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Abstract-There are many diseases which cause detrimental changes in the trahecular structure of 
cancellous bone, leading to mechanical failure of the tissue. One approach to understanding the mechan- 
isms of these diseases is to create idealized models that recreate the morphology of the tissue. This paper 
presents a partial development of such a model. Further histological methods must be developed before 
a complete definition of morphologically valid models is possible. 

In a histological section of cancellous bone, the orientation and length of the trabecular surfaces 
determine how a line drawn across the bone section will intersect the bone-marrow interface. The 
distribution of the average length between intersections for a set of parallel lines is defined as the mean 
intercept length distribution. In this paper, the average surface morphology and volume of the average 
structure of cancellous bone is determined from an examination of the mean intercept length. The average 
structure of cancellous bone contains a repeated structural element (SE). As a result, the basic bone 
structure is analogous to a brick wall made from many similar bricks. For a group of 107 specimens, 
a strong relationship between structural element volume (SE.V) and bone volume fraction (BV/TV) is 
demonstrated, SE.V=O.O~~K(BV/TV)-~.~~ mm3, R*=0.93, with K a model-dependent constant. For the 
same specimens, the structural element surface (SE.S) showed the relationship, SES = 0.144~(BV/Tv)- 1.35, 
RZ=0.92. As a result of the inverse square dependence of structural element volume on bone volume 
fraction, it is predicted that cancellous bone strength is inversely proportional to structural element volume. 

INTRODUCTION 

The determination of cancellous bone strength, stiff- 
ness and biological dynamics has long been an impor- 
tant area of investigation due to the many diseases 
and conditions that cause the mechanical failure of 
cancellous bone. An area of intense investigation has 
been the relationship between the tissue microstruc- 
ture of the bone and its mechanical properties. One 
goal has been to understand how changes in the 
normal microstructure and mass of the trabeculae can 
cause detrimental changes in the mechanical proper- 
ties of cancellous bone, perhaps leading to overt fail- 
ure of the bone to provide support for the body (e.g. 
osteoporosis). Fundamental to these investigations 
are the methods of histomorphometry. Taken as 
a whole, these methods provide a means to assess 
quantitatively the static structure of the hard tissue, 
the cellular dynamics and also the connection be- 
tween cellular dynamics and the transformation of 
hard-tissue structure (Pa&t et al., 1983; Weibel, 
1979). The purpose of this work was to develop a gen- 
eralized three-dimensional model for cancellous bone. 
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The properties of the model as a function of bone 
volume fraction were determined experimentally. 

One measure of the anisotropy and microstructure 
of cancellous bone is the mean intercept length (Harri- 
gan and Mann, 1983; Whitehouse, 1974) or its inverse 
(Raux et al., 1975). The mean intercept length has been 
widely used in the field of biomechanics as a means for 
predicting cancellous bone stiffness and strength us- 
ing both empirical (Goldstein et al., 1990; Goulet et 
al., 1988; Snyder and Hayes, 1990; Snyder et al., 1989; 
Turner et al., 1988) and highly theoretical approaches 
(Cowin, 1985, 1989). It is used, in part, because it is 
fairly easy to calculate using a grid of parallel lines 
placed over a histological section of bone. Using the 
grid, the mean intercept length is the average distance 
between the intersections of the grid lines with the 
bone-marrow interface. 

The motivation for using the mean intercept length 
to characterize cancellous bone microstructure is that 
the mechanical properties of cancellous bone are dir- 
ectly related to its microstructure. If the mean inter- 
cept length uniquely characterizes cancellous bone 
microstructure, then bone stiffness and strength can 
be largely determined using histomorphometric 
methods. Unfortunately, as observed originally by 
Hilliard (1962), Philofsky and Hilliard (1969) and re- 
cently discussed by Odgaard et al. (1990), the mean 
intercept length does not uniquely determine micro- 
structure because it is only dependent upon the length 
and orientation of the bone-marrow interface, rather 
than upon the position of the parts of the interface. In 
fact, if the bone-marrow interface is cut into small 
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parts and arbitrarily rearranged within the original 
area without rotating the pieces, the mean intercept 
length for the cut and redistributed pattern will be 
identical to the original mean intercept distribution. It 
is, therefore, inherently impossible for the mean inter- 
cept length to completely characterize the structure of 
cancellous bone. However, the mean intercept length 
does strongly restrict the class of microstructure to 
which the trabeculae can belong. In particular, it 
determines the length of the bone-marrow interface 
and the possible slopes (orientations) of all of the parts 
of the bone-marrow interface. The work in this paper 
determines the nominal bone-marrow interface shape 
associated with the ellipsoidal mean intercept length 
distribution measured experimentally from human 
cancellous bone. 

THEORETICAL BACKGROUND 

One definition of the mean intercept length 
measure for a two-dimensional histological cross-sec- 
tion of cancellous bone [H(e)] is (Harrigan and 
Mann, 1983) 

1 
W@=pr(e) 

where P,(e) is the number of intersections which a grid 
of parallel lines makes with the bone surface per total 
length of grid line and H (0) is the average distance 
between the intersections. To calculate P,(B) directly, 
a grid of parallel lines is oriented over an image of the 
bone surface at the angle 8, and the number of inter- 
sections between the lines and the bone-marrow in- 
terface is recorded. This number is then divided by the 
total length of line in the parallel array. 

