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Beginning with the work of Koiter in 1945, valuable insights into the postbuckling behavior of structures have 
been gained by Lyapunov-Schmidt decomposition of the displacements followed by an asymptotic expansion about 
the bifurcation point. Here this methodology is generalized to include nonlinear prebuckling behavior, as well as 
multiple, not necessarily coincident buckling modes. The expansion of the reduced equilibrium equations is 
performed about a reference point (which need not coincide with any of the bifurcation points), and applies no 
matter whether the modes are coincident, closely spaced, or well separated. From a variety of possible decomposi- 
tions of the admissible space of displacements, two are incorporated into a finite element program. Theoretical 
considerations, and numerical examples in which asymptotic results are compared to ‘exact’ results, indicate that 
one of the decompositions has some important advantages over the other. Examples include a shallow arch, and a 
beam on elastic foundation problem exhibiting symmetry-breaking modal interaction. 

1. Introduction 

Certain structures, and especially those with multiple coincident buckling modes, can be very 
sensitive to imperfections. For such structures, even a small imperfection can produce a considerable 
drop in load carrying capacity. More precisely, the load at the first limit point of the imperfect structure 
is considerably lower than the bifurcation load of the perfect structure. Perhaps the best known 
example of this is the thin cylinder under axial compression [l-5], but imperfection sensitivity can also 
occur for other structures, such as domes, thin-walled beams, and ribbed shells and plates where both 
global and local modes are possible. Optimization of structures also tends to produce coincident 
buckling modes, with the possibility of symmetry-breaking modal interactions. 

Methods to calculate the buckling loads for the perfect structure are well established and available in 
most general purpose codes. They do not provide any information in regard to postbuckling behavior 
and imperfection sensitivity, however. A second approach, one that allows the effect of imperfections 
to be included, is based on numerically tracking the equilibrium path of the imperfect structure beyond 
the point of maximum load (limit point). This can be achieved by a change in the ‘loading’ parameter. 
For example, an approximation to the arclength along the equilibrium branch might be controlled at 
every loadstep, instead of the magnitude of the applied loads [6-81. This method is very useful and also 
available in most general purpose nonlinear codes, but it requires a separate analysis for each 
magnitude and shape of imperfection to be considered. Also equilibrium paths may have strong 
curvatures in the vicinity of bifurcation points, rendering them difficult to track numerically. 

A third approach, the one further explored here, is based on the Lyapunov-Schmidt decomposition 
together with an asymptotic expansion about the bifurcation point. This is the approach used by Koiter 
[l] in his pioneering work. It is applicable to elastic structures with a potential energy function. Its 
advantage is that it provides more insight into the nature of the bifurcation, and an approximate drop in 
load-carrying capacity can readily be calculated for a variety of shapes and magnitudes of imperfections 
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with minimal effort. Thus it is also possible to find the worst shape of imperfection (i.e. the 
imperfection shape that produces the largest load drop for a given magnitude of imperfection) by 
finding the bifurcated branch for the perfect structure on which the load drops most rapidly [9-111. 

This Lyapunov-Schmidt-Koiter (LSK) approach to the postbuckling behavior and imperfection 
sensitivity of structures has been extensively used in analytical studies for specific structural geometries 
[12-181. However, the implementation of this methodology in finite element programs that could be 
used for general structural geometries is still in the early stages of its development [19-261. 

In this paper, the general theory underlying the LSK method is reviewed, and generalized to obtain 
an expansion of the reduced equilibrium equations that is valid for nonlinear prebuckling behavior, as 
well as non-coincident modes. Although problems are addressed in [1,13] with nonlinear prebuckling 
behavior and coincident modes, and Byskov and Hutchinson [27] address problems with noncoincident 
modes but linear prebuckling behavior, an asymptotic expansion of the reduced equilibrium equations 
that is valid for noncoincident modes and nonlinear prebuckling behavior appears not to be available to 
date. Here the expansion is performed about a reference point which need not coincide with any of the 
bifurcation points. This gives rise to corrections to the mode shapes which vanish when the modes are 
fully coincident and the expansion is performed about the multiple bifurcation point. Another feature 
of this presentation is that the expansions are continued one term beyond the leading order terms for an 
asymmetric bifurcation. These higher order terms become important in evaluating the merits of 
different decompositions of the displacements. 

From a wide range of possible decompositions of the space of admissible displacements A, two are 
implemented and evaluated. In both cases A is decomposed into a space A, spanned by the buckling 
modes (eigenvectors of the stability matrix corresponding to the lowest eigenvalues), and a com- 
plementary space a. It is shown both theoretically, and by numerical examples, that choosing a to be 
the set of all displacements B that are orthogonal to the buckling modes (with respect to a linear 
combination of the tangent stiffness matrix and the rate of change of the tangent stiffness matrix along 
the principal branch) has certain advantages over other choices of the complementary space A. In the 
authors’ opinion, these advantages outweigh the slight additional costs of this decomposition in 
computational and programming effort. 

Finally a number of illustrative examples involving nonlinear prebuckling behavior as well as 
symmetry breaking mode interaction are presented, and the results from the asymptotic analysis are 
compared to ‘exact’ results obtained by numerically tracking the bifurcated equilibrium branches. The 
accuracy of the asymptotic results for the drop in load carrying capacity caused by an imperfection is 
also examined in these examples. 

