
create an IID series with the same overall 
distribution statistics. The statistics can then be 
computed on a set of such null series to de- 
termine a null distribution for the statistics. An 
up-to-date guide to bootstrapping can be found 
in ref. [21] #4. Depending upon the application, it 
may be useful to bootstrap the Savi t -Green  
statistics without the normalization factor de- 
rived in this paper. Nevertheless, the fact that 
the normalized Savi t -Green  statistics derived in 
this paper satisfies the invariance property,  and 
the fact that the asymptotic results are well 
controlled, speaks to the utility of the normal- 
ized statistics derived here. Moreover,  since 
bootstrapping relies on the computer  rather than 

• 2 See Brock and Potter in ref. [I0] for a discussion of 
testing different notions of linearity and avoiding common 
misunderstandings concerning the Wold representation 
theorem. 

,~3 The two papers of ref. [19] do the most rigorous job of 
developing this kind of argument for a broad class of statistics 
which are functions of the correlation integral type statistics 
used in this paper. 

~,4 See Lahiri's chapter in [21] for bootstrapping under 
conditions of weak dependence rather than IID. 
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analytics to work out approximations to null 
distributions, a sole reliance on bootstrapping 
obscures much of the structure that shines 
through in the analytics. 

In summary, the work described in this paper 
is useful for the following reasons: (1) Our 
statistics can be used to test goodness-of-fit of 
estimated models like (1.6) which may be used 
as input into other  methods such as Lyapunov 
exponent  estimation. (2) Our statistics satisfy the 
invariance property like the BDS statistic but, 
unlike BDS and many other  "residuals based" 
tests, our statistics give information on which lag 
the left out dependence occurs. (3) Like BDS 
our  statistics are simple to compute and are 
analytically transparent for the IID case. 

The rest of this paper is organized as follows: 
In the next section we describe the ~j's in a little 
more detail, discuss their relation to the BDS 
statistic, and introduce the idea of these quan- 
tities as vehicles for tests of various null hypoth- 
eses. In section 3 we present our main result, 
which is the derivation of the asymptotic be- 
havior of the ~j's. In Section 3.1 we introduce the 
philosophy of the calculations, set the notation, 
and define a number of possibly unfamiliar 
concepts. With this background, we show in 
section 3.2 how to normalize the ~j's so that they 
become asymptotically normally distributed 
statistics with a mean of zero and a standard 
deviation of one, under the null hypothesis of 
IID. During the course of this derivation, it will 
become clear how to derive normalization fac- 
tors so that statistics proportional to the deltas 
can be derived with normal asymptotic behavior 
under  nulls that are less restrictive than IID. We 
also briefly compare our asymptotic results with 
those of the BDS statistic. In section 4 we 
present  results of computer  experiments showing 
that our  normalized t~j's are, indeed, normally 
distributed for long IID time series. We also 
describe the practical application of these statisti- 
cal methods to real finite data sets, and point out 
some interesting exceptional cases. A summary 
and conclusion constitute section 5. 

2. The ~ 's  as statistics 

2.1. Review of the BDS statistic 

The BDS statistic [3,4] is a statistical quantity, 
the evaluation of which may be considered to be 
a test against a null hypothesis that a sequence of 
numbers is l iD. The construction of the statistic 
proceeds from the observation that for an 
asymptotically long sequence of numbers that 
are l iD 

Td(E ) "~- Cd(8 ) -- [Cl(E)]  d ~ 0 (2.1) 

in a statistical sense, for any d no matter  how 
large. The contribution of Brock,  Decher t  and 
Scheinkman was to derive the correct normaliza- 
tion factor, Kd(e ) by which to divide (2.1) to be 
able to make a precise statistical statement.  They 
showed that in the limit that the time series gets 
infinitely long, 

T~(~) 
~d(e) = Kd(e )-+,N(O, 1), N--+ ~ ,  (2.2) 

i.e., ~d(8) is a statistic asymptotically normally 
distributed with a mean of zero and a standard 
deviation of one for any embedding dimension, 
d, if the sequence of numbers is IID. Here  N is 
the length of the series. The normalization 
factor, Kd(e), is somewhat complicated. It is 
derived in refs. [3,4]. The values of ~d(e) are 
used in the following way. Suppose one calcu- 
lates ~d(e) for some values of d and e for an 
asymptotically long time series, and suppose, for 
example that the value is 3. Using the prob- 
abilities associated with a normal distribution, 
one can then say that there is only about a 1% 
chance that that sequence of numbers could have 
been produced by an l iD  process. Thus, the 
computation of (2.2) constitutes a test against 
the null hypothesis that the sequence of numbers 
is IID. 

