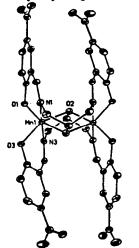
LOW VALENT, DINUCLEAR MANGANESE D056 **COMPLEXES AS FUNCTIONAL MODELS FOR** MANGANESE CATALASES

Andrew Gelasco and Vincent L. Pecoraro*,


Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055.

The manganese catalases are enzymes that disproportionate hydrogen peroxide to oxygen and water at a dinuclear manganese site (Eq. 1). (1)

 $2 H_2O_2 \rightarrow 2 H_2O + O_2$

Presently, the best model for this system proposes that the enzyme cycles between Mn(II,II) and Mn(III,III) levels. A third oxidized form of the enzyme, containing an Mn(III,IV) center has been characterized by EPR, and is inactive.

We have used the pentadentate ligand X-2-OHSalpn (X=H, Cl, NO₂, OCH₃) to prepare dinuclear manganese complexes having the various oxidation levels proposed for the enzyme. Structural analysis of these materials demonstrates that the dimers fall into two classes: symmetric (with short Mn-Mn distances, Figure 1) and asymmetric (with long Mn-Mn distances, Figure 2). Earlier work with Mn complexes of this ligand gave only asymmetric compounds [1] that are inactive toward H_2O_2 disproportionation. In contrast, the lower valent, symmetric complexes as Mn(II,II) and Mn(III,III), disproportionate H_2O_2 . The rates of disproportionation of H₂O₂ by these lower valent complexes will be compared to [Mn(IV)(Salpn)(O)]2 which exhibits a catalase reaction using high valent manganese.[2] The reactivity of the X-2-OHSalpn complexes with t-butyl hydroperoxide and other oxidants will also be presented.

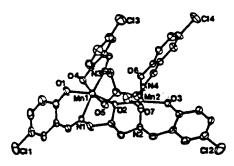


FIGURE 1. Mn₂(5-NO₂-2-OHSalpn)₂

FIGURE 2. Mn₂(5-Cl-2-OHSalpn)₂(CH₃OH)

- 1. J. A. Bonadies, M. L. Kirk, M.S. Lah, D. P. Kessissoglou, W. E. Hatfield, V. L. Pecoraro, Inorg. Chem., 28, 2037 (1989).
- 2. E. J. Larson, V. L. Pecoraro, J. Am. Chem. Soc., 113, 7809 (1991).