2. Theory 

Suppose that (i) the structure considered is elastic with a sufficiently smooth potential energy 
function 4 = 4(u, A, U), where u is the displacement field, A is the load parameter, U represents an 
imperfection with U = 0 corresponding to the perfect structure; (ii) the sets of admissible displacement 
and imperfection fields, A and 2, respectively, are normed vector spaces, and (iii) a smooth principal 
solution i(A) exists which vanishes at A = 0 and satisfies the equilibrium condition 

~&!i(A),A,O)Su=O V~UEA, VA, 

where (. )., denotes a Gateaux (or Frechet) derivative. 
The analysis proceeds by choosing a reference point on the principal equilibrium branch about which 

the asymptotic expansion is to be performed. The value of the load parameter A at the reference point 
is denoted by A,. In contrast to the classical analysis [l] in which the expansion is performed about a 
multiple bifurcation point, here the reference point need not coincide with any of the bifurcation points. 
Any point on the principal equilibrium branch can be used as the reference point about which the 
expansion is performed. This expansion is valid in some neighborhood of the reference point no matter 
whether the modes are fully coincident, closely spaced, or well separated. 
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Following the spirit of the Lyapunov-Schmidt approach, the space of admissible displacements A is 

decomposed into a subspace A o, which is spanned by a finite number of modes r!i, and a complementary 
space A such that 

A=A,&i, AJ-d={O}, (hb) 

and there exists an (Y > 0 such that 

cpf,” 6ti 61i 2 CY V61iEa with ]]SzZll=l. (3) 

Equations (2) ensure that any displacement field u E A can be decomposed uniquely as 

u=u,+li, r$lEAo, tiea, (4) 

whereas (3) ensures positive definiteness of the stability operator +,, restricted to a in a nonvanishing 
neighborhood of the reference point. For a finite-dimensional space of displacements A, condition (3) 
follows from (2), if the stability operator 4F,, is positive semidefinite and A, contains its nullspace. 

The space a is often taken to be the orhogonal complement of A,,, but, as was observed by 
Thompson and Hunt [28], it is not necessary to introduce this restriction. Other possibilities can lead to 
simpler implementations of the method. 

Considerable flexibility also exists in the choice of the space A,. For the case of fully coincident 
modes at A = A,, the natural choice for A,, is the nullspace of the stability operator evaluated at the 

reference point. In this case, the basis vectors < satisfy 

where a superscript c applied to the potential energy or any of its derivatives denotes evaluation at the 

reference point, (u, A, zi) = (&A,), A,, 0). If the buckling modes are not fully coincident u” can be 
chosen as the eigenvectors corresponding to the smallest eigenvalues pi in 

(~:U,+~&,,,)i&=O V~UEA, (6) 

where a dot placed above any entity denotes evaluation of the entity on the principal branch for the 
perfect structure followed by differentiation with respect to A and evaluation at A = A,. Thus, 

More generally the modes k need neither be chosen from (5) nor from (6). Any set of linearly 
independent vectors can be chosen, as long as conditions (2) and (3) are satisfied. 

Applying the decomposition of (4), the displacements can be written as 

u=~(A)+~r,~+li, tiEA, (8) 
i 

where & are scalar buckling deflections. Correspondingly, the equilibrium conditions can be decom- 
posed into the following two conditions: 
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In (9) and (lo), the imperfection has been written as U = E??, where E E A is a normalized imperfection 
shape, E is a scalar magnitude of the imperfection. 

In view of (3) and the implicit function theorem, (9) admits a unique solution Li = Li( ti, A, E) E a for 
any given (&, A, E) in the vicinity of the reference point. The corresponding total displacement can be 
written as 

u=U(5,,A,E)‘~(A)+C~i6+;(~;,n,F), (11) 
j 

and the set of all such solutions is referred to as the partial equilibrium surface’ (since equilibrium 
conditions are partially satisfied on this surface), whereas ( &, A, E) are referred to as the parameters of 
the partial equilibrium surface. This partial equilibrium surface is not a property of the structure; it 
depends on the choice of the space a. 

It follows by differentiation of (11) that 

I 

u.i = ii+ G.. 
n 

I 3 u., = u., ) lkij = ii,, ) Uy* = ii., ) . . . , (12) 

where ( * ).i = a( - )/a,$, . Also, since Li E a, the derivatives of Li must also lie in the complementary space 
a. Thus u.,, uYij, U.~* and their derivatives are in A. For the subsequent analysis, it is convenient to 
introduce the following notation for the derivatives of the displacements with respect to parameters of 
the partial equilibrium surface evaluated at the reference point: 

(iJ 

’ E [U’il(f,,*,~)=(~,n,,~) 9 (i’ = [%I(*. * F)=(O&O) 9 I. - 

(i) 
’ E [“il(,. A E)=(O.A~.O) 2 ,’ ’ (F’ = [kl(s h E)=(O,Ac,O) ? ,’ 3 

With the aid of (ll), (9) can be rewritten as 

(” E [“‘ijl(*j.*.~)=(O,h,,~~ l . f . Y (13) 

(0) 
’ E [~‘ijl(~,,~,E)=~O,*..O) 2 . . . . (14) 

&(u(&, A,&), h,&z)szi=O VSGEA, V(&, A,&). (15) 

Taking derivatives of this equation with respect to <,, A and E and then evaluating the results at the 
reference point, produces 

(...)*i 3 &lil6ti=O vszxa, (16) 

(. . .)., 3 (c#JFuu (cl’ + r#J:,,> 6fi = 0 v I% E a ) (17) 

(. . .),, j (4Fu, ‘i-4) + t#&q 6l.i = 0 v sz.2 E a ) (18) 

(. . .).,j * (c$F,, (ii) + #L,,, ii) (A))) &Ii = 0 v 66 E A , (19) 

(. . .).i, j (4F,, (;J+&U ~)8fi=O VsrEa) (20) 

