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Development of thrombolytic therapy as a treatment for 
myocardial infarction has focused attention on the events that 
occur upon reperfusion of ischemic myocardial tissue. Although 
it is well documented that salvage of the ischemic myocardium 
is dependent upon timely reperfusion, it is likely that the very 
events critical for survival may, in fact, lead to further tissue 
injury. A widely recognized source of reperfusion injury is the 
generation of oxygen-derived free radicals. These reactive oxy- 
gen species, which are formed within the first moments of reper- 
fusion, are known to be cytotoxic to surrounding cells. In addi- 
tion, strong support exists for the involvement of the inflamma- 
tory system in mediating tissue damage upon reperfusion. 
Coincident with the recruitment of neutrophils and activation of 
the complement system is an increase in the loss of viable cells. 
Although a number of mechanisms are likely to be involved in 
reperfusion injury, this discussion focuses on the roles that ox- 
ygen-derived free radicals and the inflammatory system play in 
mediating reperfusion injury. 
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RNHCI 
rt-PA 
DAF 
HRF 
CD59 
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Chloramine 
Tissue plasminogen activator 
Decay accelerating factor 
Homologous restriction factor 
Protectin 
Complement receptor type 1 
Recombinant soluble CR1 

Introduction 

~ though early reperfusion of the ischemic myo- 
cardium is important for preservation of tissue 

viability, it now is apparent that reperfusion may in 
itself be harmful to the surrounding tissue [re- 
viewed in (1-3)]. Thus, a paradoxical situation de- 
velops where reoxygenation, which is essential for 
survival of the tissue, may in fact be harmful. Dam- 
age due to the restoration of blood flow is termed 
"reperfusion injury." Simply defined, reperfusion in- 
jury is the conversion of reversibly injured cells to a 
state of irreversible injury due to the reintroduction 
of flow to an ischemic area (4). The detrimental ef- 
fects of reperfusion injury have received greater at- 
tention in recent years due to the use of throm- 
bolytic agents to manage patients with an evolving 
acute myocardial infarction. The use of lyric therapy 
has been shown to reduce mortality in patients un- 
dergoing an acute myocardial infarction (5); how- 
ever, it is becoming increasingly evident that the 
events coincident with thrombolysis also are of 
importance. 

The concept of reperfusion injury was first put 
forth by Hearse in 1977 (6). Before this time, it was 
assumed that the increase in cell death upon rein- 
troduction of blood flow was due to the death ofmyo- 
cytes that were previously irreversibly injured. 
However, investigation into this phenomenon has 
suggested that the cells damaged upon reperfusion 
were in fact viable before the reintroduction of blood 
flow (3). Thus, although essential for survival, 
reperfusion may be associated with the risk of ex- 
tending the area of myocardial injury beyond that 
originally attributed to the ischemic process. This 
conclusion suggests that a number of crucial events 
occurring during reporfusion induce or enhance cel- 
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lular injury. It should be pointed out, however, that 
the concept of reperfusion injury has yet to be ac- 
cepted by all and that  there are inconsistencies 
among the experimental results. A number of inves- 
tigators believe that the reintroduction of flow to an 
ischemic area only increases the rate of death for 
cells that were irreversibly injured as a result of the 
ischemic insult (7). Conclusive proof for the exis- 
tence of reperfusion injury would require experi- 
mental evidence indicating that cells that were vi- 
able before reperfusion are irreversibly injured upon 
or soon after the onset of reperfusion (3). Direct ev- 
idence of the conversion of ischemic cells to an irre- 
versibly injured state upon reperfusion is lacking. 
Our laboratory has shown that the binding of a la- 
beled monoclonal antibody to the intracellular pro- 
tein, myosin, is significantly increased upon reoxy- 
genation of the hypoxic rabbit isolated heart (8). The 
antimyosin antibody has been shown in previous 
studies to bind to myocytes that have decreased 
membrane integrity associated with irreversible in- 
jury (9). Thus, the results support the concept that 
sudden reoxygenation of the hypoxic heart is asso- 
ciated with extension of irreversible myocardial 
damage. 

The ability of reperfusion to elicit additional cel- 
lular damage makes it imperative that the mecha- 
nism(s) of reperfusion injury be understood. Under- 
standing these mechanisms may greatly augment 
the existing procedures that are currently adminis- 
tered to the patient undergoing an acute ischemic 
event. The quest to determine the mechanisms in- 
volved in reperfusion injury has led to the discovery 
of a number of causative factors. Having recognized 
the importance of minimizing the extent of reperfu- 
sion injury, a great deal of effort is being devoted to 
the development of therapeutic approaches to limit 
damage incurred during reperfusion. Although re- 
search into this area has focused on the myocar- 
dium, the process is not solely limited to this tissue. 
Any tissue or organ deprived of blood flow is subject 
to the events related with reperfusion injury (10). 
Therefore, this concept is of interest to physicians in 
a number of clinical settings including organ trans- 
plantation and any surgical intervention where 
blood flow to an organ is interrupted. This discus- 
sion will focus on the events that lead to an exten- 
sion of cellular injury associated with reperfusion of 
the ischemic myocardium. Special attention will be' 
placed on the roles of oxygen-derived free radicals 
and the inflammatory response in initiating reper- 
fusion injury. 