Another form of the mean intercept length has been 
used (Goulet et al., in preparation; Snyder et al., 1990; 
Whitehouse, 1974), which is defined as 

Z(BA/TA) 
L(e)= p,(e) ) 

for a two-dimensional histological section. Here, PI is 
as above and BAJTA is the area fraction of the hard 
tissue in the section. The reason for the existence of 
these two definitions is that the first was originally 
intended for use with grainy materials, such as steel, 
that are made of only one material, and the second 
was intended for use with materials, such as cancel- 
lous bone, that have more than one phase (Under- 
wood, l970). In both instances, the intent is to obtain 
an estimate of the size of the elements, either the grain 
size in the first case, or the size of one of the phases in 
the second case. In this paper the first definition of the 
mean intercept length (H) was used for mathematical 
convenience since it is not theoretically dependent on 
the area fraction of the hard tissue (BAiTA) which, in 
three dimensions is equivalent to not being dependent 
on the bone volume fraction, BV/TV (We&l, 1979). 

For cancellous bone it has been shown (Harrigan 
and Mann, 1983; Stone et al., 1984; Whitehouse, 1974) 

that the mean intercept length of bone, when plotted 
as a polar plot, very nearly forms an exact ellipsoid. 
Mathematically (two dimensions), this is 

1 -=ky(e) 
H*(e) 

=(%)2+(%!Y, (3) 

where HI, Hz are the lengths of the major and minor 
axes of the ellipse and the angle 6 is measured 
counterclockwise from the X-axis (Fig. 1). Note that 
(1) the quantities Hi, i= 1,2, are the same as the eig- 
envalues of the ‘fabric tensor’ defined by Cowin (1989), 
and that (2) this equation assumes that the ellipse has 
its axes aligned with the coordinate (X-y) axes. It is 
significant to note that the mean intercept length does 
not directly represent the shape of any part of cancel- 
lous bone structure. 

Calculation of an equivalent bone-marrow interface 

Hilliard (1962) and Philofsky and Hilliard (1969) 
have shown that a convex body with an arbitrary, 
smooth distribution of P,(e) can be determined using 
the mathematical recipe 

~~(e)=(1/2)Cd’P,(w)ldo2+P~(~)l,=~+rr,2r 

and 

s 

Y 
X*(Y) = L,(ejcos ede, o~y<n, 

0 
Y 

Y”(Y)= 
s 

L.&sin ede, O<Y<x, (4) 0 
where xA(y) and y”(y) are parametric equations in 
angle y describing the perimeter per unit area of a con- 
vex shape with the mean intercept length distribution, 

1/P,(9). 
For this paper the convex shape with the same 

mean intercept length ellipse as real bone was deter- 
mined. Consequently, the quantity LA(e) is the length 

P,(e)’ = (I/H (f$= (COS @j/H ,12+ (Sin w/H,)* 
Fig. 1. The mean intercept distance H(0) is calculated by 
counting the intercepts as a function of angle [P,(B)] and 
inverting. For bone, the correlation of the intercept counts to 
an ellipse is very strong. In principal axes, the ellipse has the 

form shown in the figure. 
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distribution of the trabecular bone. In terms of quant- Both equations (6) and (7) form the top halves of 
ities identifiable from a histological section, L, is the ellipses because of the restriction on the values of y, 
length of bone-marrow interface per unit total tissue and y. These semi-ellipses have the correct shape and 
area that has inclination 0 with respect to the global length distribution such that, for any arbitrary area of 
coordinate axes. The angle 9 was again measured interest, A, the length distribution of the semi-ellipse 
counterclockwise from the X-axis. This definition of combined with the area A has the identical mean 
the length distribution (LA) is valid for the interface intercept length distribution as the real bone cross 
between constituents of any two-phase material. section. 

The physical position of the perimeter is calculated 
using 

x=x*x A, 

The radii of these semi-ellipses are R, = A/(2H,) 
and R2 = A/(2H,) (Fig. 2). The perimeter of the semi- 
ellipse, L, is approximately (Selby, 1971) 

Y=Y~X~ (5) 

where A is the area of the cross-section that contains 
the bone-marrow interface. 

Since LA is directly derivable from the value of P, 
and its second derivative, for any P! that is smooth, L, 
is smooth. Physically, the smoothness of P, implies 
that at least some of the bone-marrow interface is 
pointing in all possible directions. This is reasonable 
from the examination of a real bone section where at 
least part of the interface is parallel to any arbitrarily 
chosen line. Certainly, the second derivative of P, 
exists if the approximation to the mean intercept 
distribution is elliptical. 

r.4 j2n(!yy2}, 

“;A{;(&+$)J”I. 

where the shape of the area A and its magnitude are 
completely arbitrary. An approximation was used to 
estimate the perimeter length of the ellipse because the 
exact form is an elliptic integral. 