(. . .).;, I$ { f$F,, (ii) + (&,, ‘;’ + &,tll*) ‘;‘} 6d = 0 v 2% E a , (21) 

(. . .).*, + (c& (huEJ + &, ‘i’ + &,Z) 6fi = 0 v tici E a ) (22) 

’ Thompson and Hunt [B] call this the ‘surface of activity’. 
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(. . .)‘ijr 3 {c$Fu, Y + &, (2 + &,, ‘:: ‘il’ 

+ CbLA 
(iA) (i) (jh) W 
u us u u)}6ti=O V8LiEA, (24) 

(. . .)‘i*A 3 {4YU, Y + 2&, (Z’ + ;i.,, ‘r?} 6ti = 0 v 6Li E a . (25) 

It follows from (16), (12) and (13) that 

P&b) 

0) 
Equation (26b) admits unique solutions for & E a. Methods to compute this solution depend on the 

choice of a and are discussed later. Once this solution is available, !./ can be calculated from (26a). 

To obtain (L’ from (17), differentiate (1) with respect to lambda and evaluate at A = A, to obtain 

(~:,,ri+t#~F,,)6u=0 V6uEA. (27) 

Comparing this result with (17), and invoking uniqueness of the solution to (17), and also noting from 

differentiation of (11) with respect to A that (i’ = zi + ‘A’, it is seen that 

(A) (A) 
24 =li, ii =o. 

Indeed, by substituting & = E = 0 into (9), comparing the result with (l), and invoking the uniqueness 
of the solutions for ti, it is seen that 

(A) (AA\) 
Li(O,h,O)=O VA 3 ic = h =*..=o. (29) 

(e) (ij) (iA\) (ie) (ijk) (ijh) 

Since u , u , u , u , u , u and ?? are in the space a, these quantities can also be determined 
uniquely from (18)-(25). Higher derivatives of u( &, A, E) can also be evaluated in a similar fashion to 
obtain the following expansion for the displacements on the partial equilibrium surface: 

(30) 

Consider now the second equilibrium condition, (10). If a reduced potential energy function is 
defined as 

$( 5i, A, &) z 9(U( 5i> A, e)> A, e’) 7 (31) 

and this is differentiated with respect to &, one obtains 

+i = @,(i + Li) = f$., ,” . (32) 

The second equality in (32) follows from (9), since $I., is evaluated on the partial equilibrium surface, 
and li as well as its derivatives lie in the complementary space a. Thus (10) is seen to be equivalent to 
stationarity of the reduced potential energy ($L~ = 0). In other words, stationarity of the reduced 
potential energy is a necessary and sufficient condition for equilibrium. It can also be shown [ll] that 
equilibrium states are stable if and only if the matrix $.ij is positive definite. 

Expanding (32) about the reference point produces 
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where AA = A - A,, and the postbuckling coefficients c&, qbij, dij,, &jk, etc. are derivatives of the 
reduced potential energy evaluated at the reference point. Notei that I#+~ = 4iAA = &hA = . * . = 0, since it 

follows from (31) and (32) that &(O, A, 0) = +,(z$A), A, 0) ii= 0 for all A. The expressions for the 
other derivatives of the reduced potential energy can be simplified with the aid of (16), to obtain 

(420) 

The expansion in (33) is valid no matter whether the modes are coincident, closely spaced, or well 
separated. However, except for the case of fully coincident modes, the solutions of interest are in 
general a finite distance away from the reference point. Therefore (33) does not lend itself directly to 
asymptotic methods of solution. 

To overcome this difficulty, the structure must be modified by introducing a mode splitting 
parameter, 5, say, such that the modes become fully coincident in the limit as l-+0. This can be 
achieved by replacing the potential energy +(u, A, U) by a modified potential energy given by 

&4 A, 6 s> = 4(U, A, 2) + ; ([ - 1) ; ck[(u - i(A), ?)g(u - :(A), ‘:‘) , (43) 

where g(*;) is a bilinear, symmetric form that satisfies the condition 

g(O,I;)=O Vi, VliEA, (44) 

and for which the matrix of coefficients g” = g( ‘II’, ‘z?) has an inverse, whose elements are denoted by 
g,, and ckl are constant coefficients given by 

‘kl = c +ijgikgjl . 
i,i 

(45) 

The following observations can be made when comparing the modified structure with the original 
one: 
(1) For 5 = 1, they are identical [i.e. C&U, A, U, 1) = c$(u, A, ii)]. 
(2) The fundamental solutions a( A) are identical. 
(3) If the eigenvalue problem (6) is written for the modified structure, the modes i for the modified 

structure would not necessarily coincide with those for the original structure. 
(4) All postbuckling coefficients are identical [i.e. c$(.,,, = c#+,,], except that &j = 64,. 
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In view of the last observation, the reduced equilibrium equations for the modified structure become 

which does lend itself to asymptotic methods of solution that are valid for small 5 (see for example [ll]. 
This leads to series solutions for E, 5, Ah and & as functions of a solution parameter denoted by 5. 
Whereas a variety of parametrizations are possible, it will be assumed here that 5 is defined such that 
c 6; = O(S’). 

For an asymmetric bifurcation (i.e. when at least one of the coefficients Qliik is nonzero), the solutions 
are of the form E = 0( r2), 5 = O(t), AA = 0( 5) and & = O(t). T erms in the series solution of the 
order indicated above will be referred to as the lowest possible order terms. To calculate these lowest 
possible order terms, it is sufficient to solve a truncated version of (46), in which only the first four 
terms of (46) are included. (It is readily verified that other terms in (46) are of higher order.) For the 
perfect structure with coincident modes, these lowest possible order solutions describe the number of 
equilib~um branches that emanate from the bifurcation as well as their directions (provided that all 
lowest possible order solutions are isolated). In order to obtain the next higher order term in the series 
solutions (e.g. curvatures of the solution paths emanating from the bifurcation), the other terms shown 
in (46) also need to be considered. 