Oxygen and calcium paradoxes 

The reintroduction of flow to an ischemic or hyp- 
oxic area has been associated with the development 
of two similar events known as the "oxygen para- 
dox" and the "calcium paradox." 

Both events have been characterized by the devel- 

opment of myocardial contracture, release of intra- 
cellular cytosolic enzymes, loss of mechanical activ- 
ity, and changes in myocyte ultrastructure (11). One 
of the early indications that molecular oxygen was 
involved in the development of reperfusion injury 
was the observation that reperfusion of the ischemic 
heart with an oxygenated solution enhanced injury 
whereas reperfusion with an hypoxic solution did 
not increase myocardial injury (12). Both in vitro 
and in vivo studies have shown that the reintroduc- 
tion of molecular oxygen to the ischemic myocar- 
dium is accompanied by the formation of oxygen- 
derived free radicals (13,14). The appearance of 
cytotoxic oxygen metaboli tes upon myocardial  
reperfusion suggests an important role for molecu- 
lar oxygen as a mediator of myocardial tissue dam- 
age. It was suggested by Hearse et al. that the rein- 
troduction of oxygen may induce injury through 
transmembrane calcium fluxes that result in intra- 
cellular calcium accumulation (15). This suggestion 
would aid in explaining the numerous similarities 
between the oxygen and calcium paradoxes. 

The calcium paradox is characterized by a rapid 
increase in the intracellular free calcium concentra- 
tion. Whereas an increased tissue calcium concen- 
tration is not seen during 60 min of global ischemia, 
there is a tenfold increase within the first 10 min of 
reperfusion (16). Several possibilities exist as to the 
route of calcium entry during the calcium paradox. 
It was widely assumed that calcium was derived 
from external sources including entry through volt- 
age-sensitive calcium channels and sodium-calcium 
exchange mechanisms (17,18). However, the use of 
calcium-channel blockers in experimental models of 
ischemia-reperfusion have shown inconsistent re- 
sults in protecting the ischemic heart (19,20). Sup- 
porting this observation is a study by Nayler et al. 
showing that high doses of calcium-channel blockers 
result only in a partial decrease in intracellular cal- 
cium levels (21). Currently, there is debate as to 
whether the influx of calcium into the cell is due to 
the ischemia-induced disruption of the membrane. 
Thus, the influx of calcium may be a result of free 
radical-induced membrane damage and not truly a 
cause of membrane injury (22). Intracellular sites 
have been mentioned as a potential source for the 
increase in intracellular calcium. It has been hy- 
pothesized that the formation of intracellular free 
radicals following reperfusion may cause leakage of 
calcium from intracellular stores such as the sarco- 
plasmic reticulum, although this view is not shared 
by all investigators (21). In addition, it is conceiv- 
able that the cell may lose the ability to extrude 
calcium or that the uptake of calcium by the sarco- 
plasmic reticulum is decreased (23). 

A number of biochemical events have been postu- 
lated to occur upon calcium influx. Foremost is the 
activation of different groups of intracellular en- 
zymes. Activation of phospholipases may lead to for- 
mation of cell-damaging arachidonic acid metabo- 
lites and depletion of adenosine triphosphate (ATP) 
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stores (24,25). Furthermore, a number of proteases 
are known to be activated in the presence of calcium. 
Among these proteases are the calcium-activated 
neutral proteases (CANP). This group of enzymes 
have been reported to mediate myofibrillar turnover 
and the degradation of various proteins including 
cytoskeletal filaments (26). A number of ultrastruc- 
tural changes are associated with calcium influx. 
The development of contracture bands and the for- 
mation of large amorphous densities within the mi- 
tochondria are examples of the  most  dramat ic  
changes in the cellular ultrastructure. The appear- 
ance of these ul t rastructural  markers  is largely 
considered to be indicative of irreversible injury and 
cell death (27). 

Effects of free radical generation in 
reperfusion injury 

Oxygen-derived free radicals have been strongly 
implicated in the extension of tissue injury following 
reperfusion. This h ighly  reactive and unstable  
group of compounds is formed as a result of the ad- 
dition of an unpaired electron to the outer orbital of 
the molecule. Superoxide anion (02-),  hydrogen 
peroxide (H202), and the highly reactive hydroxyl 
radical (OH-) are the most prominently mentioned 
free radicals in the pathogenesis of reperfusion 
injury. 

