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Abstract--In two-dimensional polycrystals composed of ~-phase and fl-phase grains the stability of a~ ,  
flflB, 0tctfl and xflfl three-grain junctions and ¢tflotfl four-grain junctions depends on the ~t--a, fl-/~ and ~t-fl 
interfacial energies. A computer simulation which generates thermodynamically consistent microstructures 
for arbitrary interfacial energies has been utilized to investigate microstructural evolution in such poly- 
crystals when phase volume is not conserved. Since grain shapes, phase volume, and phase arrangements 
are dictated by interfacial energies, clustered-, alternating-, isolated-, and single-phase microstructures 
occur in different interracial energy regimes. Despite great differences in microstructure, polycrystals which 
contain only three-grain junctions evolve with normal grain growth kinetics. In contrast, structures 
containing flexible four-grain junctions eventually stop evolving. We conclude that two-dimensional 
polycrystals continually evolve when grain junction angles are thermodynamically fixed, while grain 
growth ultimately ceases when grain junction angles may vary. Predictions concerning three-dimensional 
and phase-volume conserved systems are made. 

1. INTRODUCTION 

A number of important engineering materials, such 
as composites, precipitate-strengthened materials, 
and materials with eutectics and/or miscibility gaps 
in their phase diagrams, are examples of two-phase 
materials in which each phase may be polycrystalline. 
In many cases, both phases may evolve under process- 
ing or service conditions. Both phase separation 
and grain growth may occur during microstructural 
evolution in such materials, and both processes may 
affect the properties of these materials. For  instance, 
mechanical and electrical properties may rely on the 
material maintaining a structure in which grains of 
one or both phases remain either interconnected or 
distributed throughout evolution; creep properties 
are affected by the grain size attained by each 
phase. However, the parameters and processes which 
control microstructural evolution in two-phase poly- 
crystalline materials have not been systematically 
examined. 

As a first step in investigating such processes, 
we have studied microstructural evolution in two- 
dimensional, two-phase polycrystals. Two-dimensional 
(2-D) systems are chosen for three reasons. First, 2-D 
systems provide a logical, simple starting place to test 
the concepts of two-phase grain growth. Second, 
in two dimensions, grain boundary curvature has a 
single component K, and both grain topology (i.e. the 
number of sides per grain) and grain growth rate 
depend on that curvature; in three dimensions, curva- 
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ture has two orthogonal components I£ 1 and /~2, and 
grain topology depends on the Gaussian curvature of 
a boundary (r~ 1¢2), while growth rate depends on the 
geometric curvature (x I + r2). Thus, for curvature- 
driven coarsening processes such as grain growth, 
some very useful rules relating grain topology and 
growth rate can be derived in two dimensions which 
have no known corollaries in three dimensions. 
Finally, when grain growth is spatially uniform, 
stereological relationships require that a 2-D system 
resemble a cross-section of  the corresponding three- 
dimensional (3-D) system (i.e. grain corner angles 
in 2-D are the same as grain edge angles in 3-D; 
3-D point junctions appear with vanishing probability 
in a 2-D section; etc.). While a 2-D system may 
not exhibit a number of phenomena unique to 3-D 
systems, it can nonetheless provide useful insight. 

Physically, a 2-D polycrystal may be viewed as a 
polycrystalline thin film in which the grain size is 
larger than the film thickness and grain boundary 
grooving does not occur. In such a system, the grain 
boundaries may move only in the two in-film-plane 
dimensions; hence, growth is referred to as 2-D. 

We begin our analysis of  2-D grain growth by 
examining the evolution of a grain surrounded by 
n neighbor grains. The n sides of  the grain are 
boundary arcs where two grains meet, and the n 
corners of  the grain are point junctions where three 
or more grains meet. We assume that grain bound- 
aries possess some boundary free energy per unit arc 
length, ~,, which is isotropic with respect to the grain 
boundary normal direction. In a single phase, 
energetically isotropic, 2-D system, it may be shown 
that the only stable grain corner is the three-grain 
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junction (trijunction), and the balance of  interfacial 
energies at the trijunction requires that all grain 
corner angles be 2n/3. 