The BDS statistic has been extensively studied 
and has been shown to have good power against 
a wide class of alternative hypotheses,  with 
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particularly good power against deterministic 
chaos [3.4]. Thus, many sequences generated by 
deterministic maps, but which pass standard tests 
of randomness based on the calculation of au- 
tocorrelation functions, can be shown to be 
nonrandom using the BDS test. ~a(e) may be 
thought of as a quantity that measures the 
"clumpiness" (other than that due to a non-flat 
probability distribution) in d embedding dimen- 
sions. Typically, when applied to a low dimen- 
sional deterministic chaotic sequence, ~d(e) 

becomes significantly larger than one for values 
of d in which the attractor begins to show some 
non-trivial structure, and increases with increas- 
ing d. For example, when applied to the tent 
map with e chosen to be one-half the standard 
deviation of the values of the sequence (about 
0.144) ~2(e) is already about 300, ~3(e) is about 
700, and ~d(e) continues to grow for larger values 
of d. For a noisy deterministic system with a 
higher dimensional attractor, ~a(e) will typically 
be fairly small for low embedding dimensions 
and will begin to increase in dimensions in which 
the attractor begins to show some non-IID 
structure. 

2.2 .  T h e  8j's a n d  tests o f  nu l l  h y p o t h e s e s  

The BDS test is very powerful. However, once 
~d(e) takes on non-null values, it will generally 
continue to show non-null behavior for increas- 
ing d, regardless of whether or not new informa- 
tion is contained in higher dimensional embed- 
dings of the series. A case in point is the tent 
map described above, for which no new informa- 
tion is contained in embeddings above two 
dimensions, particularly as e---> 0. The 8j(e), on 
the other hand, since they are related to condi- 
tional probabilities, can indicate the existence of 
new information in higher dimensions. 

A significant nonzero value of 8~ can be used 
as an indication of conditional probabilistic de- 
pendence in the sense described in section 1. 
Many important qualitative aspects of a series 
can be reasonably deduced from this positive use 

of the 8/s, as is evident in refs. [1,2]. From a 
statistical point of view, however, the 8j's can be 
used more precisely as tests against various null 
hypotheses, in a manner similar to the way the 
BDS statistic can be used. For example, each 8j 
can be thought of as a separate test against the 
null hypothesis that a sequence of numbers is 
liD. On the other hand, it is clear that the 8j's do 
contain more information, than just a measure of 
the probability that a sequence of numbers is not 
IID. Suppose, for example, that 83 is the only 8j 
that is significantly nonzero. This tells us not 
only that the sequence is unlikely to be IID, but 
that it fails to be IID because of conditional 
probabilistic dependence on the third lag. This 
suggests that the 8j's can be used as tests against 
alternate null hypotheses. For example, one 
might form the null hypothesis that the only 
conditional probabilistic dependence in the series 
is on the third lag. This means that for all j # 3, 

P(t j+l l t j ,  . . . , t2) = P ( t j + l l t j ,  . . . , t l )  . (2.3) 

As will become clear in the next section, one can 
formulate such null hypotheses which are more 
specific than the l iD null, and one can derive 
normalized versions of the 8j's such that those 
statistics are asymptotically normally distributed 
with a mean of zero and a standard deviation of 
one. The price one pays for such more specific 
null hypotheses is that the normalization factors 
are more complex. The IID null is important in 
simplifying the results derived in the next sec- 
tion. In lieu of deriving normalization factors for 
more specific nulls, one may alternatively use the 
l iD null, and rely on the fact that such normal- 
ized 8j's have power against various alternative 
hypotheses. In the example above, if the 8j's are 
normalized appropriate to the IID null, and if 
only (the so normalized) 83 is nonzero ,  that is 
strong evidence in favor of the hypothesis that 
(2.3) fails only for j = 3 .  Thus, the nonzero 
values of the IID normalized 8j's contain signifi- 
cant detailed information about the underlying 
structure of the time series, which can often be 
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useful, even in the absence of forming statistical- 
ly precise alternate null tests. 

We turn now to a derivation of the properly 
normalized version of the 8j's with asymptotically 
simple behavior under the liD null. 

3. Asymptotic behavior of the 8j's 

3.1. Background 

The results of BDS [3,4] were derived by 
observing that the correlation integral, Ca(e, N), 
computed from a sample of length N, is a U- 
statistic. The theory of U-statistics for weakly 
dependent stochastic processes has been de- 
veloped by Denker and Keller [8]. This theory is 
the basis for our development here. 

U-statistics: 
Let {Yt} be an Rk-valued stochastic process. 

U-statistics of order 2 are defined thus: 

2 T T 

U(T) T ( T -  1) ~] ~'~ h(Yt' Ys), (3.1) 
$=1 l =s  

where h:RkxRk--->R. Moreover, h(y , z )=  
h(z, y), is a symmetric function and is called a 
"kernel". Serfling [9] proves (i) U(T) is a mini- 
mum variance unbiased estimator of E[h(y, z)], 
the expectation value of h, over the class of all 
unbiased estimators of E[h(y,z)]. (ii) An 
asymptotic theory, parallel to the more familiar 
case of single sum statistics, exists for U-statis- 
tics. (iii) The expectation of U(T) is the same as 
the expectation of h. 

Since the integral for embeddings in d-dimen- 
sional space contains "d-overlapping" depen- 
dence in the kernel, even under the null hypoth- 
esis of IID, we need the more general theory of 
Denker and Keller [8]. We state Denker and 
Keller's Theorem 1 below for general statistics of 
order m, although we shall only need it for 
U-statistics of order 2. 