Evidence for the existence of free radicals in 
hearts subjected to reperfusion is derived from the 
use of electron-resonance spectroscopy and spin- 
trapping agents to detect free radicals in the isch- 
emic zone following reperfusion (13,14). Perhaps 
though, the strongest evidence lies in the ability of 
free radical scavengers to limit infarct size in exper- 
imental models of myocardial infarction. A number 
of investigators have shown that  radical scavengers 
inc luding superoxide d i smutase  and peroxide- 
degrading agents such as catalase (Figure 1) are ca- 
pable of eliminating the radicals thus protecting the 
reperfused myocardium (28,29). While natural ly 
present in the myocardium, these protective agents 
may be limited and subsequently overwhelmed by 
the sudden generation of free radicals upon reperfu- 
sion (30). Thus, the addition of these substances 
prior to reperfusion may decrease the concentration 
of the newly generated radicals. 

Superoxide Dismutase 
202" + 2H ÷ i, H202 + 02 

Catalase 
2 H202 ID 2 H20 + 02 

Figure 1 - -  Reactions catalyzed by superoxide dismutase 
and catalase. Generat ion of superoxide anion and its sub- 
sequent conversion to hydrogen peroxide ultimately re- 
sults in the formation of water and oxygen through the 
action of these enzymes. 

MECHANISMS OF FREE RADICAL-INDUCED DAMAGE 

Adding to the destructive nature of oxygen radi- 
cals is their ability to attack and damage a number 
of critical cellular components. The cell membrane, 
composed primarily of lipid and proteins, is one of 
the most vulnerable areas to attack (31). Free radi- 
cals have the ability to alter membrane lipids in a 
number of different fashions. Unsatura ted lipids 
containing double bonds are especially vulnerable to 
peroxidation, resulting in the formation of lipid per- 
oxides, aldehydes, and lipid hydroperoxides (31). 
Membrane-bound proteins are another likely target 
for free radical damage. The ability of these radicals 
to oxidize sulfhydryl groups on methionine residues 
allows proteins to be altered in a number of different 
ways including conformational changes, denatur- 
ation, and enhanced susceptibility to hydrolysis 
(32,33). These groups are important in the transport 
of organic cations and are often located near active 
sites of enzymes. Amino acids such as tyrosine, pro- 
line, tryptophan, and phenylalanine are oxidized by 
free radicals. It is important to point out that  alter- 
ation of membrane lipids may have an indirect effect 
by altering the surrounding environment, the net 
result being the loss of the protein's ability to func- 
tion (34). Membrane proteins that  serve enzymatic 
or receptor functions would be especially vulnerable 
to this type of alteration (34). In addition, interme- 
diates of lipid peroxidation have been shown to alter 
the protein function through fragmentation or poly- 
merization of proteins (35). Damage to critical mem- 
brane proteins and lipids would have serious reper- 
cussions on the ability of the cell to function nor- 
mally, calling into question the cell's ability to 
survive. 

PRODUCTION OF FREE RADICALS 

The major source of free radicals during ischemia 
and reperfusion has yet to be fully elucidated. One 
commonly mentioned source is the enzyme xanthine 
oxidase, found primarily within the vascular endo- 
thelium (36). Following ischemia, xanthine dehy- 
drogenase, which is responsible for the metabolism 
of hypoxanthine, is converted to xanthine oxidase. 
This enzyme is thought to produce 02-  and H202 
through the utilization of hypoxanthine as a sub- 
strate (37). Experimental evidence for the role of 
xanthine oxidase in reperfusion injury is seen in 
that  allopurinol, an inhibitor of the enzyme, has 
been reported to afford protection in reperfused tis- 
sues (38). However, these studies were conducted in 
species, such as the canine, where xanthine oxidase 
is known to be present. In other species including 
rabbit and human,  both xanthine dehydrogenase 
and xanthine oxidase are virtually absent, casting 
doubt that  this is the predominant route of radical 
production in humans  (39,40). Therefore, other 
routes of free radical production are likely to exist. 

Cardiac myocytes and endothelial cells have been 
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implicated as a free radical source. A number of or- 
ganelles including the mitochondria and nuclear 
membrane have been shown to generate free radi- 
cals. Thus, in response to an ischemic event, or- 
ganelles may begin to produce reactive oxygen spe- 
cies. In this scenario, myocytes produce both H202 
and superoxide by the cyclooxygenase and lipoxyge- 
nase pathways during the synthesis of arachidonic 
acid metabolites (41). The electron transport chain 
of mitochondria has been mentioned as a potential 
source of free radicals in both the endothelial cell 
and myocyte (42). Under normal physiologic condi- 
tions, mitochondria produce H202; thus, it is plau- 
sible that  during ischemia, production is increased 
or the ability to dispose of H202 is lost (37). The 
latter explanation is supported by the observation 
that  cellular elements tha t  serve to protect the tis- 
sue from free radical attack such as glutathione, 
glutathione peroxidase, and superoxide dismutase 
are decreased during ischemia and reperfusion (43). 
Free radicals produced by intracellular organelles 
have the ability to cross biological membranes.  
Thus, radicals generated in an environment where 
defense mechanisms have been impaired have the 
ability to inflict damage throughout the entire cell 
and surrounding tissue. 

