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Abstract-A menu-drive PC program, ZDIST, for computing the distances between the 
estimated polynomial growth curves of subjects who have been followed longitudinally is 
described, illustrated, and made available to interested readers. These distances can be computed 
on the basis of the individual growth curves themselves and/or from estimates of individuals’ 
growth velocity and acceleration curves. The resulting distance matrices can be saved in ASCII 
format and subsequently imported into any clustering program which accepts this type of input, 
e.g. SYSTAT. 
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INTRODUCTION 

Cluster analysis is commonly used in biomedical research to group similar entities 
(subjects, patients, objects) together. Good general accounts are given in [l-S]. An 
extensive bibliography, highlighting applications in biological systematics (taxonomy), 
but including references to the use of cluster analysis in ecology and biogeography, 
medicine, the social sciences, the earth sciences, other sciences and technology, and the 
arts and humanities is provided in [S]. Additional references to applications in medicine, 
psychology, archaeology and anthropology, phytosociology, economics, market 
research, and linguistics are given in [8]. And the volume of the literature in this area is 
expanding rapidly: it was suggested in 1971 that articles were appearing at the rate of 
1000 per year [9], and we have no reason to suspect a recent decline. There have been, 
however, relatively few applications in longitudinal studies of growth, i.e. applications in 
which a clustering algorithm was applied directly to the repeated measurements made on 
each individual. In [lo], changes in cluster characteristics over (exactly) two time points 
were considered, but these clusters were not formed on the basis of the repeated 
measurements. Most of the work in this area has concentrated either on allometry, which 
may be described as the study of differences in shape associated with size, or on methods 
for “factoring out” size, which is generally considered a nuisance parameter in taxonomic 
contexts [5]. There has also been some work on longitudinal data analysis in the problem 
obverse to cluster analysis, discriminant function analysis, where we are given G groups 
and asked to derive a rule for allocating “new” individuals to one of the groups on the 
basis of his/her growth profile. Useful background information is given in [ll]. See also 
[12-141. 

We suggest that, despite the fact that but few attempts to cluster individuals on the 
basis of longitudinal data have been made, it would often be of interest to identify 
subsets of individuals that are “growing similarly”. The apparent reason for this void is a 
lack of appropriate software. While we are developing programs that are appropriate for 
the analysis of longitudinal data [15-271, and while there is a large number of programs, 
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with a myriad of options for metrics and algorithms, for performing cluster analyses, no 
bridge connecting these resources has been built. The purpose of the present paper is to 
describe, illustrate and make available a user-friendly, menu-driven PC program which 
computes the distances between individuals’ growth, growth velocity and/or growth 
acceleration curves and saves these in an ASCII file which can then be read into a 
program which will perform the cluster analysis. The basic idea behind the distances 
computed by us is due to Zerbe [28]. The individuals comprising the study sample need 
not be measured at each of the planned times of measurement. The program ZDIST is 
written in GAUSS386i, but users need not have purchased or installed GAUSS386i to 
use our program, which stands alone. Hardware requirements and details concerning 
obtaining a copy are provided in the Appendix. 

We consider first a brief description of cluster analysis. We then outline Zerbe’s 
approach to computing the distances between growth curves. Finally, the technique and 
the program are illustrated using a sample of N = 11 achondroplastic children whose head 
circumference was measured (with substantial missing data) monthly from birth to 1 year 
of age [29]. 

CLUSTER ANALYSIS 

Clustering is the grouping of similar objects. There is no ooze method of cluster 
analysis: indeed, it has been suggested [30] that a given clustering method can be 
characterized in terms of whether it does or does not possess some 45 properties, so that 
the total number of possible methods is of the order of 245. We concentrate on the class of 
methods which are generally called hierarchical, agglomerative procedures. Our aim is to 
provide enough background to indicate possible applications of our program, and 
enough terminology to allow a meaningful description of our example. There is no 
suggestion that this class of procedures is in any way “optimal”, nor that other methods 
cannot be used. 

Agglomerative methods all begin with N clusters each containing a single element, a 
“proximity” (either distance or similarity) matrix for these N clusters consisting of a 
single element, and a measure of distance between two clusters when each cluster 
contains one or more elements which provides the basis for linking the clusters together 
to form new ones [31]. The first step is to join the two nearest objects into a single 
cluster, so that we have N-2 clusters containing one object each and one cluster with two 
elements. The second step is to fuse the two nearest of the N-l clusters to form N-2 
clusters. We continue in this manner until at the (N-1)st step we join the two remaining 
clusters into a single cluster. A graphical representation of this process is called a 
dendrogrum, or simply a tree diagram. 