For a s$rmmetric bifurcation (i.e. when all $+jk are zero), the solutions are of the form Si = O(S), 
AA = 0( 5 ), E = 0( t3) and 5 = 0( [*). In this case, calculating the lowest possible order solution 
requires the 4ij,,tj&&, term in (46) to be included in addition to the first four terms in (46). Higher 
order accuracy in the solution for a symmetric bifurcation would require additional terms that are not 
given in (46). 

The truncated version of (46) that provides the lowest possible order solutions are referred to as the 
leading order reduced equilibrium equation. The terms and the postbuckling coefficients involved in 
this equation are referred to as ‘leading order terms’ and ‘leading order postbuckling coefficients’, 
respectively. Thus, for an asymmetric bifurcation, the leading order postbuckling coefficients are &, 
&, rjb,, and 4ijk. For a symmetric bifurcation, the leading order coefficients are the same, except that 
the Cbjik (which are all zero) are replaced by the #ijkf. 

3. Implementation 

A summary of the procedure for calculation of the postbuckling coefficients +ij, (p,, , &jA, +ijk and 

6#+jkI is as follows: 
Obtain a converged solution on the fundamental branch to be used as a reference point. (This point 
should be close to any bifurcation points of interest.) 
Obtain the displacement rate{.? at this point. 

Obtain the corrected modes ; from (26a), after calculating z from (26b). 
If desired, orthonormalize the modes so that 

(p,iA = - #%‘ij 7 (47) 

where &, is a positive constant and Sii is the Kronecker delta. This operation is performed using the 
modified Gram-Schmidt orthogonalizatiglT procedure described in [29], 

Obtain the second order displacements u from (19). 
Calculate the postbuckling coefficients of interest using (34)-(42). 

The calculation of the displacement rate ti (step 4) deserves some further comment: usually this 
displacement rate can be calculated from 

(#:,,ti++:,,)Su=O VSuEA. (48) 
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However, if the reference point is very close to a bifurcation point, the tangent stiffness matrix +I,, is 
close to singular, and (48) does not produce an accurate solution for ci. Under such circumstances, it is 
preferable to estimate ri using the results from previous loadsteps. For this purpose, suppose that the 

reference point is to be the solution at loadstep i. Then the values of i and dildh at loadstep i - 1 
together with the value of i at loadstep i - 2 can be used to obtain an approximation for i(A) that is 
quadratic in A. This expression can be differentiated with respect to A to obtain the desired 
approximation for dz%dA at loadstep i, the reference point. The same approach is also useful when 
tracking an equilibrium branch, to obtain improved predictor values of the displacements at each 
loadstep. 

Within this general framework, a variety of different decompositions of the space of admissible 
displacements A are possible, depending on the choice of the complementary space a. Two different 
choices for A are evaluated here: the first (decomposition A) is simpler, and bears some similarity to 
the ‘equivalence transformation’ approach of [26]; the second (decomposition B) employs the orthogon- 
al complement of the space spanned by the buckling modes for a, and is more akin to the classical 
approach as presented in [l]. Both methods have been implemented in a finite element program named 
lskfe. 

3.1. Decomposition A 

This method relies on the definition of a number of control degrees of freedom. The other degrees of 
freedom will be referred to as the passive degrees of freedom. If the total number of degrees of 
freedom is N, and the number of modes to be considered in the analysis is N,,, then N,, control degrees 
of freedom should be chosen, leaving iV1 = N - N, passive degrees of freedom. Thus any displacement 
vector u can be written as u = (v, w), where v contains the passive degrees of freedom, and w contains 
the control degrees of freedom. The space a is taken to be the set of all displacements u which involve 
zero displacements for all control degrees of freedom. Thus u = (v, w) E a implies that w = 0. 

Recall that the choice of a must be such tha_t (2) and (3) are satisfied. Clearly (2a) is satisfied. 
Equation (2b) requires that the N, x NO matrix W given below be nonsingular. 

(49) 

I i 
where G denote the controlled components of the modes k = (G, b). This provides the criterion for an 
appropriate choice of the control degrees of freedom. It can also be shown (for the finite dimensional 
case) that the positive definiteness condition (3) is satisfied, provided that the tangent stiffness matrix 

+L is positive semidefinite, and the modes ‘u” span the nullspace of +Fuu. 
The main(qdvantage of this choice of the space a is that it makes the calculation of the correction to 

the modes B E a from (26b), and the second order displacements %’ E a from (19) particularly 
simple. Only the equations corresponding to th; passive degrees of freedom need to be considered in 

I 
order to calculate the passive components of ii or (i’. 

More specifically, for the calculation ofi the corrected buckling modes ‘I: = (‘z, E) from (26), the 

passive components of the buckling modes v” can be taken as zerp,for simplicity. (They do not affect any 

of the subsequent results.) Thus t= (0, b) = (0, ‘i.$, and ? = ( ’ v , 0) = (‘2, 0), where ‘:’ is determined 
from 

Here +f,,, is an N, x N, positive definite submatrix of the tangent stiffness matrix +t,. 
The equation for the second order displacement (19) can be reduced in a similar way to obtain 

(51) 
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Thus the corrected modes and all second order displacements can be calculated with a single 
factorization of the reduced tangent stiffness matrix. 