Role of the polymorphonuclear leukocyte 

A critical aspect of reperfusion injury is the infil- 
tration of polymorphonuclear leukocytes into the 
ischemic zone [reviewed in (44,45)]. While the pri- 
mary role of the neutrophil is to protect the host 
from infectious agents, the infiltration and subse- 
quent activation of these cells may indeed prove det- 
rimental to the surrounding myocardium. Infiltra- 
tion of neutrophils into the ischemic zone begins 
within 60 min after the onset of ischemia and in- 
creases progressively for up to 90 min after reperfu- 
sion (46). Early evidence for the involvement of neu- 
trophils in reperfusion injury is derived from a num- 
ber of investigators.  These studies showed tha t  
nonsteroidal, anti inflammatory agents such as ibu- 
profen could protect the myocardium in in vivo mod- 
els of myocardial infarction (47,48). In addition, 
Romson and associates noted that  the reduction in 
infarct size seen in canines treated with ibuprofen 
was associated with a reduction in neutrophil infil- 
tration into the area at risk (48). Direct evidence for 
the role of the neutrophil in eliciting myocardial 
damage comes from studies showing that  depletion 
or inhibition of neutrophil adhesion prior to isch- 
emia decreased infarct size (49,50). Furthermore, 
monoclonal antibodies directed against leukocyte 
adhesion molecules have been shown to decrease in- 
farct size. In one such study, Simpson et al. admin- 
istered a monoclonal antibody directed against the 
CDllb/CD18 adhesion molecule (Mol) to an open 
chest dog 45 min after the start of a 90 min period of 
myocardial ischemia. Following 6 h of reperfusion, it 
was noted that  the administration of this antibody 
decreased infarct size by 46% when compared to con- 

trol (51). The ability of the Mol antibody to reduce 
infarct size not only provides a therapeutic approach 
to limiting damage, but illustrates the role of adhe- 
sion molecules in mediating this process. 

NEUTROPHIL RECRUITMENT: THE ROLE OF ADHESION 
MOLECULES AND CHEMOTACTIC FACTORS 

A number of critical events must  occur during and 
after an ischemic event in order for a sufficient num- 
ber of neutrophils to accumulate and elicit myocar- 
dial damage. Chemotactic factors, derived from a va- 
riety of sources, serve to activate the neutrophil and 
amplify the inflammatory response. These factors 
include fragments of complement activation such as 
C5a and C3a; and arachidonic acid-derived products 
including leukotriene B4 (LTB4). In addition to the 
direct effects of free radical formation, it has been pro- 
posed that the superoxide anion may act as a chemo- 
attractant for neutrophils (52). Concurrent with the 
formation and release of these chemotactic factors is 
the upregulation of a number of adhesion receptors, 
located on both the neutrophil and endothelial cell. 
Adhesion and subsequent migration of the neutro- 
phil into the surrounding tissue is a complex process 
consisting of a number of steps including: rolling of 
the neutrophil along the endothelial cell surface; 
movement through the endothelium (diapedesis); and 
extravascular migration into the tissue. These steps 
involve a number of distinct groups of adhesion re- 
ceptors and a number of cell-derived mediators. 

The selectin family of adhesion molecules mediates 
the early events associated with neutrophil adhe- 
sion [Figure 2; (53,54)]. Upon activation of the en- 
dothelial cell, P-selectin (GMP-140, PADGEM), lo- 
calized within intracellular granules, is mobilized to 
the cell surface. Another member of the selectin 
family, L-selectin (Mel-14, LECAM-1), in conjunc- 
tion with P-selectin, is involved in the "rolling" of 
the neutrophil along the endothelium. L-selectin is 
shed from the neutrophil upon activation, coincident 
with the upregulation of CDl lb  (53). Von Andrian 
and colleagues (55) suggest a two-step model for ad- 
hesion: L-selectin and P-selectin act in concert to 
facilitate neutrophil recruitment into the microen- 
vironment of the vasculature. Before movement out 
of the vasculature, a longer lasting adhesion, medi- 
ated via the leukocyte ~2 integrins (CDll/CD18 
complex) is formed (55). Another molecule that  may 
play a role in the early events of adhesion is platelet- 
activating factor (PAF). This biologically active 
phospholipid is formed in conjunction with the re- 
lease of arachidonic acid and transported to the cell 
surface (56). PAF functions in a duel manner  by di- 
rect activation of neutrophils and acting indirectly 
through upregulation of an endothelial adhesion 
molecule responsible for facilitating "rolling" of neu- 
trophils on the endothelial surface (56-58). The roll- 
ing phenomenon permits the neutrophil to maintain 
a close at tachment to the endothelial cell, allowing 
for activation and the establishment of a firm at- 
tachment to the endothelium. Rolling of the neutro- 
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I PAF U'C3b I 
P-Selectin A Sialyl LewisX'a(. 9) [ 
ICAM-IELAM II CDll/CDI8 complex [ 