Theorem. Let h: S m--.-> ~ be a non-degenerate 
kernel and let {X(n)} be a strictly stationary 
stochastic process. Then the asymptotic distribu- 
tion of (N/m~)(UN(h)-0)  is N(0, 1) provided 
one of the following conditions is satisfied: 

(a) (Xn)n~ 1 is uniformly mixing in both direc- 
2 o0 tions of time, o-N---> , and for some oL > 0 

sup EIh(x ,1  . . . .  , x, )l < oo. 
l<- - t l< t2< '"<t  m 

( b )  ( S n ) n ~  1 is uniformly mixing in both direc- 
tions of time with mixing coefficients ~(n) 
satisfying E ~(n) < oo, o .2 ~ 0 and 

sup Elh(X,, . . . .  , X,m)l 2 < oo. 
l<- - t l< t2< '"<tm 

(C) (Sn)n>l is absolutely regular with coeffic- 
ients/3(n) satisfying E/3(n) ~(2÷~) < for some a > 
0, o -2 ~ 0 and 

sup Elh(S t l , . . .  ' Stm)] 2+~ < 00. 
l ~.t l < 1 2 < ' " < l  m 

3.2. Derivation of asymptotic results 

In this section we shall use the theorem above 
to prove that, under the IID assumption, proper- 
ly normalized ~i are asymptotically normally 
distributed statistics with a mean of zero and 
standard deviation of one. We shall also derive 
the required normalization factor. 

For our purposes, we will not need the more 
general weak dependence captured in (a)-(c) 
above. Since the indicator kernel in the correla- 
tion integral is bounded between zero and one, 
the moment conditions needed by Denker and 
Keller are trivially satisfied. In addition, under 
the liD assumption the weak dependence condi- 
tions are also satisfied. We define the following 
(finite N) U-statistics and functions of U-statis- 
tics. We shall suppress e in the notation, since it 
is fixed, 

C(j, N) =- Cj(e) in (1.2) 

for a series of length N ,  (3.2) 
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8(j ,  N ) = 3 j  in (1.4) with C~ replaced by 

C(i, N )  for i = j - 1, j, j + 1,  (3.3) 

g( j ,  N )  =- C ( j  + 1, N )  C ( j  - 1, N )  - C 2 ( j ,  N )  

=-- G [ C ( j  - 1, N) ,  C(j ,  N),  C(] + 1, N) I .  
(3.4) 

Note  that 8 ( j , N )  = D [ C ( j -  1, N ) ,  C ( j , N ) ,  
C ( j +  1,N)]  and g ( j , N )  are functions of U- 
statistics. Since C(1, N)  converges in probability 
to C ( 1 ) - C  under the IID as N-+o% it follows 
that ~(j ,  N)  and g( j ,  N )  converge in probability 
to zero as N--+ oo. To put it another way, under 
IID, D and G are zero at population values. 

Let Dk, G k denote the partial derivatives with 
respect to the kth argument of D and G respec- 
tively (k = 1, 2, 3), evaluated at population val- 
ues, C(i)  = C', i = j  - 1, j ,  j + 1. 

We now apply the "&method"  of Serfling [22]. 
I.e.,  we expand the functions D and G around 
the population values in a Taylor series and take 
the limits as N---> ~. This yields, for any smooth 
function H such that H [ C ( j  - 1), C( j ) ,  C(] + 
1)] = 0 

L i m { N I / 2 H [ C ( j  - 1, N ) ,  C( j ,  N ) ,  C ( j  + 1, N)]} 

= Lim{N1/2[H, x (C( j  - 1, N )  - C j - l )  

+ H~ x (C( j ,  N )  - C ~) 

+ H 3 x (C(] + 1, N )  - C1+1)]} 

= 2¢'(0, V(H) ) ,  (3.5) 

where all partial derivative Hi, i = j -  1, j, j + 1 
are evaluated at (CJ-~,CJ,  CJ+I), "Lim" de- 
notes limit in distribution as N---~ 0% and At(0, V) 
denotes normal distribution with mean zero and 
variance, V. Note that the right hand side of 
(3.5) is a linear combination of U-statistics, and 
hence a U-statistic for H = D, G. Let ~(j ,  N)  and 
~(j ,  N)  denote the linear terms in (3.5) for H = 
G, D respectively. In particular 

- 2C( j ) [C( j ,  N )  - C ( j ) ] ,  (3.6) 

g( j ,  N )  (3.7) 
~(j ,  N )  = [C( j  + 1)C(j  - 1)] " 

Equation (3.5) implies L i m { N 1 / i ~ ( j , N ) }  = 
Y(O, V(G)) ,  Lim{N'/2~(j ,  N)} = 2¢'(0, V(D)) ,  

where 

V(G)  = lim E [ { N " E ~ ( j ,  N)}2] ,  

V ( D )  = lim E[{N1/2~( j ,  N)}=]. (3.8) 

The limits in (3.8) are easy to calculate. Just 
square the terms, take the mathematical expecta- 
tion, and use the null hypothesis of l iD  to 
simplify the expressions. Let us explain. Define 

K g ( j  + 1) --- rg[u( t ,  j + 1), u(s, j + 1)1 

= C ( j  + 1 ) [KC( j  - 1) - C ( j  - 1)1 

+ C ( j  - 1)[KC(j  + 1) - C ( j  + 1)] 