Our program provides the distance matrix for the N cases (clusters with but a single 
element). The user must decide on which measure of distance between clusters having 
one or more elements to employ. Among the many available are single linkage, defined 
as the smallest distance between elements of the clusters; complete linkage, where the 
largest distance is used; and the centroid method, where the distance between the 
centroids of the clusters is used. He/she must also decide at which stage to stop the 
process of fusion (where to “cut” the tree). The possibilities will depend on the program 
utilized to accomplish the cluster analysis. We describe several available in SYSTAT 
later. We turn now to a description of how the distances between individual cases are 
computed. 

DISTANCES BETWEEN GROWTH CURVES 

We consider longitudinal data sets of the form 

r X11 XI? . . . XI7 1 
x= “:” “” .‘. "i' , 

: . . . . 
(1) 

1 XN, XM . . . XNT 
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where x,~ denotes the value of the measurement under consideration for individual 
i(i= 1,2,. . . , fV) at time ti(j = 1,2, . . . , T). In (l), some of the xii may be missing, but 
we assume that such missing data points are “missing at random”, i.e. that occurrences of 
missing data are not related to the values of neighboring measurements [32]. 

Following the procedure detailed in [33], we fit a polynomial of degree Dj the data 
from the ith individual and let D=max {Di}. We then estimate the growth curve for 
individual i by 

ii(t) = [l, t, t2, . . . , tD]ei, 

where ei denotes the estimated polynomial regression coefficients 

(2) 

??i=(W~Wi)-‘W$i (3) 

augmented with D-Di zero elements. Thus while a particular individual may require but a 
Di= 2 degree equation to adequately describe his/her data, if D= 5, the 3 x 1 vector 
computed in (3) is made to be 6 X 1 by adding D - Di = 3 zero elements (a quadratic is a 
quintic with three zero coefficients). An alternative approach, e.g. [29], is to refit each 
individual to D = max (0;). This is considered below. The reason that either augmen- 
tation with zeros or refitting to D,,, is necessary is that the distance between two growth 
curves (defined below) involves the difference of the estimated vectors of regression 
coefficients and consequently they must be of the same dimension. In (3), Wi is the 
within-individual (time) design matrix specific to the ith individual. For the definition and 
examples, see [33]. 

We next define the distance between ii(t) and Z,(t) over the interval [a, b] by 

dik = 
[I 

’ [9i(t) -a,(t)]’ dt “2, 
a 1 

which can be computed as 

dj)k=(Qi-ek)‘C(Ei-Qk), 

where C has the (m, n)th element 

b m+n-1 _ am+n-l 

C m,n= m+n-1 

For growth velocity, (2) is replaced by its element-by-element derivative 

B;(t) = [0, 1,2t, 3t2, . _ . , Df’-‘]Ti 

and for acceleration by 

si(t) = [O, 0,2,6t, . . . , D(D- 1)P-2]4,. 

(4) 

(5) 

(6) 

(7) 

(8) 

For velocities, the C matrix in (5) has the (m, n)th element c,,,, = 0 if m = 1 or n = 1 and 

(m - 1) (n - 1) [bm+n-3 - cP+“-~] 
C m.n= m+n-3 (9) 

otherwise. For accelerations, c,,, = 0 if m ~2 or nS2 and 

(m - 1) (m - 2) (n - 1) (n - 2) [bm+n-5 - u~+~-‘] 
C m,n= m+n-5 (10) 

otherwise. 
The user may compute and save any or all of the resulting distance matrices. Note that 

accelerations will be available only if the degree of the polynomial fit is at least two. Also 
note that the distances considered above are defined over a particular interval of time, 
[u, 61. The user makes the final choice of [a, b]: there is a need to balance the choice of 
[a, b], best made on biological grounds, with problems associated with extrapolating one 
or more polynomials beyond their ranges of observation. This should be clear from the 
example considered later. 
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Table 1. 

Individual T RZ t P 

1 8 0.968 0.144 0.8911 
2 11 0.987 8.465 0.0001 
3 4 0.997 0.522 0.6937 
4 6 0.997 5.190 0.0139 
5 7 0.993 3.709 0.0207 
6 5 0.993 1.812 0.2117 
7 12 0.955 2.703 0.0243 
a 7 0.958 0.446 0.6789 
9 8 0.979 1.455 0.2053 

10 5 0.997 7.569 0.0170 
11 4 0.976 0.708 0.6078 

THE PROGRAM 

The program is entirely similar in structure to that described and illustrated in [33]. 
The difference is that the present program, ZDIST, also provides the distances between 
the growth, velocity, and acceleration curves. The program is invoked with the single 
command gsruni zdist. Following the procedure detailed in [33], we determine either a 
common D for all cases, or a series of degrees Dr, Dz, . . . , DN for each individual. In the 
former case we simply proceed with Zerbe’s procedure; in the latter we determine 
D=max {Di}, and the program augments the vectors of coefficients with zeros as 
needed. Finally, the user is asked to enter the value of [a, b] to be used in the rest of the 
analysis. 