UNACTIVATED ~ t MINUTES _ HOURS 

! 
Activation of neutrophil 

and endothelium 
Figure 2 -- Adhesion of neutrophils to the endothelium is a complex process requiring a number of steps. The early events 
(minutes) of adhesion are characterized by increased expression of P-selectin and PAF by the endothelial cell. Attachment 
of the neutrophil to the endothelium through these means allows the endothelial cell to upregulate different adhesion 
molecules including ICAM-1 and E-selectin. 

phil is dependent upon the neutrophil receptor, L-se- 
lectin, and its endothelial cell-associated ligand, 
P-selectin. The adherent neutrophils undergo acti- 
vation v/a interaction of their 62 integrin adhesion- 
promoting receptors and the  endothel ial  cell- 
associated ligands (59). Lorant et al. (60) have pro- 
posed that PAF, in conjunction with P-selectin, may 
act to adhere the neutrophil to the endothelial cell 
and signal the cell to increase expression of the 
CD11/CD18 integrins. Thus, the action of PAF and 
P-selectin would provide a means of securing the 
neutrophil to the endothelium during the upregula- 
tion of the CDll/CD18 complex (see Figure 2). 

As mentioned previously, firm attachment of the 
neutrophil to the endothelial cell requires another 
group of proteins known as the CDll/CD18 62 inte- 
grins. These glycoproteins possess a common ~ sub- 
unit (CD18) noncovalently bound to a distinct alpha 
subunit designated as either LFA-1 (CDlla), Mol 
(CDllb, Mac-l), or gpl50 (CDllc). Like P-selectin, 
Mol is stored in intracellular sites and is mobilized 
to the cell surface in response to the appropriate 
stimuli (e.g., C5a). At the surface, the molecule 
serves as the receptor for complement-derived iC3b 
opsinized particles and is involved in not only adhe- 
sion, but also chemotaxis and spreading of the neu- 
trophil (61,62). The importance of the Mol subunit 
in mediating neutrophil adherence and reperfusion 
injury is seen in the ability of antibodies directed 
against Mol to decrease the extent of ischemia/ 
reperfusion injury in the canine myocardium 
(51,63). In addition to serving as the receptor for 
iC3b, Mol interacts with intracellular adhesion 
molecule-1 (ICAM-1) located on the endothelial sur- 
face. Inactive endothelial cells normally express low 
levels of ICAM-1. However, stimulation by cyto- 

kines such as interleukin-1 (IL-1) and tumor necro- 
sis factor (TNF) upregulate expression of ICAM-1 
and endothe l ia l - leukocyte  adhesion molecule  
(ELAM, E-selectin), a member of the selectin family. 
The upregulation of these ligands is maximal within 
4 to 6 h (64). Antibodies to ICAM-1 not only decrease 
adhesion of neutrophils, but reduce infarct size in 
the ischemic/reperfused rabbit heart  (65,66). In 
summary, the sequence of events associated with ad- 
hesion involves a number of neutrophil-endothelial 
cell interactions that are expressed sequentially 
over the course of many hours ultimately culminat- 
ing in the inflammatory response to injury. It is 
likely that the early events (minutes) of adhesion 
are mediated through a transient interaction be- 
tween the neutrophil and endothelium mediated v/a 
the selectins (L-selectin, P-selectin), and the phos- 
pholipid molecule, PAF. The 132 integrins Mol and 
LFA-1 are likely responsible for adhesion lasting 
longer periods of time (minutes to hours; see Figure 
2). During this time, the neutrophil may become 
firmly attached to the endothelium before move- 
ment out of the vasculature into the surrounding 
tissue. During episodes of chronic inflammation the 
third member of the 62 integrin family, Gp 150.95, is 
likely to become the primary mediator of neutrophil 
adhesion (67). Expression of the neutrophil 132 inte- 
grin, Mo-1 (CDll/CD18), is related to the stimula- 
tion of the neutrophil by C5a and the endothelial 
cell ligand for Mo-1 is iC3b. The inflammatory re- 
sponse to injury, therefore, involves activation of the 
complement system that is responsible, in part, for 
orchestrating the carefully timed sequence of events 
associated with the recruitment of neutrophils to the 
site of injury and ultimately, the repair of the dam- 
age. 
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MEDIATORS OF NEUTROPHIL-INDUCED 
MYOCARDIAL INJURY 