- 2 C ( j ) [ K C ( j )  - C ( j ) ] ,  (3.9) 

where, 

K C ( j )  - KC[u(s, j ) ,  u(t, j)] 

= O(e - lu(s, j )  - u(t, 1)1), (3.10) 

and u(s, j )  = (x(s), x(s - 1) . . . .  , x(s - j  + 1)). 
Here  0 is the j-dimensional Heaviside function. 
I.e.,  the right hand side of (3.10) is one if 
Ix(s - k )  - x(t  - k)l < e for all 0 -< k -<j - 1, and 
is zero otherwise. All of the component  U-statis- 
tics are of degree 2, hence the weighted sum is 
also a U-statistic of degree two. Therefore,  " m"  
is equal to 2 in Denker  and Keller's Theorem 1 
[8]. T h u s ,  

4o" 2(g) ___ V(G) 

= 4E({Kgl[U(t, j + 1)]} 2 

+ 2 ~ K~l[U(t, j + 1)] K~[u(t + i, j + 1)]) ; 
i-->l 

(3.11) 
here 

~( j ,  N )  = C ( j  4- 1)[C(j  - 1, N )  - C ( j  + 1)] 

+ C ( j  - 1)[C(j  + 1, N )  - C ( j  + 1)] 

Kgl[u(t + i, j + 1)] 

-- E { r g [ u ( t  + i, j + 1), u(s + i, j + 1)][u(t + i, j + 1)) 
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f 
=-- J Kg[u(t  + 1, j + 1), u(s + i, j + 1)] 

x dF[u(s + i, j + 1)], (3.12) 

and the ( j  + 1)-dimensional invariant measure is 
dF[u(s + i, j + 1)] - dF[x(s + i ) ] . . ,  dF[x(s + i - 
j)]. 

Given the embedding in d dimensions, the 
overlap can be at most d, hence at most d of the 
"cross terms" in (3.11) are nonzero under the 
IID hypothesis. The regularity conditions im- 
posed by Denker and Keller [8] which are stated 
above ensure that the series (3.11) is absolutely 
convergent. 

We can now compute the right hand side of 
(3.11) to obtain 

o~2(g[j]) = C(2j - 2) Var{KC(j + 1)} 

+ C(2j + 2) Var{KC(j - 1)} - 2C(2]) 

x Var{KC(j)},  (3.13) 

Var[KC(j + 1)] Var[KC(j - 1)] 
o.2t6w)jrz;~ _ C(2j + 2) + C(2j - 2) 

Var[KC(j)] 
2 C(2j) (3.16) 

and so 

K J-1 K 2 

We turn now to numerical results and applica- 
tions. 

4. Numerical results, practical applications, and 
some exceptions 

In this section we will present the results of 
some calculations of the ~j which are the 8~ 
normalized to have an asymptotic distribution of 
N(0, 1). We first examine some IID series, and in 
section 4.2, we turn our attention to some non- 
IID series generated by dynamical maps. 

where K C ( j )  is computed from K c ( j )  as Kgl is 
computed from K g in (3.12). 

We now define K 2 -  E{KC[x(r) ,  x(s)]KC[x(s), 

x(t)]} with K c defined as in (3.10) for j =  1. 
Here the expectation value is taken over all 
three elements x(r),  x(s) and x(t) .  Then, it is not 
difficult to show that Var{KC(j)} = K  2 i -  C 2i. 

Using this and C j = C ( j )  in (3.13) we have 

~r(g) = C i - I  K J - I ( K  2 - C2). (3.14) 

We can now compute the same quantities for 
6( j ,  N ) .  We have 

4.1. I ID  series 

Since the result derived in the last section is 
asymptotic, we are particularly interested in 
seeing the effects of finite size data sets. As we 
shall see, the finite size effects have some depen- 
dence on the overall probability distribution. 
Moreover, there are some exceptional cases of 
IID distributions for which the result (3.15) is 
not valid for a technical reason. 

To begin, turn to figs. 1-3 in which we plot the 
results of calculating the b~ for 1 < j  < 3 for an 
IID time series of numbers drawn from a Gaus- 
sian distribution. Define 

[ N 1/2 ] 

Rj ---- [ 2 t r - ~ ) ] J 6 ( j ,  U)---~ X(0, 1),  N .---@ OQ , 

(3.15) 

e =/x x (standard deviation of the unconditional 

probability distribution of the elements in the 

time series). (4.1) 

where the variance formula can be computed 
following the same procedure as above. Doing 
this one obtains 

In these plots, /x is set equal to ½. One hundred 
iterations of three different length time series 
(1000, 5000, and 20000 points) were per- 
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Fig. 1. N 1 for an IID sequence with an unconditional Gaus- 
sian probability distribution. Results from three calculations 
consisting of 100 iterations each of time series of length 1000, 
5000 and 20 000 elements are plotted. The solid line is the 
theoretical asymptotic limit Jr(0, 1). 
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Fig. 3. N 3 for an IID sequence with an unconditional Gaus- 
sian probability distribution. Results from three calculations 
consisting of 100 iterations each of time series of length 1000, 
50011 and 20 ~ elements are plotted. The solid line is the 
theoretical asymptotic limit N(0,  1). 
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Fig. 2. R 2 for an IID sequence with an unconditional Gaus- 
sian probability distribution. Results from three calculations 
consisting of 100 iterations each of time series of length 1000, 
5000 and 20 ~ elements are plotted. The solid line is the 
theoretical asymptotic limit ~ ( 0 ,  1). 