The total trabecular bone-marrow interface length 
(Tb.L) per unit total area of bone (TA) was calculated 
immediately as 

Since the PI measurement contains no information 
about the placement of the pieces of the interface (see 
the Introduction), neither can LA. LA does, however, 
represent the totality of the interface by indicating 
how much of it exists at each of the possible angles of 
inclination. The lack of information about placement 
of the parts of the interface in space is the source of the 
convex body assumption mentioned above. The inte- 
gral equations (4) present one of the infinite methods 
by which a shape can be constructed from L,. By their 
nature, these integral equations cause construction of 
a convex shape. This is not a limitation of the 
approach, but is one of its consequences. 

Tb.LiTA=L,A~~~~(~+~)~“. (9) 

This equation gives the total bone-marrow interface 
length per unit tissue area for any arbitrary choice of 
total tissue area TA. 

The above equations describe P,, L, and, conse- 
quently, (x, y) for cancellous bone. In principle, it is 
possible to calculate the shape of a two-dimensional 
body for any smooth mean intercept length distribu- 
tion using the above equations. Using the symbolic 
mathematics computer program MACSYMA (Sym- 
bolics, Inc.), it was possible to solve for the convex 
shape associated with the special case of the elliptical 
mean intercept length distribution that is common for 
cancellous bone [equation (3)]. The mathematical 
derivation (Appendix 1) gives the following result: 

(2H,x,)2+(2Hz~,)2=l, y,>O, (6) 

where all terms are as previously defined. The sym- 
bolic integration was tested by comparison to numer- 
ical integration of the equations for special cases. 

If we recall, x,=x/A, and y,=y/A, then 

Introduction of the two-dimensional structural element 

Equations (6) and (7) define semi-ellipses which 
have the same length distribution and mean intercept 
length distribution as a two-dimensional histological 
section of real cancellous bone for an arbitrary tissue 
area, TA. Equation (9) is the average bone-marrow 
interface per tissue area, TA. This area includes both 
the hard-tissue area and marrow area over which the 
bone-marrow interface is distributed. The combina- 
tion of the two areas is essential to understanding 
cancellous bone microstructure because it is the com- 
bination of bone and marrow which creates the inter- 
face. A fundamental property of the mean intercept 
length is that it provides no information permitting 
distinction between the hard tissue and marrow com- 
ponents of the bone. This is a consequence of it being 
a measurement of the interface distribution rather 
than of any property of the two phases of the struc- 
ture. Therefore, it was not unexpected that the impor- 
tant area (TA) combines both marrow and hard-tissue 
areas in an undifferentiated manner. 

When interpreting the above results as representat- 
ive of a repeating structural element, the notation for 
the tissue area, ‘TA = A’, is renamed ‘SE.A= A’, 
consistent with the standard for histomorphometry 

(~~+(?+?)‘=l, y>o. (7) 
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Mean Intercept Ellipsoid Semi-ellipse of Bone-marrow Interface 

Fig. 2. The relationship between the mean intercept ellipsoid and the calculated semi-ellipse of the 
bone-marrow interface. 

(Parfitt et al., 1987). Similarly, the consistent notation 
for the distributed length, ‘Tb.L = L’ is ‘SE.L.’ In both 
cases,, the letters ‘SE indicate that the area is asso- 
ciated with a fundamental, repeating structural ele- 
ment. Note that the ratio SE.L/SE.A is identical to 
Tb.L/TA and that the ratios TA/SE.A=Tb.L/SE.L 
measure the number of structural elements that ap- 
pear on a section of size TA. 

To understand the above results in terms of a re- 
peated structural element for cancellous bone, an as- 
sumption must be made about how the structural 
element area changes as a function of the mean inter- 
cept length. The definition of these structural elements 
was based on the choice of their shape and size. For 
instance, one possible definition of the SE is a rec- 
tangle of side ratio HI fHz with area SE.A = HI x Hz. 
Several examples of the consequences of this type of 
assumption were examined (Fig. 3). 

It is significant that it is not necessary to know the 
actual distribution of hard tissue in the structural 
element area to obtain an exact representation for 
SE.L/SE.A. Consequently, the bone area fraction, 
BA/TA, of the tissue is not restricted by the results in 
Fig. 3. To reproduce BA/TA, the perimeter of the 
semi-ellipse must be distributed in the area SE.A to 
divide the plane into two phases, hard tissue and 
marrow, with the ratio of hard-tissue area to SE.A 
equal to the BA/TA of the real bone cross section. The 
mean intercept length provides no information on 
how this might be done correctly and the develop- 
ment of techniques to do this are beyond the scope of 
this work. 

Generalization of the two-dimensional structural 
element 

For every proposed two-dimensional structural ele- 
ment shape (Fig. 3), the dependence of SE.A on the Hi 
was 

SE.A = uH1 Hz, (10) 

where h: is a constant characteristic of a particular 
structural element. Recognizing this regularity in the 
models, the generalized form of the two-dimensional 

structural element is [using equations (9) and (lo)] 

SE.A 
-=H1H2, 

SE.L,S:A+{;($+$)i.“. (11) 

These equations and equation (8) form the basis for 
developing an approximation for the three-dimen- 
sional properties of the structural element. 