Activated neutrophils are able to elicit tissue in- 
jury through several different mechanisms includ- 
ing generation of oxygen-derived free radicals and 
release of cytotoxic lysosomal enzymes. Chemotactic 
factors including C5a, PAF, and cytokines are capa- 
ble of activating neutrophils.  Stimulation of the 
neutrophils by one or more of these factors elicits the 
"respiratory burst," characterized by a sudden in- 
crease in oxygen consumption and a release of reac- 
tive oxygen metabolites into the surrounding envi- 
ronment .  Superoxide anion,  hypochlorous acid 
(HOC1), OH- ,  and chloramine (RNHC1) are the 
oxidants produced by the stimulated neutrophil. In 
addition, circulating PAF stimulates neutrophils to 
synthesize H202 (68) that  has been shown to induce 
a PAF-dependent adherence of neutrophils to the 
endothelium (69). Thus, generation of H202 by the 
neutrophil may act as a positive feedback mecha- 
nism, allowing the neutrophil to recruit other circu- 
lating neutrophils to the injured tissue. Evidence for 
the role of reactive radicals in reperfusion injury, 
coupled with the ability of neutrophils to produce 
free radicals, implicates this mechanism as one way 
by which neutrophils elicit tissue damage. 

Coinciding with the generation of oxygen-derived 
free radicals by the neutrophil is the release of a 
number of cytotoxic proteases stored in intracellular 
granules. A number of these granule products have 
the capacity to alter vascular permeability, thereby 
aiding the movement of the neutrophil into the sur- 
rounding tissue. Cationic proteins and neutral pro- 
teases serve to alter vascular permeability and dis- 
rupt the basement membrane of the vascular wall. 
Two metalloproteases, collagenase and gelatinase, 
when activated by HOC1, are capable of degrading 
collagen and lysing endothelial cells (70). Other im- 
portant lysosomal enzymes released during activa- 
tion include elastase and heparinase, the latter par- 
ticipating in degradation of heparin sulfate within 
the subendothelial matrix. An inhibitor of elastase, 
~l-antiproteinase, is present in normal tissue to de- 
crease the injurious effects of elastase. However, 
this inhibitor is sensitive to oxidation by neutrophil- 
derived HOC1, resulting in decreased affinity of the 
inhibitor for elastase (71). The role that  protease 
release plays in reperfusion injury remains contro- 
versial. Some proteolysis inhibitors, such as aproti- 
nin, have been shown to limit canine myocardial 
infarction, although the mechanism of this protec- 
tion has yet to be substantiated (72,73). Further- 
more, Bolli and co-workers found that  the suppres- 
sion of protease activity by a number of different 
inhibitors failed to decrease infarct size in the rat 
heart  (74,75). 

Controversy does arise when discussing which 
substances released from the neutrophil play a sig- 
nificant role in reperfusion damage. On that  same 
note, it is not entirely clear whether the cells must  
emigrate from the endothelium into the surround- 

ing tissue in order to elicit injury or if damage to the 
endothelial cell is sufficient. It is likely that  the neu- 
trophil causes deleterious effects in both the vascu- 
lature and surrounding tissue. Since neutrophils 
can form aggregates, small capillaries may become 
physically "plugged" and represent the underlying 
mechanism for the "no reflow phenomenon," where 
areas of the ischemic region are not properly reper- 
fused (76). Neutrophils also may affect larger ves- 
sels such as arterioles and precapillary vessels. Re- 
lease of vasoconstricting agents from the activated 
neutrophils are thought to decrease vessel diameter, 
resulting in decreased perfusion of the surrounding 
tissue (77). The decrease in perfusion may be exac- 
erbated by release from the neutrophil of factors 
such as PAF, which serves to activate circulating 
platelets. The accumulation ofplatelets in the reper- 
fused area would allow for an increase in vascular 
plugging in addition to release of platelet-derived 
factors that  act upon the vasculature (78). 

Complement-mediated injury of the myocardium 

Recent attention has been focused on the role of 
the complement system in reperfusion injury (Fig- 
ure 3). Like the neutrophil, the basic role of the com- 
plement system is in the defense of the host from 
microbial invasion. However, the complement sys- 
tem has been implicated in a number of adverse con- 
ditions including the exacerbation of reperfusion in- 
jury. First suggested by Hill and Ward (79), evi- 
dence has accumulated for the role of complement in 
reperfusion injury. A number of investigators have 
utilized the ability of cobra venom factor and other 
agents to decomplement experimental animals be- 
fore the induction of myocardial infarction (80,81). 
Upon subsequent reperfusion, a decrease in infarct 
size was noted in addition to decreased neutrophil 
infiltration into the ischemic zone. These observa- 
tions have resulted in numerous investigations to 
determine the effects of complement activation on 
the myocardium and the factors responsible for ac- 
tivating the complement cascade. 