Another advantage of this approach is that it is not strictly necessary to solve the eigenvalue problem 

(6) to obtain the modes z? = (b, i). One can simply pick i such that the matrix I@ given in (49) is an 
identity matrix. In this case, & represents the displacement for the ith control degree of freedom. 

3.2. Decomposition B 

Here the complementary space a is taken to be 

a = { Li E a: (a4F,, - p&,,) r!iB = 0 Vi} , (52) 

where (Y and p are any positive constants (e.g. (Y = /3 = 1). If in addition, the modes are obtained by 
solving the eigenvalue problem, (6), then it follows from (6) and (52) that 

Thus, as long as a~, + p # 0, it follows from (53) that 

(53) 

I (i) 
Comparing (54) with (16), it is seen that ii = ‘2. Thus t = 0, and no correction to the modes is 
necessary for this case. 

Equation (54) leads to a number of simplificatiy:; in the evaluation of certain higher order 

postbuckling coefficients: clearly from (20) and (54), ‘u =O. Thus (39), (41) and (42) reduce to 

(55a-c) 

Further simplifications are possible for a wide class of problems involving linear prebuckling behavior 
described in Appendix A. In this case, (55a-c) reduce to 

+ieh = 4ie IA, ? 4ijkA = O 2 4ij.U = O ’ (56a-c) 

Thus for the perfect structure with an asymmetric bifurcation including only the &jkl&tj& terms in 
addition to the leading order terms does produce a solution of higher order accuracy. (ij) 

To obtain the solution for the second order displacements, (19) and the condition u E a can be 
written as 

(57) 

where $JF,, and (6,,, denote N x N matrices, +F,,, 
0) (0 
u u denotes an N x 1 column vector, a is an N, X 1 

column vector, and b is an N X N,, matrix given by 

b = (&Fuu - p&,)((A) ‘2 . . . 2)) . (58) 

Denote the (N + N,,) x (N + N,) matrix of coefficients in (57) by B. While this matrix is sparse, 
symmetric and nonsingular, it is not positive definite. It is therefore advisable in the solution of (57), to 
partition the matrix B into a positive definite submatrix that is factored using a standard skyline 
symmetric equation solver without pivoting, and then solve a condensed system of equations using a 
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solver with pivoting. For this purpose A$ control degrees of freedom are defined as for decomposition 
A, and the matrix B is partitioned as 

B= 

where b, and b, are the rows of the matrix b corresponding to the passive and 
freedom, respectively. 

In solving (57), the passive components of the second order displacements 

(59) 

control degrees of 

( i.e. Y) are first 
eliminated to obtain a reduced system of 2N,, equations in which the matrix of coefficients is 

C = B,, - B,,B ;,‘B,, . (@a 

This reduced system is then solved using a routine with pivoting. The (N - N,) x (N - N,,) matrix B,, 
can be factored using any standard solver without pivoting that exploits the symmetry and bandedness 
of the matrix. Evaluating B,‘B,, then requires N, forward reductions and back substitutions. The 
factorization of B,, and C, and forward reductions and back substitutions to calculate BLOB,, need only 
be performed once. They apply for the calculation of all N,(N, + 1) /2 second order displacement 
vectors (ii)u. 

3.3. Effect of the choice of a on results 

Two alternative decompositions, A and B have been outlined above. They differ in the choice of the 
complemental space a. In both cases, the solutions can be derived in series form. However, different 
choices of the space a imply different parametrizations of the solutions. Therefore term by term 
equality between a series solution from decomposition A and its counterpart from decomposition B in 
general does not apply. All that can be said (assuming the series converge) is that if all terms are 
included, the solution sets are identical (although their parametrization would still differ). On the other 
hand, if (1) all modes are fully coincident, (2) the reference point coincides with the bifurcation point, 

(3) the same buckling modes ii are used for both decompositions, and (4) these modes span the 
nullspace of the tangent stiffness matrix +f,,, then it is readily verified that the postbuckling coefficients 
(pi,, CpijA and &jk will coincide. Furthermore, for a symmetric bifurcation (i.e. when all #ijk are zero), the 
fourth order coefficients +ijk[ will also be identical in this case. Under other circumstances, the 
postbuckling coefficients from decompositions A and B will in general be different. 

The assertions made above based on theoretical considerations have been confirmed by numerical 
examples involving a simple symmetric bifurcation. However, for the sake of brevity, a detaiied account 
of these numerical examples is omitted. It was found that for decomposition A, the accuracy of the 
asymptotic results can deteriorate rapidly as the reference point was moved away from the bifurcation 
point, and is strongly dependent on the choice of the control degree(s) of freedom. Indeed, decomposi- 
tion A can produce a nonzero postbuckling coefficient (6ri1 for a symmetric bifurcation, if the reference 
and bifurcation points do not coincide. Generally, these examples together with the possibility of 
obtaining higher order accuracy lead to the conclusion that decomposition B is preferable despite the 
somewhat larger amount of computational effort involved. Although decom~sition B is also slightly 
more complicated, the programming effort need only be made once. It need not be repeated each time 
a new type of element is added to the program. 

4. Examples 

4.1. Beam on ndinear softening foundation (simple bifurcation) 

T%e problem of a beam on an elastic softening foundation with cubic nonlinearity is perhaps the 
simplest problem that can produce coincident or nearly coincident buckling modes, as well as symmetry 
breaking modal interaction. The potential energy for this problem can be written as 
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#(u, A, U) = ld’ (1 rr2 2u +~~~-$~~-~h(~‘+C’)*-~u}d.x, 

and the essential boundary condition used is u’ = 0 at x = 0, L. In (61), u represents the transverse 
displacement, U is the initial imperfection in the form of a transverse displacement that exists when 
beam and foundation are stress free, A represents the axial compressive force in the beam, and p is a 
uniform transverse load, which is held constant while the axial load h is increased. This transverse load 
was introduced so that the problem can exhibit symmetry breaking modal interaction (for p = 0 the 
bifurcation is always symmetric and the second order displacements are zero). In all cases discussed 
below, the transverse load is taken as p = 5/63’2, which produces a transverse displacement of 
i(h) = 1 /v% Whereas the principal branch involves nonzero displacements, these displacements do 
not change with h. Thus, ti = 0. 