THE THREEDIMENSIONAL STRUCTURAL ELEMENT 

In three dimensions, the mean intercept length el- 
lipsoid for cancellous bone in principal coordinates is 

. 
I 

H2K m, 4 
=(lIHd2 +(mlH2)’ +(n/Hd2, (12) 

where the Hi are the principal radii and (1, m, n) are 
direction cosines. 

For prediction of the distribution of bone surfaces 
in three dimensions from the three-dimensional mean 
intercept ellipsoid, first note that the two-dimensional 
equations for line distribution [Equation (8)] are 
valid for cross sections cut at any orientation through 
the three-dimensional structure. In particular, the 
two-dimensional equations are valid for the three- 
dimensional principal axes of the structure. For each 
of the mutually perpendicular principal axes of the 
structure that would be predicted by a three-dimen- 
sional analysis, the mean intercept distribution pre- 
dicted by the two-dimensional analysis would be an 
ellipse. The three-dimensional surface most suggested 
by these three mutually perpendicular ellipses is an 
ellipsoid. The surface distribution for the cancellous 
bone is reproduced by an ellipsoid with principal axes 
of magnitudes 

Ri=$ Hi, i= 1,2, 3, 

as demonstrated in Appendix 3. 

(13) 



Calculation of surface-to-volume ratio 

SE.Aw H , H 2 SE.V-K H,Hj$ 

SEk2r {(1/2)(H;H;)}“* SE.~~K {(1/3)[( H2H,;+(H,HS;+(H,H2j]i@ 

H21D 
Hl 

I_ 

(3/4)H 

1 

(3/4)H 2 

(3/4)H, 

(9/l 6)x 

959 

Fig. 3. Three two-dimensional and three three-dimensional examples of the dependence of structural 
element properties (SEA, SEL, SEV, SES) upon the assumed shape of the structural area. Note that the 

dependencies are all identical except for the constant parameter K. 

By stereological arguments (Weibel, 1979), the Recognizing that the quantity in parentheses in 
three-dimensional surface-to-volume ratio of the equation (14) is the inverse of the harmonic mean 
structural element associated with this ellipsoid, (Spiegel, 1988) of the Hf, i= 1,2, it is argued that 
SE.S/SE.V, can be estimated from the two-dimen- a better approximate value of SE.S/SE.V is 
sional length to area ratio (SE.L/SE.A) as 

SE.S/SE.V x; SE.L/SE.A 
SE.S/SE.Vz2 f $+$+A 

H 

112 
f (1% 

1 1 3 >I 

where the quantity in parentheses is now the inverse 

x2 {&&+3? (14) 
of the harmonic mean in three dimensions of the 
squares of the principal lengths of the mean intercept 
ellipsoid. A more complex approximation of this ratio 

This approximation to the three-dimensional value based on the assumption of a structural element con- 
is presented, since the surface area of an ellipsoid taining an ellipsoidal hole was developed by Turner 
cannot be determined analytically for the same reason (1986). 
that the perimeter of an ellipse cannot be determined. The determination of SE.V and SE.S for the struc- 
Note that the ratio SE.S/SE.V is essentially identical tural element follows the same argument used to 
to the surface-to-volume ratio BS/TV. define the generalized two-dimensional structural 
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element. Similar to the several two-dimensional cases 
of Fig. 3, we propose for the three-dimensional SE, 

SE.V=uH,HZH3, (16) 

where K is characteristic of the specific structural 
element model chosen. Equations (15) and (16) 
immediately result in the relationship 

SE.S=2K {j [(HzH3)2+(H1H3)2+(H1H2)2]}“2. 

(17) 

Several special cases for the structural element were 
considered (Fig. 3). Since each model differs only by 
the value of K from any other, only the portions of the 
right-hand sides of equations (16) and (17) that de- 
pend on the Hi, i= 1,2,3, were considered in the 
experimental examination. 

EXPERIMENTAL DATA 

To develop an empirical relationship between the 
derived measures (SE.V, SE.S and SE.S/SE.V) and the 
bone volume fraction (BV/TV), three-dimensional 
morphometric data were used. These data were meas- 
ured from 107 cubic bone specimens (8 mm/side) 
taken from diverse metaphyseal regions of four fresh 
frozen cadavers. They were scanned on a three-dimen- 
sional microcomputed tomography system at the 
University of Michigan (Feldkamp et al., 1989). The 
reconstructed micro-CT data represent the digitized 
three-dimensional architecture of cancellous bone us- 
ing 50 pm voxels (the three-dimensional equivalent of 
a pixel). The resulting data were then post-processed 
to determine the mean intercept length distribution 
(Goulet et al., in preparation; Kuhn et al., 1990). The 
data used in the present study are derived from data 
collected in the course of other studies and represent 
a reasonable range of cancellous bone microstructure, 
although somewhat dominated by femoral and tibia1 
specimens (Table 1). Plots of the data used in this 
study are presented (Appendix 4). The range of 
BVfTV was 0.06 < BV /TV < 0.37. 