Once a common D and [a, b] have been determined, we next produce the distances 
between the growth curves for each pair of individuals and print these and allow the user 
to save them. The user can also save the distances between the growth velocities and the 
accelerations. The numerical output is also saved in a file called ZDIST.OUT which can 
be modified, highlighted, etc., using a word processor and subsequently printed. 

AN EXAMPLE 

Our example is based on the data considered in [29,33], consisting of head circumfer- 
ence measurements on N= 11 achondroplastic infants at T= 13 times of measurement 
(age in months from 0 to 12). Following the procedure outlined in [33], we try the 
SINGLE value of D = 2, and obtain plots of the fitted curves and the statistics (Table 1). 

T is the number of (non-missing) observations; R2 the square of the multiple 
correlation coefficient; and t is the value of the t-statistic, and p the corresponding p- 
value for the hypothesis H: r3 = 0. Note that in our notation [15-271, r, is the coefficient 
of the quadratic term, so that H is a test of whether this term may be dropped from the 
model. It is seen that r3 is significantly different from zero (p CO.05) for 5 of the 11 cases 
and so, following [29], we choose to ACCEPT D = 2 for all 11 cases. We obtain the 
interindividual distance matrix as shown in Table 2. 

Table 2. Interindividual distance matrix containing all distances between all 11 cases (Cl-Cll). Thus, 
the entry 6.36 is the distance between case 2 and case 1 

Cl 
C2 
c3 
c4 
c5 

:; 
C8 
C9 
Cl0 
Cl1 

0 
6.36 0 

10.31 7.63 0 
6.82 4.39 4.97 0 
7.20 4.50 4.42 0.87 
6.25 9.56 14.77 10.05 
7.80 7.24 6.93 3.33 
7.30 4.65 7.14 6.73 
9.67 6.59 1.13 4.02 

14.93 15.61 20.07 15.29 
7.77 3.68 4.24 3.74 
Cl c2 c3 c4 

0 
10.81 0 
3.93 9.55 0 
6.30 12.57 9.87 0 
3.18 13.92 6.28 6.60 0 

16.15 9.34 13.60 19.88 19.14 0 
3.11 12.24 7.02 3.68 3.36 18.28 0 
C5 C6 C7 C8 C9 Cl0 Cl1 
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Fig. 1. 

Distance matrices for velocity and acceleration are also printed but not shown here. 
Data sets of this form (OS on the diagonal and only the lower elements of the matrix 
actually entered) may be imported, e.g. into the SYSTAT data editor and cluster 
analyzed. In SYSTAT, distance matrices are referred to as dissimilarity matrices and, 
while in the editor, the user must indicate that the data are of this type.‘Then using the 
JOIN function (the KMEANS option is not available for dissimilarity data) and single 
linkage (where the distance between clusters is the minimum distance between elements 
of the clusters), we obtain the dendrogram shown in Fig. 1. 

DISCUSSION 

It is seen from Fig. 1 that, at step 1, cases 4 and 5 are joined to form the first cluster 
(these have minimal distance dd5 = 0.87). Then cases 3 and 9 are joined (dJ9 = 1.13). In 
the next steps we form two main clusters (C7, C4, C5, Cll, C9, C3) and {Cg, C2). If we 
cut the tree at this point, the cases within these clusters are “growing similarly”, while 
Cl, C6 and Cl0 are “growing differently”. If we wait until {Cl, C6) is formed, we have 
identified four clusters, namely 

(C7, C4, C5, Cll, C9, C3}, (C8, C2}, {Cl, C6}, and {ClO}. 

We note that no matter where the tree is cut, Cl0 stands out as different from the rest. In 
this simple example, of course, this is obvious from an inspection of the distance matrix, 
but in more complicated problems the tree or dendrogram provides a useful visualization 
of the clustering process. It can also be seen that the clusters identified above do not 
reflect a simple separation of growth curves into those for which D = 1 and D = 2 are 
adequate fits. Referring to the p-values given earlier, D = 2 was indicated for C2, C4, C5, 
C7 and ClO. While this could happen in a given situation, it will not be true in general 
that the composition of the clusters is dictated by the degree of the polynomial fit. The 
distance between a line and a quadratic can be small; the distance between two lines or 
two quadratics can be large. 