Eigenmodes, orthonormalized to satisfy (47) with (PO = L/2, and the corresponding bifurcation loads 
are given by 

iL . 
u”=,cos ET.?! 

CT ( > L ’ 
h=uf(g)2+(~)2], (62) 

where i is an integer representing the number of half-waves involved in the buckling mode, and 

a4 = 1 - 3(i)* = l/2. For this example, the length is taken as L = 21’4~ to minimize the buckling load 
for the i = 1 mode. This produces a bifurcation load of h, = fi. Analytical evaluation of the 
postbuckling coefficients using the bi~rcation point as the reference point about which the expansion is 
performed, and the complementary space a given in (52) (’ i.e. the one used for decomposition B) 
produces &1 = (6,,, = 0, (bill+; -47& and & = -A,#+, for an imperfection shape that coincides with 

the buckling mode (i.e. Z = L). Omitting all but the leading order terms, the reduced equilibrium 
equation, (33) or (46), becomes 

where 5 = e1 is the multiplier for the i = 1 mode that arises in the decomposition of the displacements in 
the form of (8). 

For finite element discretization of the problem, 100 two-node elements of equal length based on 
cubic Hermite interpolation of the displacement u are used. Integration of the element potential energy 
is done numerically, but with a sufficient number of Gaussian integration points to achieve exact 
integration. Postbuckling coefficients computed by the lskfe program were found to be in excellent 
agreement (to within IO-“&,) with the analytical values quoted above. 

The bifurcated equilibrium branch for the perfect structure, and the relationship between load 
carrying capacity of the imperfect structure (load A at the first limit point) and the amplitude of the 
imperfection obtained from the leading order reduced equilibrium equation (63) are shown in Figs. 1 
and 2 as dashed lines. For comparison, an ‘exact’ solution (continuous lines in Figs. 1 and 2) is 
computed numerically using the finite element discretization described above, and an incremental 
Newton technique, in which an approximation to the arclength along the equilibrium branch is 
controlled at every loadstep. 

An improved asymptotic result for the impe~ection sensitivity curve of Fig. 2 can be obtained by 
including +,hs Ahe of (33) or (46) into (63). The resulting equilibrium condition, 

together with the condition for a limit point (dhldt = 0) lead to a cubic equation, for which the 
solutions are shown in Fig. 2 as a dotted line. The improvement in accuracy is remarkable. At first 
sight, this may seem surprising, since the &, Ah& term is only one of several higher order terms that 
would need to be included to guarantee higher order accuracy in the solution. However, on closer 
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~ Exact 

- -- Asymptotic 

Kotatlon at Center, u’(L/Z) 

Fig. 1. Bifurcated equilibrium branch for a beam on an 
elastic foundation with simple bifurcation (Example 1). 

~ Exact 

--- L. 0. Asymptotic 

Improved Asymptotic 

3 0.005 0.010 0.015 

Imperfection Amplitude, c 

1 
0 020 

Fig. 2. Load-carrying capacity A as a function of the mag- 
nitude of imperfection E for a beam on an elastic foundation 
with simple bifurcation (Example 1). 

examination, it is seen that a number of the other higher order terms are zero. Indeed it can be shown 
that 

4 11111 = &,,A = &e = &11F = 0 

for this example. Another advantage of including this (PIAE Ahs term is that (at least for problems with 
linear prebuckling behavior) it precludes negative values of the load carrying capacity that would 
otherwise arise for a sufficiently large imperfection amplitude E. 

4.2. Beam on elastic foundation (two coincident modes) 

If the length of the beam in the previous example is increased to L = 23’4n while all other problem 
parameters are kept the same, the i = 1 and i = 2 modes become coincident at A = 5 /23/z. 

The postbuckling coefficients were evaluated (i) analytically using the same approach as in the 
previous example, (ii) with the lskfe program using decomposition B, and (iii) with the lskfe program 
using decomposition A. 

The analytical values of the postbuckling coefficients are C&~ = & = & = 0, +,,, = (72)1’49,,, 

@J 1111 = -~fwb 41122 = -(19.2)&, &22 = -(11.35)+0, &112 = &22 = 0, and, for an imperfection of 

the shape Z given by (A.7) (Appendix A), c#+~ = - h,&Ti. 
Bifurcation loads and postbuckling coefficients computed by the lskfe program using decomposition 

B, and 100 elements of equal size were again found to be in excellent agreement with the analytical 
values quoted above. (Errors are less than lo-’ 
postbuckling coefficients.)’ 

for the bifurcation loads, and less than 10-6&, for the 

For decomposition A, the displacement u and rotation U’ at the center node are used as the control 
degrees of freedom. Leading order postbuckling coefficients, C#Q and C& computed by the lskfe 
program are identical (within the accuracy of numerical computations, and the accuracy to which 
coincidence of the reference and bifurcation points was achieved) to those from decomposition B. 
However, as expected, the higher order coefficients c#++~ differ, with the results for decomposition A 

being +1112 = +1222 = 0 (to within lo-*c$,), @llll = -362.0000~#+,, #1122 = -49.8667&, and C& = 
-11.35ooC#+. 