EXPERIMENTAL RESULTS 

The relationship was strong between the structural 
element volume and the bone volume fraction, 
SE.V=O.O~~K(BV/TV)-‘.~~ mm3, R2 =O.93 (Fig. 4). 
SE.V [as calculated from equation (16)] was essential- 
ly proportional to (BV/TV)-2. The constant K is 
model-dependent and has no effect on the dependence 
on BV/TV. The relationship was determined using 
a linear regression on the natural log transforms of 
SE.V and BV/TV. 

The relationship between the structural element 
surface and bone volume fraction was also strong, 
SE.S=O.~~~K(BV/TV)-‘.~~ mm’, R2 =0.92 (Fig. 5). 
The power of BV/TV in the case is essentially equal to 
-413. 

Table 1. The number of samples by site for the 
micro-CT measurement of mean intercept 
length (Hi) and bone volume fraction (BV/TV) 

Donor number 

Site 3 8 9 10 

R Dist. Fem. 10 10 10 9 
R Prox. Fem. 5 2 3 
R Dist. Rad. 0 0 ; 2 
L Dist. Rad. 3 2 2 0 
R Prox. Hum. 0 0 0 2 
L Prox. Hum. 3 2 2 0 
R Prox. Tib. 8 10 10 2 
L I1 Crest 0 3 0 0 
R II Crest 0 0 1 0 
Lumbar Sp. 0 4 0 0 

Donor 3 3 1 -year-old male 
Donor 8 55-year-old female 
Donor 9 69-year-old male 
Donor 10 61-year-old female 

The fit to a power law for the bone surface to 
volume ratio as a function of bone volume fraction 
was SE.S/SE.V = 8.40(BV/TV)“.705 mm-‘, R2 = 0.94 
(Fig. 6). If the dependence of SE.S and SE.V were 
assumed to be -413 and -2, respectively, then 
SE.S/SE.V was proportional to (BV/TV)2’3, close to 
the curve fit value of 0.705. 

DISCUSSION 

The principal result of this work is the development 
of the general model and derivation of the measures of 
cancellous bone microstructure, SE.& SE.V and 
SE.S/SE.V. The equation for SE.S/SE.V is significant 
because it approximates the surface-to-volume ratio 
of cancellous bone as a function of the Hi without any 
assumptions about the trabecular microstructure. This 
freedom from assumption results from the direct de- 
rivation of the surface-to-volume ratio from the em- 
pirically observed ellipsoidal mean intercept distribu- 
tion. The relationships for SE.V and SE.S are signifi- 
cant because (1) they represent measures of the vol- 
ume and trabecular surface of a broad class of models 
for cancellous bone and (2) they are theoretically 
independent of the bone volume fraction. Since these 
derived measures are not mathematically dependent 
on the bone volume fraction, the high R2 of the 
power-law fits found in the experimental examination 
point to the existence of an underlying biological 
mechanism for the formation and transformation of 
the trabecular microstructure that strictly determines 
the relationship between bone mass and bone micro- 
structure. The exact nature of this mechanism is not 
known. However, it is certainly based on the biolo- 
gical dynamics of the structural transformation and, 
consequently, is not directly accessible to the static 
morphometric measures used in the current study. 
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Fig. 4. Volume of the structural element (SEV) as a function of bone volume fraction (BV/TV). The best 
logarithmic fit had BV/TV-2.05 
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Fig. 5. Surface area of the structural element (SES) as a function of the bone volume fraction (BV/TV). 

Determination of the exact nature of this dynamic The result for the bone-marrow interface length per 
mechanism and explanation of the processes which so total tissue area, Tb.L/TA [equation (9)], is identical 
closely relate structure and mass may require the to the two-dimensional result of Turner (1986), who 
development of novel three-dimensional dynamic assumed that the model for bone was an elliptical 
morphometric techniques. (two-dimensional) or ellipsoidal (three-dimensional) 
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3.00 

- 2.1281 + 0.70471[ln(BWTV)] 
R”2=0.937 

In(BVITV) 

Fig. 6. Surface-to-volume ratio for the structural element (SES/SEV) plotted as a function of bone volume 
fraction (BV/TV). These results are similar to those of Martin (1984) for bone surface per totak volume 

(BS/TV) as a function of bone volume fraction (BV/TV). 

void in a rectangular repeated structural element. The 
current derivation is more general than that of Turner 
since no assumptions were made regarding the shape 
of the bone-marrow interface or the shape of the 
repeated area that contains the interface. This identity 
with the model-based result of Turner is important 
since he experimentally validated his equation for 
Tb.L/TA, demonstrating its validity for a combined 
sample of human and bovine cancellous bone. 