This angular condition at grain comers necessitates 
that single phase, 2-D grain growth proceed accord- 
ing to a "six minus n" rule, often referred to as von 
Neumann's rule [1-4]. Because boundary curvature 
may be defined as the negative rate of change of  
boundary area with volume swept out by a moving 
boundary, curvature provides the driving force for 
the minimization of total grain boundary energy via 
boundary motion [5]. Hence, von Neumann's rule 
arises from the assumption that grain boundaries 
move toward their centers of curvature with velocity 
V proportional to boundary curvature x, specifically 

V = MIc (1) 

where M is the boundary mobility, and the fact that 

dA v as (2) 
dt 

where A is the area ofa  2-D grain, s is grain boundary 
length, and the integral is over the arcs of grain 
boundary between grain corners. The integral of the 
grain boundary curvature around a 2-D grain G is 
given by 

as + 0, = (3) 
i= l  

where the grain boundary curvature x is taken to be 
positive toward the center of the grain, the integral is 
taken over the grain boundary arcs, and the 0~ are 
the complements of the interior angles at each of the 
n grain corners. If grains meet only at trijunctions 
with the equilibrium angle of 2n/3, all 0~ = n/3, so 

- - = - M  K a s = - - M  (6--n) .  (4) 
dt 

Equation (4) is von Neumann's rule [1-4]. When 
von Neumann's rule holds, the rate of  change in 
the area of each grain is governed only by its number 
of comers and is independent of the grain size and 
of any properties of the neighboring grains. Hence, 
a 6-sided grain will neither grow nor shrink, while a 
7-sided grain always grows and a 5-sided grain always 
shrinks. 

It is important to emphasize that it is the angular 
conditions at the grain corners which give rise to the 
curvature driving force for grain growth. That is, to 
maintain comer angles of 2n/3 in a 4-sided grain, the 
integrated curvature of  the grain must be positive (i.e. 
on average, the sides "bow out" from the center of  
the grain); hence, as the curved boundaries move 
toward their centers of curvature, the grain shrinks. 
Conversely, an 8-sided grain has a negative integrated 
curvature (i.e. sides "bow inward") and therefore 
must grow. Only a 6-sided grain may have all corner 
angles equal to 2n/3 with an integrated curvature 
of zero; thus, only hexagonal grains neither grow 
nor shrink in a single-phase, isotropic system. While 
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boundary curvature is the driving force for grain 
growth, it is the angular conditions at grain corners 
which actually govern the stability of a grain structure. 

The presence of two phases (labeled • and/~ below) 
necessarily complicates the grain growth problem. 
Instead of a single grain boundary energy, two 
boundary free energies (?,,, 7Ba) and one interracial 
free energy (~,~a) control grain junction angles. The 
dimensionless quantities R~ = 7~/7~p and Ra = 7aa/?,a 
may be used as parameters which define the relative 
boundary energetics of the system; alternatively, the 
interior angle of an • grain at an ~/~/~ trijunction, 
4~, and the interior angle of a /~ grain at an ~/~ 
trijunction, Sa, provide the same information. These 
angles may be derived from an interracial energy 
force balance, giving [4] 

and 

/ 
i f R~'~ 

q~a = 2 cos-1/ / = 2cos I / )  (5h  
\2 ,d 

The thermodynamic stability constraints upon 
various microstructural features in 2-D, two-phase 
grain growth were recently analyzed by Cahn [4, 6] 
and are summarized below. 

In a two-phase system, the angles of a same-phase 
(~c~ or fl##) trijunction will remain 2n/3 due to the 
balance of interfacial energies at the trijunction. In an 

grain, for example, these single-phase trijunctions 
are stable for 0 ~< R~ ~< ~ (or ~bp > n/3). When 
R, > x/3, triangular fl grains will nucleate spontane- 
ously at all ~c~ triple points, reducing the total 
interfacial energy of the system [7-10]. Likewise, the 
single-phase #tiff trijunction is stable for 0 ~< R B ~< V/3 
(or ~ > ~/3). 

The two-phase trijunction (~=fl or ~flp) is destabil- 
ized by wetting. For instance, when ~b~ = 0 or Ra >/2, 
phase ~ penetrates the fl-fl interface, so the ~/~fl tri- 
junction (and the fl-fl interface) is stable only when 
0~<R~<2 (or q~p> 0). 

While the stability criteria for trijunctions were 
discussed by Gibbs [7], the possibility of stable four- 
grain junctions (quadrijunctions) in two-phase poly- 
crystals was only recently established by Cahn [4, 6]. 
The angles at which boundaries meet in a quadri- 
junction are not uniquely determined by an interfacial 
energy balance [7]. However, it may be shown that the 
angle • of  a grain corner in a stable quadrijunction 
must be greater than or equal to the angle ~b of the 
same corner in the trijunction formed when the quadri- 
junction fluctuates into two trijunctions. If  ¢~ < ~, 
as the trijunction moves incrementally away from the 
quadrijunction, the trijunction angle opens up, pulling 
the trijunction further from the quadrijunction, as 
shown in Fig. l(a). If • I> ~, as the trijunction moves 
incrementally away from the quadrijunction, the tri- 
junction angle decreases and forces the trijunction 
back toward the quadrijunction, as shown in Fig. l(b). 
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(a) (b) 
Fig. I. Quadrijunction stability conditions dictate that the 
junction angle ~ of the (white) ~t grain G in the ~t/~tfl 
quadrijunction be greater than the junction angle ~b of the 
same grain in the ~t/Jfl trijunction which forms when grain 
G fluctuates away from the quadrijunction. (a) If 4~ < ~b, 
the ~tflfl trijunction opens up, pulling grain G away from 
the original quadrijunction position. (b) If ¢ >/~b, the ~t/]fl 
trijunction closes, pushing grain G back toward the original 
quadrijunction position. Arrows show the direction of the 

driving force for boundary motion in each case. 