* Mode shapes computed numerically are in general a linear combination of the i = 1 and i = 2 modes. In order to meaningfully 
compare numerical and analytical postbuckling coefficients, it was necessary to redefine the basis for the nullspace of the tangent 
stiffness matrix such that mode 1 involves no displacement at the center node, and mode 2 involves no rotation at the center 
node. 
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Other higher order postbuckling coefficients are not computed by thg lskfe program, but, for this 
example, they can readily be evaluated analytically to obtain & = - $+&, and & = +ijAA = (PijkA = 0. 

The following solutions for the bifurcated equilibrium branches for the perfect structure are shown in 
Figs. 3 and 5: (a) the solution computed as in the previous example by tracking the bifurcated 
equilibrium branches of the structure numerically (identified as ‘Exact’), (b) the leading order 
asymptotic solution, obtained by solving (33), but considering only the leading order terms (identified 
as ‘L.O. Asymptotic’), and (c), (d) improved asymptotic solutions (identified as ‘Decomposition A’ or 
‘B’ depending on which decomposition is used), obtained from a direct numerical solution of the 
reduced equilibrium equations that include the dijkr&j&& terms in addition to the leading order terms. 
(The reduced equilibrium equations were solved using essentially the same arclength control algorithm 
that was used for solution of the full system.) 

Examine first the ‘exact’ solution shown in Fig. 3 from three orthogonal viewing directions. In 
addition to the principal equilibrium branch AB, there are three bifurcated branches through the 
multiple bifurcation point B. The asymmetric branch G’BC, its mirror image, branch GBC’, and the 
symmetric branch LBI, which involves the i = 2 mode only, and for which the rotation at the center 
u’(L/2) is zero throughout. All bifurcated branches are seen to loop returning to the bifurcation point 
B. The equilibrium states are unstable on all bifurcated branches, with the number of negative 
eigenvalues being one on portion G’BCDEFE’D’C’BG of the asymmetric branch, and on portion BI of 
the symmetric branch, and two elsewhere on the bifurcated branches. 

Secondary bifurcations occur at point I, where the symmetric and asymmetric branches cross, and at 
points F and K, which lie on an equilibrium branch u = 0.73129 . . . for which there is no deformation of 
the beam for all values of the axial load A. The deformed shapes of the beam corresponding to each of 
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Fig. 3. Bifurcation diagram for a beam on a nonlinear elastic foundation with multiple bifurcation (Example 2). 
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Fig. 4. Deformed shapes of a beam on a nonlinear elastic foundation with multiple bifurcation for states A to L, as identified by 
labeled points in Fig. 3. 
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Fig. 5. Comparison of exact and asymptotic bifurcation diagrams for a beam on a nonlinear elastic foundation with multiple 
bifurcation (Example 2). 
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- - - - L. 0. Asymptotic 

Improved Asymptotic 

0.8~.~.~,.~..,~~..,.~.~,~~~~, 
0.00 0.02 0.01 0.08 0.08 0.10 

Imperfection Amplitude, E 

Fig. 6. Load-carrying capacity A as a function of the magnitude of imperfection E for a beam on an elastic foundation with 
multiple bifurcation and an imperfection of worst shape (Example 2). 

the labeled points 
towards increasing 
foundation occurs. 

The comparison 

in Fig. 3 are shown in Fig. 4. Clearly the beam has a greater tendency to move 
values of the displacement u, since this is the direction in which softening of the 

of the ‘exact’ solution, and the various asymptotic solutions is best examined in Fig. 
5. This is a magnified version of the region close to the bifurcation point in Fig. 3. Therein, the leading 
order asymptotic solution is a straight line tangent to the exact solution at the bifurcation point, as 
expected. 

Of the improved asymptotic solutions, that based on decomposition B (dotted line) is clearly far 
superior to that based on decomposition A (dashed line). Indeed, the improved asymptotic solution 
based on decomposition A is no better than the leading order solution. The reason for this is that for 
decomposition A, the postbuckling coefficients 4ijkA and &jhA are in general nonzero, yet they are not 
included in the calculation of the improved asymptotic solution. As a result, the improved asymptotic 
solution for decomposition A does not possess higher order accuracy. On the other hand for 
decomposition B, the postbuckling coefficients &jkA and &jAh are zero for this problem, so the improved 
asymptotic solution does possess higher order accuracy. As can be seen from Fig. 3, this higher order 
accurate asymptotic solution even reproduces the looping of the rising portion of the asymmetric 
bifurcated branch, as well as the secondary bifurcation at point I”, which corresponds to the secondary 
bifurcation at point I for the exact solution. 

The load drop versus imperfection amplitude curve for an imperfection zi = e(fi ‘A’ + ‘r?) /fi is 
shown in Fig. 6. This represents the worst shape of imperfection in the sense described in [lO,ll]. Again 
the leading order asymptotic solution is obtained from the truncated reduced equilibrium equation (only 
the first four terms in (33) or (46) are included). For the improved asymptotic solution, decomposition 
B is used, and higher order accuracy is achieved by including all nonzero terms shown in (33) or (46). 

4.3. Shallow parabolic arch 

This example illustrates a problem involving a simple symmetric bifurcation, but with nonlinear 
prebuckling behavior. After nondimensionalization and application of shallow arch approximations, the 
potential energy for the shallow arch shown in Fig. 7 can be written as 
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Fig. 7. Shallow arch (Example 3). 

where (Y is a dimensionless depth parameter (the actual depth is ar/2, as shown in Fig. 7, where r is the 
radius of gyration of the cross-section), u and w represent the displacement components in the x and z 
directions, respectively, and A represents the transverse load per unit length acting in the negative z 
direction. All of these are nondimensionalized quantities. The actual values of the x and z components 
of displacement and the uniformly distributed transverse load are w-‘/L, wr and hEAr3/L4, respective- 
ly, where EA is the axial rigidity and L is the half span of the arch, as shown in Fig. 7. 