Examining some of the details of these results, the 
experimental result for SE.V (Fig. 4) indicates that the 
apparent volume associated with a single trabecula 
is a strongly nonlinear function of BV/TV. There is 
a rapid increase in SE.V as BV/TV declines to zero, As 
a consequence of the nonlinearity of the relationship, 
the marrow space associated with each trabecula in- 
creases rapidly as BV/TV falls to less than 0.15. This is 
consistent with a change from a more to a less cross- 
braced trabecular bone structure, since the removal of 
trabecular rods and plates simultaneously decreases 
BV/TV and increases the average distance between 
the remaining trabeculae. The trend of these results 
for low volume fraction is consis tent with the results 
of Snyder and Hayes (1990). They reported that the 
dependence of intertrabecular spacing on BV/TV was 
as the inverse of BV/TV with an R2 > 0.54 for verte- 
bral cancellous bone and R2 > 0.81 for sections from 
the proximal femur. This result may conflict with the 
experimental relationship developed here for SE.V 
[proportional to (BV/TV)-‘1. It is, however, reason- 
able that SE.V should vary roughly as the product of 

the three principal intertrabecular spacings. Their 
curve fits result in a dependence of (BV/TV)-‘. To 
obtain the dependence of (BV/TV)-2 from the current 
study, each Hi should be roughly proportional to 
(BV/TV)- . ‘I3 This difference between their curve-fit 
dependence for the Hi and the dependence needed to 
match the SE.V curve developed here might be ex- 
plained if their data were fit using a power function 
rather than using a linear fit. This was examined 
indirectly by curve fitting the Hi data for the 107 
specimens used in the current study using both 
methods (Appendix 4). Each approach gave such 
a strong relationship between the mean intercept 
length and BV/TV that it was unclear which might be 
the better approach. The dependence on BV/TV for 
the power-law case was approximately - 2/3 for each 
of the Hi, consistent with the result for SE.V. The rapid 
increase in SE.V for specimens with BV/TV less than 
0.15 is consistent with their data for trabecular spac- 
ing. 

The structural element surface (SES) decreases rap- 
idly as BV/TV increases for all models (Fig. 5). This is 
consistent with the observation that the percentage 
bone turnover per year is much higher in cancellous 
bone than in cortical bone if it is assumed that the 
total area available for remodeling (SES) is a primary 
determinant of the rate of remodeling. This assump- 
tion is not generally accepted. 

These results for SE.V as a function of BV/TV also 
imply a strong relationship between the volume of the 
structural element and bone strength. It has been 
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determined experimentally that the strength of cancel- 
lous bone is roughly proportional to the square of the 
apparent density (Rice et al., 1988). The experimental 
relationship developed here for the volume of the 
structural element (SE.V) is inversely proportional to 
the square of BV/TV. Assuming that the apparent 
density is linearly related to BV/TV (Martin, 1984; 
Goulet et al., in preparation), these observations can 
be combined. Consequently, it is predicted that can- 
cellous bone strength is linearly proportional to the 
inverse of SE.V. This is consistent with the clinical 
observation that dense, fine-grained cancellous bone 
is stronger than porous, coarse-grained bone. This 
relationship of structural coarseness to strength may 
be useful for the examination of osteoporotic bone 
strength and may provide further theoretical motiva- 
tion for the use of texture analysis (Kaufman et al., 

1988, 1989) as a means of predicting cancellous bone 
strength. 

The experimental results for the surface-to-volume 
ratio of the structural element (SE.S/SE.V) (Fig. 6) also 
show a strong dependence on BVjTV. This result is 
similar to that of Martin (1984) in which he examined 
the bone-marrow interface surface per total volume of 
cancellous bone tissue (BS/TV) for human femoral 
head, iliac crest, rib, vertebrae, and dog vertebrae as 
a function of BV/TV. His results were similar to the 
result of this paper for BV/TV in the range of the data 
used in this paper. These two approaches to the sur- 
face-to-volume ratio are essentially identical. If the 
number of structural elements is denoted by SE.N, 
then 

SE.S SE.N x SE8 
-= 
SE.V SE.N x SE.V 

BS 

TV’ 
(18) 

The results for SE.S/SE.V of this paper are also 
similar to the results of Fazzalari et al. (1990) for 
BS/TV. They made analytical models for cancellous 
bone that assumed various microstructures and com- 
pared the model prediction of BS/TV to 
measurements taken from femoral head and iliac crest 
cancellous bone specimens. For the mathematical 
models the dependence of BSjTV on BV,JTV was 
a power function with an exponent between 0.0 (plate 
model) and 0.67 (sphere model). Their experimental 
finding was that, for normal cancellous bone, the 
dependence of BS/TV on BV/TV had an exponent of 
0.44 for the femoral head and 0.56 for the iliac crest. 
Differences in BS/TV versus BV/TV were expected 
because the structure of the SE is tightly controlled in 
r:ivo by biological processes. The biological mechan- 
isms of trabecular formation and remodeling will de- 
termine the dependence of BSfTV on BV/TV. It is 
reasonable, then, that different relationships were re- 
ported for femoral and iliac crest bone (Fazzalari 
et al., 1990) as the cancellous bone of these regions has 
different structural functions. In addition to differing 

mechanical function, other factors modulating the 
relationship include disease and genetic or develop- 
mental abnormalities of bone. The exponent found in 
the current study (0.70) is somewhat different. For 
Fazzalari et al’s data, the models composed of plates 
and rods were better able to represent the dependence 
of BS/TV on BV/TV than the other models they 
examined. Their sphere model had a dependence of 
BS/TV on BV/TV of 0.67, quite similar to the depend- 
ence of 0.70 found in the current study. In addition, 
their data showed clear differences in dependence 
between the femoral and iliac sites. Our data could 
not be used to examine this difference due to the small 
number of iliac crest specimens. 