Two primary pathways have been described as to 
how complement activation elicits myocardial dam- 
age. The first, as mentioned previously, is through 
the generation of chemotactic factors and anaphyla- 
toxins such as the cleavage products C3a, C4a, and 
C5a. These three products stimulate mast cells and 
basophils to release histamine, increasing vascular 
permeability [Figure 4; (82,83)]. In addition, both 
C3a and C5a act as chemotactic factors to amplify 
the inflammatory response by at tracting neutro- 
phils. Thus, the generation of these cleavage prod- 
ucts play a role in the early events (increasing vas- 
cular permeability) and later events (recruitment of 
neutrophils) associated with reperfusion injury. Ac- 
tivation of the complement system also mediates di- 
rect myocardial damage through formation of ana- 
phylatoxins and the membrane  a t tack complex 
(MAC). While the anaphylatoxins, C3a, C4a, and 
C5a act primarily in an indirect manner,  assembly 
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Figure 3 - -  Schematic outline of the complement system. Activation of complement ultimately results in the formation of 
the anaphylatoxins and the membrane attack complex (MAC). 

and insertion of MAC within the membrane of both 
the endothelial cell and cardiomyocyte will lead to 
further tissue injury. 

The MAC is an amphiphilic complex composed of 
complement proteins C5b-9. Activation of either 
the classical or alternative pathways of complement 
is associated with the formation of the C5b-7 tri- 
molecular complex. This complex has the ability to 
associate with phospholipid membranes, most likely 
through an interaction of the membrane with C7, 
which contains phospholipid binding sites (84). Once 
this complex is inserted into the membrane of the 
target cell, proteins C8 and C9 become associated 
with the C5b-7 complex. Although the attachment 
of C8 to the C5b-7 complex is sufficient to cause cell 
lysis, it is the addition of multiple units of C9 that 

results in rapid cell destruction (85). The attach- 
ment of at least 12-18 C9 monomers to the C5b-8 
complex within the membrane is associated with the 
formation of a circular pore or channel spanning the 
membrane (85). 

Deposition of the MAC and other indicators of 
complement activation have been noted in areas of 
infarction while the surrounding normal tissue re- 
mains relatively free of complement components 
(86,87). Furthermore, concentrations of the soluble 
form of the MAC have been shown to increase in the 
plasma after an ischemic event (88,89). The effects 
of MAC deposition on nucleated cells varies widely. 
In sublytic amounts, deposition of the complex may 
act as a stimulatory signal leading to activation of 
both protein kinase C and G proteins, phospholipid 

/ 

Endothelial Cell Effects ~ Effects on the neutronhil 
1. Increase vascular permeability] 1. Induce cytokine release 
2. Increase PAF synthesis / 2. Promote release of matrix 
A ~ A D ~ ,  , ~ , ~ v , ~  / ~ degrading enzymes 

I . . . .  ~ a . ~ a A ~ ' ° ~ - - - - - - - - - ~ -  o ~ o ~ :  b o ~ o  : ~ ~  MEMBRANE ATTACK COMPLEX[ 

Effects on the neutronhil [ Endothelial Cell Effeft~ 
1. Promote neutrophil margination [ 1. Increase P-selectin expression 
2. Promote chemotaxis 
3. Activate neutrophils 

/ - -  / /  
Figure 4 --  Role of activated complement in mediating neutrophil adhesion to the endothelium. Products of complement 
activation, primarily consisting of the anaphylatoxins and the MAC, elicit their effects upon both the endothelium and the 
neutrophil. The anaphylatoxins C3a and C5a promote endothelial cells to synthesize PAF in addition to increasing 
vascular permeability. C3a and C5a also promote neutrophil migration and chemotaxis as well as activate the neutrophil. 
Formation of the MAC on the endothelium has been shown to lead to the expression of P-selectin. When formed on the 
neutrophil, the MAC may induce the release of cytokines and proteolytic enzymes. 
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tu rnover ,  and increased  in t race l lu la r  calcium 
(90,91). The MAC also may participate in initiating 
the inflammatory response by promoting neutrophil 
adhesion to the endothelium (Figure 4). Hattori et 
al. (92) have demonstrated that  human endothelial 
cells exposed to sublytic amounts of C5b-9 protein 
rapidly express the neutrophil adhesion molecule 
P-selectin. Although the neutrophil is, for the most 
part, resistant to MAC formation, it is possible that  
deposition of the complex can form on the cell sur- 
face and once bound, the MAC may stimulate the 
neutrophil to release cytokines and matrix degrad- 
ing enzymes, as has been previously noted in other 
cell types [see Figure 4; (93)]. Formation of the MAC 
also may directly injure endothelial cells and cardi- 
omyocytes within the ischemic zone. When these 
cells have sustained "multiple hits" from the MAC, 
water, ions, and small proteins can move into and 
out of the cell. The free movement of these molecules 
may lead to disruption of cellular function and even- 
tual cell lysis as a result of a loss of intracellular 
osmotic control. 