The solutions for the principal equilibrium branch and the bifurcated branches can readily be 
obtained analytically. The behavior depends on the depth parameter CL For deeper arches ((.y > 
9.185149 . . .), bifurcation occurs before snapthrough. For shallower arches (9.185149. . . > (Y > 
7.8290. . .) a limit point is encountered, followed by bifurcation on the falling portion of the principal 
branch; finally for (Y < 7.8290. . . only snapthrough occurs with no possibility of a bifurcated solution. 
Here attention is focused on deeper arches for which bifurcation occurs before the limit point. 

For the finite element solution of the problem a shear deformable element was used by replacing the 
potential energy function of (65) by 

u’ + (YXW’ + 4~‘~)~ + $g(O + 4)’ + $0” + hw} dx , 

where 8 is the rotation of the cross-section, and g is a penalty parameter (shear stiffness) taken as 
g = lo5 to allow the results from the finite element solution to be compared to the analytical solution 
based on the potential energy function of (65). Using 100 two-node elements with a single integration 
point and linear interpolation of u, w and 8, excellent agreement between the finite element and 
analytical solutions is achieved. (The two solutions could not be distinguished on a plot of the 
equilibrium branches.) A comparison of the leading order asymptotic solutions for the bifurcated 
equilibrium branches with these exact solutions is given in Fig. 8 for a variety of values of the depth 
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Fig. 8. Bifurcation diagrams for a shallow arch with various 
values of the dimensionless depth parameter CX. 
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Fig. 9. Load carrying capacity of a shallow arch of depth 
a = 12 with a sinusoidal imperfection 3 = E sin(mx/l). 
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parameter (Y. As ae9.18149. . . a condition is approached in which the limit and bifurcation points 
become coincident. It is seen from Fig. 8 that this hardly affects the postbuckling behavior or the range 
of validity of the asymptotic results. (The only problem encountered as (Y + 9.18149 . . . was calculating 
the displacement rate z.i. Since ti is rapidly varying, and becomes infinite as the limit point is 
approached, the above-described method of estimating ti by extrapolation using the results from 
previous loadsteps only works if the size of the loadstep is small compared to the load increment to the 
limit point. On the other hand, direct calculation of zi from (48) was found to be effective, even rather 
close to the bifurcation point.) 

The drop in load carrying capacity for a sinusoidal imperfection W = E sin(rx/L) is shown in Fig. 8, 
for a value of the depth parameter of (Y = 12. Again good agreement between the asymptotic and exact 
results is obtained. 

5. Conclusions 

The Lyapunov-Schmidt-Koiter approach to investigate postbuckling behavior and imperfection 
sensitivity of structures has been generalized to include nonlinear prebuckling behavior as well as 
multiple, not necessarily coincident buckling modes. The asymptotic expansion of the reduced 
equilibrium equations is performed about a reference point on the principal equilibrium branch, which 
need not coincide with any of the bifurcation points. While this expansion is valid no matter whether 
the modes are coincident, closely spaced, or well separated, asymptotic solutions to these reduced 
equilibrium equations in the form of a truncated series are valid only sufficiently close to the reference 
point. 

The method is implemented and evaluated for two different decompositions of the space of 
admissible displacements A. The first decomposition (decomposition A) bears some similarity to the 
‘equivalence transformation’ approach of [26]. It represents essentially a nonlinear static condensation 
of all degrees of freedom except a few control degrees of freedom. The second decomposition 
(decomposition B) is a little more complicated to implement and requires some additional computation, 
but has the advantage that no corrections to the mode shapes are required, and a number of the higher 
order postbuckling coefficients vanish for most (if not all) problems with linear prebuckling behavior. 

A number of examples, including comparisons of the asymptotic and exact results illustrate the 
effectiveness and limitations of the method. 
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Appendix A 

For a wide variety of problems with geometric nonlinearities only and linear prebuckling behavior, 
the potential energy can be written as 

+(u, A, ii) = W(e) - Mu, (A.1) 

where W(a) is the strain energy function, which is assumed to be quadratic in the strains e (i.e. 
W ‘eee = 0); P is a linear operator representing the loading pattern, and the strains e can be written as 

e = bu + c(U, u) + ic(u, u) , (-4.2) 

where b is a linear operator, ~(0, .) is a bilinear and symmetric operator, and U represents the initial 
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displacements at which the structure is stress free. Equations (A.l) and (A.2) apply, for example for 
the Donnel-Von K&-man-Vlasov shallow shell theory, provided that the prebuckling solution involves 
constant transverse displacement. Furthermore, it is assumed that the prebuckling solution for the 
perfect structure can be written as u = hri where ti is constant, and 

c(zi,h)=O tl6u~A. (A.3) 

For such a structure with linear prebuckling behavior, the expressions for the postbuckling 
coefficients reduce to 

(A.4a,b) 

where 
4ij.k = aijk + ajki + akij 9 (A.Sa,b) 

t=bti, 
‘;’ 3 b ‘2 , 0) (i) (k) 

aijk = W,,, ec ( u , z4 ) . (A.6a-c) 

Furthermore, if decomposition B is used, then &jkA = &jhh = 0. Finally, if, in addition to linear 
prebuckling, and the use of decomposition B, the imperfection shape z is a linear combination of the 
modes in the form 

then 

(A.7) 
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