It should be noted that the above results are for the fusion method of single linkage, 
where the distance between clusters is defined as the minimum distance between 
members of the two clusters. SYSTAT allows the user to select other linkage functions 
including complete (where the maximum distance is used), centroid, average and 
median. Other packages may offer different options. 

While not considered explicitly as part of our example, the user may also perform the 
cluster analysis on the basis of distances between velocity and/or acceleration curves. 
Velocity (acceleration) curves determined as derivatives of estimated growth curves (as 
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is done in our program) tend to be reliable only over the time interval for which velocity 
(acceleration) could have been determined by fitting growth increments [16]. Thus, for 
example, Zerbe [28] took a = 4.5 and b = 17.5 for the velocity curves in a study where 
observations were made from 4 to 18 years at half-year intervals; and a = 5, b = 17 for 
accelerations. In our example, one might consider using a = 1, b = 11 for velocities; a = 2, 
b = 10 for accelerations. It will be recalled that the user of our program has control over 
the choice of a and b, and that plots are provided to facilitate this decision. 

Finally, we consider one aspect of our example in more detail. We based the example 
on the data given in [29], and we followed them in fitting polynomials of degree D = 2 to 
each individual growth profile. It was on this basis that Cl0 was singled out as growing 
differently from the rest. Actually, this difference is not so much a function of the data 
for Cl0 as it is of the choice of D = 2 for this individual. Note that Cl0 was measured only 
at c= 1, 2, 3, 4, 6; and while a quadratic equation provided an extremely good fit 
(R* = 0.997) over the interval of observation for this individual, this equation extrapolates 
poorly (it turns down-a biologically improbable occurrence for a measurement such as 
head circumference) to the interval of interest [0, 121. This is the reason for the large 
number of plots produced by our program; for allowing different individuals to have 
differing values of D; and for user-control over [a, b]. The plots identified the reason for 
the “aberrant” growth pattern for this individual before the distances were computed 
[33]; the choice of D = 1 is reasonable for Cl0 over [0, 121; and the quadratic could have 
been used if the investigator was interested only in the growth for the first six months of 
life. We might have corrected this “error” before preparing our example, but thought the 
version presented above provided more justification for the structure of our program and 
is of heuristic value. It also demonstrates that if there is an aberrant grower in the 
sample, our program is likely to find him/her. 

SUMMARY 

A menu-driven PC program, ZDIST, for computing the distances between the 
estimated polynomial gowth curves of subjects who have been followed longitudinally is 
described, illustrated, and made available to interested readers. These distances can be 
computed on the basis of the individual growth curves themselves and/or from estimates 
of individuals’ growth velocity and acceleration curves. The resulting distance matrices 
can be saved in ASCII format and subsequently imported into any clustering program 
which accepts this type of input, e.g. SYSTAT. 

The method accommodates missing data: we assume that common times of measure- 
ment are planned, but allow some of the measurement sequences to be incomplete. The 
program features flexible plotting procedures which aid the user in determining the 
degree(s) of the polynomials to be fitted together with an interval over which the fitted 
curves are well-behaved and fairly represent the observed gowth profiles. 

The method and program were illustrated using a data set for which common times of 
measurement were planned, but a substantial amount of missing data ensued. SYSTAT 
was used to cluster the matrix of distances between the growth curves and we showed 
that it was indeed possible to isolate subsets of similar growth curves on this basis. 
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APPENDIX. COMPUTER IMPLEMENTATION 

A full set of PC programs for longitudinal data analysis, including this program, can be 
obtained on high density 5.25” or 3.5” diskettes (please request type) by sending $25 to 
defray the cost of handling and licensing fees. These programs require a 80386 or 80486 
based personal computer (PC) running the MS-DOS operating system (version 5.0 or 
higher is recommended, although versions as low as 3.3 will suffice). 80386 computers 
must also be equipped with a 80387 math coprocessor. At least 4 mb of memory is 
required, and must be available to GAUSS386i, i.e. not in use by memory resident 
programs such as Windows. EGA or VGA graphic capabilities are required to display 
the color graphics; VGA or SVGA is suggested to display optimally the graphic results. 
Runtime modules are supplied with the programs so that no additional software (i.e. 
compiler or interpreter) is required to run these programs. One can create and edit 
ASCII data sets for use by these programs using the full screen editor supplied with 
MS-DOS version 5.0. The programs are written and compiled using GAUSS386i, 
version 3.0, require no additional installation or modification, and are run with a single 
command. When requesting the programs, address inquiries to the corresponding author 
and make checks payable to Baylor College of Dentistry. 