formed, and the ~j for each iteration were 
computed. Each of the graphs presents three 
histograms of the 100 iterations for each length 
of time series for a given value of j. The 
theoretical asymptotic normal distribution is also 
shown. From these graphs we see (1) fairly good 
agreement with the asymptotic result even for 
time series of 1000 points iterated 100 times, (2) 
an approach to the asymptotic limit as the length 

of the time series increases, and (3) closer 
agreement with the asymptotic result for smaller 
j, for the same length time series. These results 
are consistent with our expectations. In par- 
ticular, the somewhat slower approach to 
asymptopia for larger j just reflects the fact that 
increasingly more data is required to clearly 
discern structure in higher dimensional embed- 
dings of a time series. 

That said, however, it is still quite remarkable 
how close the agreement is to the asymptotic 
result with only moderate amounts of data, even 
for larger j values #5. To see this yet more 
clearly, refer to table 1 where the mean and 
standard deviations for this system are tabulated 
up to j = 5 for/z  = ½. 

The finite size behavior of these statistics is 
strongly dependent on the value of /z. As /~ 
decreases, more data is needed to render the 
statistics reliable, since for smaller values of 
there are fewer points within any e sized box. To 

• 5 Because U-statistics have a normal asymptotic distribu- 
tion, it is easy to construct measures of their efficiency for 
finite data sets. See ref. [23]. See also ref. [22], p. 176, for a 
discussion of the relative efficiency of U-statistics. Those 
comments may be relevant to an explanation of the close 
agreement between our numerical results and the asymptotic 
limit. 
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Table 1 
Mean values and standard deviations of the Nj for a random Gaussian distribution, 
p ,=~.  

Size Iterations N, N 2 N3 N4 l~s 

Mean values 
250 100 -0.23 -0.15 -0.60 -1.15 -4.41 
500 -0.14 0.05 -0.22 -0.36 -0.82 

1000 -0.17 -0.05 -0.24 -0.15 -0.19 
5000 0.029 -0.05 0.19 0.06 -0.32 

250 500 -0.17 -0.11 -0.17 -0.79 -3.48 
500 -0.12 -0.015 -0.095 -0.11 -1.05 

1000 -0.04 -0.05 -0.14 -0.253 -0.08 
5000 -0.005 -0.005 0.03 -0.01 -0.05 

Standard deviations 
250 100 1.28 2.02 2.87 5.40 14.87 
500 1.24 1.61 2.20 3.61 6.58 

1000 1.08 1.33 1.66 2.73 4.67 
5000 0.99 0.93 1.19 1.47 2.04 

250 500 1.29 1.81 2.95 5.34 11.47 
500 1.17 1.47 2.17 5.54 6.72 

1000 1.11 1.24 1.60 2.46 4.57 
5000 0.97 1.00 1.16 1.43 2.09 

put it another way, as tz decreases, we are 
probing increasingly detailed behavior of the 
sys tem.  A determination of the nature of this 
more detailed structure naturally requires more 
data. For example, for the IID distributions in 
table 1, 100 iterations of time series of length 
5000 yields an average value of 33 of 0.36 and a 
standard deviation of 3.05 for/z  = 0.25, while for 
/z =0 .1  these same quantities are -0 .06 and 
16.05. Notice, in particular in this example the 
increasing standard deviations of the 6's with 
decreasing p~. 

As a second example, refer to figs. 4-6. These 
graphs are similar to figs. 1-3 and show the Rj 
calculated for time series with N =  1000 and 
5000, but now for an IID time series with an 
overall probability for the elements defined by 

j x ,  0 --< x --< 1,  
p(x) OE (4.2) [ X - 4  I ~ X ~ Q O .  

In these figures/z = ½. Because of its power law 
tail, this probability distribution differs quali- 
tatively from the Gaussian, and so is a good test 

0.5 
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o 
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Fig. 4. N 1 for an IID sequence with the unconditional 
probability distribution (4.2). Results from three calculations 
consisting of 100 iterations each of time series of length 1000 
and 5000 elements are plotted. The solid line is the theoret- 
ical asymptotic limit N(0, 1). 

of the sensitivity of finite size effects on the 
asymptotic behavior of the probability distribu- 
tion. As we see in the figures, the Nj have the 
same qualitative behavior as a function of N as 
for the Gaussian case. Although they are certain 
to differ in the details, the general behavior of 
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Fig. 5. ~ 2  for an IID sequence with the unconditional 
probability distribution (4.2). Results from three calculations 
consisting of 100 iterations each of time series of length 1000 
and 5000 elements are plotted. The solid line is the theoret- 
ical asymptotic limit 2¢'(0, 1). 
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Fig. 6. N a for an IID sequence with the unconditional 
probability distribution (4.2). Results from three calculations 
consisting of 100 iterations each of time series of length 101)0 
and 5000 elements are plotted. The solid line is the theoret- 
ical asymptotic limit N(0, 1). 