This work shows that much additional information 
exists in the mean intercept ellipsoid than has hereto- 
fore been exploited directly. The major results are: 
(1) The theoretical estimates of the surface distribu- 
tion and average volume of the basic structural ele- 
ment may be helpful in developing morphologically 
valid mechanical models for cancellous bone. (2) The 
strength of bone can be related to the structural ele- 
ment volume (texture) and (3) The empirical relation- 
ships between the derived parameters SE.V, SE.S, 
SE.S/SE.V and BV/TV were remarkably strong. This 
indicates that some underlying biological rules govern 
the structural element size and trabecular surface 
shape in cancellous bone. This is supported by the 
experimental results of Goldstein et al. (1990) and 
Snyder et al. (1990). Determination of the actual cellu- 
lar mechanisms awaits collection of appropriate 
dynamic morphometric data. 

Also made clear is that the mean intercept length 
measure is insufficient to completely determine the 
morphology of a structural element for cancellous 
bone. The lack of position information for the 
bone-marrow interface currently precludes a com- 
plete definition of the SE. Development of new mor- 
phometric measures such as the volume projection 
method of Reimann et al. (1992) are needed before 
complete morphologically accurate models for cancel- 

lous bone are possible. 
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APPENDIX 1 

USE OF MACSYMA 

The technique for performing the necessary integrations 
using MACSYMA is presented schematically in Fig. Al. In 
this figure, the sequence of commands used to calculate y, 
are presented for the first quadrant of the X-Y plane. The 
lines labeled (cl), (c2), etc., are the commands to the program 
and the lines labeled (d5), (d8) are results. Note that most of 
the results lines were deleted for the sake of space. The 
commands (cl)-(c5) define and begin the integration of the 
equations. The questions after line (~5) are needed by the 
program for the integration. The result (d5) is the original 
result of the integration developed by the program. The 
commands (c6Hc8) transform the result of (d5) into the form 
of (d8). The final result of line (d8) is the MACSYMA form 
for yA, where hl, h2 represent H,, Hz and r represents the 
term 6 from the body of this manuscript. This difference in 
notation arose from the way that MACSYMA represents 
variables. If we note that sin* r = 1 -cos’ r then the result 
(d8) can be immediately transformed to the form 

1 

2(h2) [ 

(hl)cos r 
YA=- 

sqrt(h22 sin’ r+ h12 co? r) 
-1 , 1 OQr<rr. 

(Al) 

Using a similar series of equations and transformations, 
the equation for xA is 

(h2) sin r 1 sqrt(h2*sin* r+hl* cos’r) ’ 
O<rix. WI 

Using these results, along with a coordinate transform 
[shift y, by l/(2 x h2)], it can be immediately proven that 

C2(hl)x~12+C2(h2)y~12= 1, ~~30, (A3) 

which is the fundamental result used in the body of the 
manuscript [equation (6)]. 

APPENDIX 2 
EQUATIONS FOR STRUCTURAL ELEMENTS 

As an example of a structural element, assume that the 
element is an ellipse having the same Tb.L/TA as the real 
bone [equation (7)]. In this case the radii of the structural 
element (in terms of an unknown term m) are RI =mH, and 
R2 = mH2. The area of the ellipse is 

SE.A=nR,R2 

=rr(mHI)(mH2). (.44) 



(cl) sqrt ( ( (cos (t) /hl) ^2 + (sin(t) /h2) ^2) ) : 
(C2) diff(%,t,2); 

(c3) (dl+d2) /2 ; 

(cd) subst (w+%pi/2, t, %) ; 

(c5) integrate(%*sin(w) , w, 0, r) ; 

IS h2 positive or negative? 
positive; 

IS hl positive or negative? 
positive; 

IS h2 - hl zero or nonzero? 
nonzero; 

2 2 2 2 

IS h2 sin (r) + hl cos (r) positive or zero? 

positive; 
2 

IS cos (r) sin(r) positive, negative, or zero? 
positive; 

IS sin(r) positive, negative, or zero? 
positive; 

Is h2 - hl positive or negative? 
positive; 

(d5) 

IS r positive, negative, or zero? 
positive; 

2 2 2 2 

hl cos(r) sqrt( (hl - h2 ) cos (r) + h2 ) 1 
_~~~~~~~_~~______-_----__----_______-_~_- + -_ 

3 2 2 3 h2 

(h2 - hl h2) cos (r) - h2 
__---____-______---__--_---________---__-----_ 

(~6) radcan (%) ; 

(c7) trigsimp (%) ; 

(c8) factor (8) ; 

2 

(d8) 
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2 2 2 2 2 2 2 2 2 

hl cos (r) sqrt (h2 -(h2- hl) cos (r) )+ h2 cos (r) - hl cos (r) - h2 
- __________-_----________-_----______---________-~~~_~_~-_____~---- 

2 2 2 2 2 
2 h2 (h2 sin (r) - hl sin (r) + hl ) 

Fig. Al. Commands and edlted results for calculating J,~ using MACSYMA. 