The ability of the MAC to cause myocardial injury 
has been demonstrated recently in the functioning 
heart  by Homeister et al. (94). In this study, human 
plasma was perfused through the rabbit isolated 
heat. Activation of the human complement system 
by the rabbit tissue resulted in cardiac damage, 
characterized by changes in cardiac function and re- 
lease of intracellular enzymes. Evidence from this 
and subsequent studies revealed that  deposition of 
the MAC was the primary agent responsible for the 
myocardial injury (95). 

The pathway of complement activation during 
ischemia/reperfusion remains to be elucidated. The 
use of thrombolytic agents such as recombinant tis- 
sue plasminogen activator (rt-PA) has been associ- 
ated with activation of complement (96). Plasmin, 
which is activated upon administration of rt-PA, is 
able to cleave component C1, resulting in activation 
of the entire cascade (97). Because activation of com- 
plement is associated with hearts that  have not re- 
ceived rt-PA, it is likely that  other mechanisms ex- 
ist for complement  activation after an ischemic 
event. A number  of studies have shown that  oxygen- 
derived free radicals have the ability to activate the 
complement cascade by converting C5 to a function- 
ally active C5b-like form (98,99). In addit ion,  
Shingu and colleagues have shown that  hydrogen 
peroxide and peroxide-like radicals released by ac- 
tivated neutrophils will activate complement (100). 

Recent attention has been focused on the loss of 
the protective mechanisms that  serve to guard cells 
from complement attack. Nucleated cells contain a 
number of protective mechanisms against comple- 
ment  activation [reviewed in (101)]. These defense 
mechanisms require the cell to be metabolically ac- 
tive (102). Thus, ischemia/reperfusion may metabol- 
ically impair the affected cells, leaving them suscep- 
tible to attack by complement. Damage to mem- 
brane proteins, possibly by free radical generation, 
also may play a role in complement-mediated dam- 

age. A number of cells express numerous regulatory 
proteins on their membrane that  serve to protect the 
cell from attack by endogenous complement. These 
proteins include: decay accelerating factor (DAF), 
homologous restriction factor (HRF), and protectin 
[CD59; (103-106)]. At least one of these protective 
proteins, protectin, has been shown to be lost or 
damaged following an ischemic event (107). Another 
of these proteins, complement receptor type 1 (CR1) 
is thought to provide the greatest inhibitory effect. 
CR1 is a membrane protein found primarily on pe- 
ripheral blood cells (84). A study by Weisman and 
colleagues (108) utilized a recombinant soluble form 
of the CR1 receptor (sCR1) to inhibit the effects of 
complement during ischemia and reperfusion. The 
sCR1 protein lacks the t ransmembrane and cyto- 
solic domains, rendering it free to exert its protec- 
tive effects in the soluble form (108). Addition of 
sCR1 to a rat infarct model resulted in a 44% reduc- 
tion in infarct size and a decrease in neutrophil in- 
filtration. Several additional reports have supported 
the role of sCR1 in protecting the  myocardium 
(95,109,110). The protective effect of sCR1 not only 
provides additional evidence for the role of comple- 
ment  in myocardial injury, but may also provide a 
potential therapeutic avenue by which to decrease 
reperfusion injury. 

Conclusions 

Although the concept of reperfusion injury has be- 
come widely accepted, the question remains: to what 
extent is reperfusion involved in the genesis of myo- 
cardial injury and would therapeutic intervention 
be beneficial to the infarcted patient? There is no 
complete answer as yet, but it is suggested that  
reperfusion of the myocardium is associated with an 
increase in cell death. Furthermore, prevention of 
events associated with reperfusion, such as forma- 
tion of oxygen-derived free radicals and prevention 
of neutrophil accumulation, has been shown to be 
beneficial in preserving the myocardium in a num- 
ber of experimental models. The possibility remains 
that  adjunct therapy administered at the time of 
thrombolysis may serve to decrease the detrimental 
effects of reperfusion and thus provide additional 
therapeutic benefits to the patient. As more knowl- 
edge becomes available regarding reperfusion in- 
jury, it becomes readily apparent that  a number of 
contributing factors are involved. Recognition that  
the inflammatory response is associated with the 
pathogenesis of this type of injury has provided a 
number of additional avenues by which one may in- 
tervene in the progression of this type of injury. In- 
hibition of the complement system is particularly 
appealing in that  inactivation of this pathway may 
afford protection against the actions of the MAC in 
addition to decreasing the infiltration of neutrophils 
into the ischemic zone. However, it is likely that  any 
effective therapeutic intervention would require in- 
hibition of a multi tude of events, including both free 
radical formation and the inflammatory response. 
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