the N/ for finite length series appears to be 
relatively stable with respect to different overall 
probability distributions. In fact, it is quite 
generic. We have studied a number  of IID series 
with various distributions including binomial, 
Poisson, linear with p ( x )  oc x for 0 < x < 1, as well 
as an IID sequence with the overall probability 
distribution of the logistic map. In all these 
cases, the behavior of the R i are consistent with 

the results presented in table 1 for the Gaussian 

case. 
The third numerical case we wish to present is 

something of an exception. The derivation in 
section 3 is a kind of Taylor  expansion about the 
asymptotic limit. The result, eq. (3.15) depends 
on the existence of a nonzero second term in that 
expansion. The coefficient of this second term is 
proportional to the variance, in the denominator  
of (3.15). In a recent paper,  in a discussion of  

the BDS statistic, Theiler [24] pointed out that 
for  an IID sequence with a uniform probability 
distribution on the unit ring, (i.e. P ( x ) - - - 1  for 
0 -< x - 1 with zero and one identified) the coeffi- 
cient of the second term in the Taylor expansion 
leading to the BDS statistic is zero so that the 
variance associated with the BDS statistic goes to 
zero as N---> co. Thus the asymptotic behavior of 
the BDS statistic is not necessarily 3c(0, 1), and 
one must compute higher order  terms to de- 
termine the asymptotic form. Similarly, in such a 
case the Nj will also not necessarily be normally 
distributed for large N, and the result (3.15) may 
not  be valid. On the other  hand, it is interesting 
to remark that for an l iD  sequence with a 
uniform distribution on the open interval (0, 1), 
the variance in (3.15) is nonzero,  and the Nj do 
appear  to approach an asymptotic N(0,  1) dis- 
tribution, although somewhat more slowly than 
for a nonuniform distribution. To see this nu- 
merically, refer to tables 2 and 3, in which we 
repeat  the calculations of table 1 for the uniform 
distribution on the open unit interval, and the 
uniform distribution on the circle. Notice in table 
2 that the size of the series seems to limit the 
asymptotic results. The standard deviations do 
not change substantially as the number of itera- 
tions is increased from 100 to 500 if the size of 
the series is fixed. This observation is also 
consistent with the results in table 1. The rela- 
tively slow approach to .At(0, 1) in table 2 can be 
understood by noting that although the second 
term in the Taylor  series is nonzero,  it is rela- 
tively (and nongenericaUy) small compared to 
higher order  terms, so that one must go to larger 
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Table 2 
Mean values and standard deviations of the ~j for the uniform distribution on the 
interval (0, 1), /~ = ~-. 

Size Iterations $1 R 2 1~3 1~4 Ss 

Mean values 
250 100 -0.48 0.25 -0.45 -2.20 -21.40 
500 -0.45 0.075 -1.63 -4.77 -10.14 

1000 0.25 -0.49 0.05 -2.23 -1.87 
5000 -0.09 0.04 -0.27 0.93 -0.19 

250 500 0.038 -0.90 -1.66 -5.94 -22.47 
500 -0.18 -0.20 -0.86 -4.13 -11.25 

1000 -0.05 0.01 0.30 -0.33 -3.06 
5000 0.07 -0.14 0.18 0.10 -0.61 

Standard deviations 
250 100 4.28 8.64 16.40 37.14 78.86 
500 3.64 5.97 11.63 29.79 51.23 

1000 2.76 4.40 8.38 19.70 33.60 
5000 1.65 2.64 4.13 7.93 16.07 

250 500 4.62 8.50 15.80 33.48 83.73 
500 5.28 6.68 12.55 26.52 49.80 

1000 2.74 5.19 9.32 17.53 33.73 
5000 1.66 2.73 4.28 8.86 15.24 

Table 3 
Mean values and standard deviations of the Rj for the uniform distribution on the unit 
ring with/~ = ½. 

Size Iterations R 1 1~ 2 $3 R4 $5 

Mean values 
250 100 -1.24 -5.83 0.95 -16.40 -0.88 
500 2.36 -11,48 16.21 -38.22 -20.86 

1000 -0.47 -1.78 8.53 -12.91 22.65 
5000 -0.04 10.04 19.22 17.94 17.57 

250 500 -1.56 -2.01 -0.71 -14.74 -42.90 
500 0.30 -2.47 0.87 -11.06 -20.72 

1000 -0.75 -4.44 2.81 -15.17 -26.16 
5000 -1.53 4.88 -0.07 -1.78 0.74 

Standard deviations 
250 100 14.98 33.34 51.18 112.2 224.9 
500 49.23 69.05 107.8 213.5 388.4 

1000 21.96 44.52 72.21 140.0 264.9 
5000 45.66 86.23 152.3 279.3 565.2 

250 500 19.31 38.05 86.03 156.0 414.2 
500 36.23 55.81 106.31 194.7 334.1 

1000 22.82 41.53 74.67 153.7 257.7 
5000 47.73 86.29 161.9 309.6 603.2 
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N to see the emergence of the asymptotic dis- 
tribution. In table 3, corresponding to the uni- 
form distribution on a ring, there is no tendency 
for the results to approach N(0, 1) asymptoti- 
cally. In fact, the standard deviations grow as the 
size of the time series increases because the 
denominator of (3.15) goes to zero as N--->oo. 
Again, note that in table 3 the results are 
relatively stable as the number of iterations 
increases from 100 to 500 with fixed size for the 
time series. 