By a comparison of equation (A4) with equation (lo), 
K = n$n. Using K in the first equation (1 l), 

Equating equations (AS) and (A6) with identification of the 
constant factors gives mn = (a/2)m2n. Consequently, for the 

SEL-ti[(Hz+H’,,Z]“” 
special elliptical model, m = 2/n. Therefore, the equations for 

-2 I2 ’ (A51 the structure of the elliptical structural element are 

where SE.L. SE.A are defined in the body of the manuscript. 
Equations (A4), (A5), (8) and (9) together define an ellipti- 

cal area that has the same mean intercept length distribution 
as a piece of real bone for an arbitrary magnification factor 
m. To specialize the elliptical model so that the distributed 
length is identical to the actual perimeter of the elliptical 

SE.LZ~[(H:+H:)/~]“~, 

SE.A=! H,HZ. 
lT 

SE.L,SE.A,,rii~+~)i”. (A7) 

area. note that, for the Ri, 

SE.L-Zn[(RI+R:)/21”* 

-\. -,_1 

zmx[(H:+H:)/2]“*. 

This calculation is an example of quantifying the histomor- 
phometric properties of an assumed structural element. 
A selection of other assumed structural element shapes are 

(A6) 
presented in Fig. 3 with their equations for the dependence 
of SE.L and SE.A on H,. 

BM 26:8-D 
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APPENDIX 3 
THE THREE-DIMENSIONAL SURFACE DISTRIBUTION 

ELLIPSOID 

the mathematical derivation of Turner (19861, the radii of the 
surface distribution ellipsoid are Ri =‘3/41ji. Direct calcu- 
lation of these values follows from the observation that the 
mean intercept length H for a uarticular direction has the 

In the body of this manuscript it was argued that the 
relationship to the-area projection of the ellipsoid in that 

three-dimensional surface distribution that has an ellipsoidal 
direction (A), 

mean intercept distribution is also an ellipsoid. Following V=HxA, (A@ 

1) l/H1 - 0.36144 + 3.203O(BV/lV) R”2 = 0.746 

3.00 

7 

2) l/H2 I 0.46177 + 4.1246(BW-V) I?“2 = 0.776 

3) l/H3 = 0.39564 + 6.1956(BV/TV) R”2 = 0.662 / 

q 

= -= 0 (lM1) mmA-1 

l (lM2)mmA-1 

I = (lM3)mmA-1 

“.W 1 ~ - 

0.0 Oil 0.2 0.3 014 

BVITV 

Fig. x2. Simple linear fit of the inverse of the principal length data (Hi) as a function of the bone volume 
fraction (BV/TV). 

1.00 1) In(H1) = -1.0322 - 0.63612[ln(WTV)] 

2) ln(H2) I -1.3199 - 0.65904[ln(BV/TV)] 

0.75 3) ln(H3) I -1.7137 - 0.75641[ln(wTV)] 

R*2 = 0.767 

R”2 . 0.629 

R”2 - 0.697 

z 
E 

0.25 

-0.25 

-1 .OO 

-1.25 
-3.00 -2.00 -1 .oo 

In (BWTV) 

Fig. A3. Simple linear fit of the natural logarithm of the principal length data (Hi) as a function of the 
natural logarithm bone volume fraction (BV/TV). 
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where 6’=(4,‘3)nR,R2R3 is the volume of the ellipsoid in 
terms of its three principal radii. Note that equation (AS) is 
an immediate consequence of the mean value theorem for 
integrals applied to the definition of volume for a convex 
body. For the ‘ith principal axis of the ellipsoid the projected 
area is A=nR,R,. where R, and R, are the two principal 
radii perpendicular to R,. Substituting this and the expres- 
sion for V into equation (A8) and rearranging immediately 
gives R,=(3/4)H,. 

APPENDIX 4 

DATA USED FOR EXPERIMENTAL RESULTS 

The data used in this paper were derived from the micro- 
CT results of Goldstein and co-workers of the University of 
Michigan; see Kuhn et al. (1990) and Feldkamp er al. (1989) 
for a description of their methods. The mean intercept data 
as provided to the authors of the current manuscript con- 

forms to the equation 

A=(&& 

=i,,l*+i,m*+i,n’, (A9) 

where L is the mean intercept length, P, and BV:TV are as 
defined in the body of this paper, the quantities d,, i= 1, 2. 3, 
are the coefficients of the ellipsoid that fits the experimental 
data for any particular bone and 1. m, n are direction cosines 
measured from the principal axes. To convert these data to 
the form used in this manuscript, the relationship 

1 
H,= 

2(BV/TV)J.;‘z 

was used. 
The dependence of the H, on BV/TV was examined for 

both the simple linear fit (Fig. AZ) and for the power-law fit 
(Fig. A3). In both cases the fit was very good. 