4.2. N o n - l i D  series 

We now discuss the behavior of the ~s for time 
series that are not IID. In particular, we shall 

consider several cases of simple iterative maps. 
First, in table 4 we display the results of calcula- 
tions of the 1~ s for the simple tent map. With x 
restricted to [0, 1], the tent map is defined by 

~'2x(n), 
x(n + 1) = I.-2x(n) + 2,  

x(n) <-- ½ 
x(n) >-- ½ =- T(x(n)) . 

(4.3) 

Notice first the relative independence of the 
results on the number of iterations. Second, 
notice that, even though the tent map depends 
on only one lag, the ~i are clearly nonzero even 
for j > 1. As stated earlier, the l~j are only 
guaranteed to be asymptotically N(0, 1) for an 
IID series. Although there is but one lag depen- 

Table 4 
Mean values and standard deviations of the R s for the tent map, /z = ~. 

S i z e  Iterations ~1 R2 R3 ~4 ~5 

Mean values 
1000 100 342.5 3.26 -3.10 2.76 0.54 
5000 828.5 7.73 -7.27 7.20 0.64 

I000 500 344.2 3.26 -3.27 2.98 0.49 
5000 827.1 7.43 -7.67 7.02 0.91 

Standard deviations 
1000 100 4.77 2.90 2.49 3.45 3.82 
5000 100 5.11 2.79 1.90 2.65 2.37 

1000 500 5.32 2.82 2.54 3.43 3.70 
5000 500 5.45 2.58 1.87 2.83 2.52 

Table 5 
Mean values and standard deviations of the ~j for the H6non map, /.t = ~-. 

Size Iterations R 1 R2 ~3 R4 ~5 

Mean values 
1000 100 64.12 27.60 -4.280 6.378 2.692 
5000 143.4 61.35 -9.557 14.09 5.855 

1000 500 63.79 27.35 -4.14 6.15 2.68 
5000 144.43 62.07 -9.39 14.10 6.12 

Standard deviations 
1000 100 0.76 1.63 1.27 1.06 0.99 
5000 0.80 1.69 1.21 1.02 0.88 

1000 500 0.85 1.70 1.23 1.11 1.06 
5000 0.83 1.74 1.25 1.07 1.06 
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dence in the tent map, the series violates the l iD 
assumption so that ~¢j for higher j values may be 
nonzero. In this case, for example, it appears 
that R 3 will be significantly negative asymptoti- 
cally, while Nz and ~4 will be significantly posi- 
tive. This is in contradistinction to the unnormal- 
ized 8j which, in some sense, approaches zero 
asymptotically if there are no conditional prob- 
abilistic dependencies, as discussed in refs. [1,2]. 
The nonzero values of N~ for j > 1 does contain 
information about the series. While the informa- 
tion is more difficult to untangle in the b~j's than 
in the 8j's because of the relatively complex 
nature of the normalization factor in (3.15), the 
~j's do satisfy the invariance property discussed 
in the introduction. 

As another example of a non-IID series, we 
turn to the H6non map. This map has two lag 
dependence. As shown in table 5, Rj is very large 
for j = 1 and 2, but is still significantly nonzero 
for higher values of j. As with the tent map, this 
is due to the fact that the Rj are defined to be 
null under the IID hypothesis, so that even 
though there is no explicit dependence for j > 2, 
these Rj are not guaranteed to be )((0,1)  
asymptotically #6. Finally, we note the interesting 
result that the standard deviations of the Rj for 
] > 2  are all near one in table 5. We have no 
simple explanation for this observation, but 
suspect that the answer involves detailed prop- 
erties of the H6non map. 

Table 6 
Mean values and standard deviations of the Nj for the logistic 

--1 map with and without observer noise, t~ - ~ .  

~1 ~2 ~3 ~4 ~5 

Mean values 
0.0 590.4 44.90 -27.40 -8 .71 -4 .39  
0.1 632.1 57.9 -24 .7  -7 .84  -2 .68  
0.5 182.7 22.62 2.85 1.29 0.71 
1.0 11.0 2.90 0.37 -0,033 -0 .026 

10.0 -0 .14  -0 .036 0.10 -0 .91 -1 .22  

Standard deviations 
0.0 1.14 2.95 2.96 3.25 3.97 
0.1 2.87 2.98 2.67 3.36 3.29 
0.5 5.23 3.97 3.58 3.25 3.88 
1.0 1.70 1.25 1.30 1.99 3.51 

10.0 1.36 2.15 3.70 7.71 12,6 

added to an otherwise deterministic, chaotic 
system. For our example we have chosen to 
study the logistic map. In table 6 we present 
results for the values of the ~j for a time series of 
5000 points generated by the logistic map with 
and without observer noise. That is, a time series 
is generated completely deterministically from 
the chaotic logistic map: 

Yj+t = 4yj(1 - Yi)' (4.4) 

IID noise drawn from a random, flat distribution 
with 0 ~ j < - - 1  is then added to the yj with 
strength or to produce the resultant time series, 

xj = yj + o'~7i • (4.5) 

4.3. Noise 
We now present some results that demonstrate 

the sensitivity of the b~j to the presence of noise 

• 6 We should point out that even for maps in which there is 
only explicit dependence up to a given lag, the ~j's may be 
statistically nonzero for larger j ' s ,  if e is not too small. This is 
explained in detail in ref. [1]. Thus one,  might suppose that 
the nonzero values of  ~j for large j in tables 4 and 5 could be 
due to a large value of the numerator in (3.15). However,  as 
discussed in ref. [1], this effect is not particularly important in 
the tent map,  in which there is no curvature. So, we conclude 
that it is the failure of the l iD  hypothesis which is primarily 
responsible for the nonzero values of the ~j for larger j in 
tables 4 and 5. 

In table 6 standard deviations and averages of 
the various ~j are computed using 100 iterations 
of the relevant time series. We see from these 
results that the Rj are quite robust to the addi- 
tion of noise to a deterministic, even chaotic 
system. Even for or = 1.0, which corresponds to 
the addition of noise which is 100% of the signal, 
the b~j can still clearly distinguish the underlying 
chaotic structure. Only when the noise is many 
times the strength of the signal do the b~j fail to 
detect the embedded deterministic structure. 
These results are consistent with those of ref. [1] 
in which it was shown that the ~i are also 
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sensitive indicators of underlying determinism, 
even in the presence of substantial IID noise. 

5. Summary 

In this paper we have shown that the 8~'s 
derived in refs. [1,2] have elegant asymptotic 
statistical properties. In particular, one can de- 
fine a normalized version of the 6/s (called Nj) 
and can prove that the N/s are asymptotically 
normally distributed with a mean of zero and 
standard deviation of one for an IID series. The 
~j's and the Nj's are very sensitive indicators of 
deviations from randomness (in the sense of 
IID) and are particularly useful in analyzing 
broad band time series without a simple Fourier 
spectrum. 

We presented numerical results which verify 
that the asymptotic behavior is indeed At(0, 1) 
and which also gives some indication of the finite 
size effects and the approach to asymptopia. 
Generically the Nj's are quite well behaved with 
moderately small finite size effects. One excep- 
tion is an IID sequence with a flat unconditional 
probability distribution. It can be shown that for 
such a series with a flat distribution on a ring, the 
asymptotic behavior is not N(0, 1) because the 
coefficient of the second term in the Taylor 
expansion about the asymptotic result is zero. 
Moreover, for a uniform distribution on an open 
interval, the asymptotic behavior is N(0, 1), but 
the approach to asymptopia is slower than in the 
generic case. This is due to a relatively small 
second term in the Taylor expansion, compared 
to higher order terms. 

We also presented numerical results which 
show how the Nj's behave for non-IID series. As 
expected, the N/s generically indicate the exist- 
ence of underlying determinism in a time series, 
even if the series is chaotic. Unlike their un- 
normalized counterparts, the 8/s, the Rj's are not 
direct measures of conditional probabilities. 
Therefore, when applied to systems with depen- 

dencies on a certain number of lags, the N/s may 
not be .N'(0, 1) asymptotically even for those j's 
corresponding to lags which do not provide new 
deterministic information about the underlying 
dynamics of the series. In order to ensure that a 
set of statistics will have such behavior, one must 
derive results analogous to those derived in 
section 3, with alternate null hypotheses which 
express more specifically which dependencies are 
included in the null and which are not. 

We also studied the sensitivity of the Nj's to 
the addition of noise in an otherwise determinis- 
tic series. We found that even if the noise is the 
same order of magnitude as the underlying 
(chaotic) deterministic signal, the N/s can still 
easily detect the presence of the deterministic 
structure. Only when the noise is much larger 
than the signal (in our example, an order of 
magnitude larger), do the N/s fail to indicate the 
presence of the signal in time series of length 
5000 with/z = ½. 

The analytic and numerical results presented 
in this paper should be very useful in the analysis 
of complex time series. The statistics derived 
here are sensitive indicators of deviations from 
randomness in the sense of IID in time series. In 
addition, the methods used here can be general- 
ized in two important ways. First, it is possible to 
derive normalized versions of the generalizations 
of the ~j's discussed in refs. [1,2]. Thus it is 
possible to construct statistics analogous to the 
N/s, with simple asymptotic behavior, which, for 
example, can be used to test for independence of 
the elements of one time series on a second, 
different time series. Second, it is possible to 
generalize the derivation of section 3, to address 
other, more restrictive null hypotheses. For 
instance, one can seek statistics which have an 
asymptotic normal distribution under a null 
hypothesis that the nth term in the time series 
depends only on the ( n - 1 ) s t  and ( n - 2 ) n d  
terms. 

The methods and results discussed here are 
significant new tools in the analysis of complex 
systems. They have already been fruitfully ap- 
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plied to a number of problems from diverse 
disciplines, and have the potential for providing 
the analyst with many more important new 
insights. 
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