This criterion and the geometric fact that the angles 
around a quadrijunction must sum to 2n necessitate 
that only quadrijunctions of  the ~tfl~t//type are stable 
[4]. Since an a[Jctfl quadrijunction may fluctuate into 

two ~flfl trijunctions or into two ctat// trijunctions, 
such quadrijunctions are stable if and only if 

¢ ~ i > ~  and ¢ ~ 1 > ~ .  (6) 

We can calculate an upper bound on the quadri- 
junction angles as well [4]. The balance of interfacial 
energies at the junction requires that the two g grain 
angles be the same and that the two/~ grain angles 
be the same. Then, since plane geometry requires that 
2~,  + 2¢# = 2n, it is apparent that the maximum 
values of the quadrijunction angles are bounded such 
that 

¢ ~ < n - q S ~  and ¢ ~ < ~ - q 5 ~ .  (7) 

Therefore, the ranges of stable quadrijunction angles 
are 

qb~<~<n-~# and q ~ ¢ ~ < n - ~ .  (8) 

These inequalities may be rewritten as a single 
quadrijunction stability criterion 

~b~ + ~b~ ~< n (9a) 

which may be combined with trigonometric identities 
to give the equivalent expression [4] 

R~ + R~ t> 4. (9b) 

It may be shown that junctions at which more than 
four grains meet are never stable in 2-D polycrystals 
[4]. 

The stability regimes of each of the microstructural 
features described above are shown in the R ~ -  Ra 
plane in Fig. 2(a) and in the q~ - ~ba plane in Fig. 2(b). 
While Fig. 2 catalogs the thermodynamic stability 
regimes for all microstructural features, it does not 
predict the grain arrangements, phase distributions, 
or preferred microstructural features of a given sys- 
tem evolving via cooperative grain growth of many 
individual grains. In addition, the thermodynamic 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

(a) 

I I I 

x 

aal  <-- 

i b 

°C 

\ 
/ -  

i i i , , , 

2.0 2.5 

2x/3 

~/3 

t I . . . .  I ,  

0.0 0.5 1.0 1.5 0 

R. 

(b) 

m 

- - - - >  0~0~ 

/ 
/ 

------> O~O[(g 

I \ 
~ 3  2x/3 

Fig. 2. Catalog of stable microstructurai features in two phase systems. (a) The axes are the interracial 
energy ratios R,--~,~/~,~p and R~ = TPB/~',P' Letters indicate conditions under which simulations were 
performed. (b) The same catalog plotted in terms of the interior angle of an ~t grain at an ct////trijunction, 

0,, and the interior angle of a/~ grain at an a~t/~ trijunction, 0~. 



1122 HOLM et al.: MICROSTRUCTURAL EVOLUTION IN POLYCRYSTALS 

analysis does not provide any information about 
boundary and interfacial energy effects upon the 
kinetics of microstructural evolution. 

Laboratory experiments to test the effect of inter- 
facial energies on two-phase microstructural evolution 
suffer from both conceptual and practical difficulties. 
For example, since interfacial energies in two-phase 
systems are determined by physical properties of the 
phases, a large number of different systems must be 
examined in order to reproduce the microstructural 
feature diagram of Fig. 2(a) over the range of R~ 
and Rp. Since each experimental system must be 
comprised of different phases, the kinetics of micro- 
structural evolution are not directly comparable 
among the systems. Moreover, interfacial energy 
anisotropy differs from system to system. Finally, 
impurities and surface grooving often compete with 
curvature-driven grain growth in experiments on 
nominally 2-D systems (e.g. thin films). To circumvent 
the inherent difficulties of laborabory experiments, 
we employ a Monte Carlo Potts model computer 
simulation of 2-D, two-phase grain growth in which 
the only system variables are the three interfacial 
energies. 

This paper summarizes a series of simulation 
results on one of the simplest cases of two-phase 
grain growth: the phase-volume nonconserved system 
(i.e. a system in which the volume fraction of each 
phase may vary during microstructural evolution). 
This type of system occurs during a congruent-point 
phase transition, defined as a transition from phase 
to phase fl, where ~ and fl have identical bulk free 
energies and compositions. Alternatively, non- 
conserved domain evolution takes place when all 
distinct domains belong to one of two domain types. 
More often observed examples of "two-phase", 
phase-volume nonconserved growth occur during 
single phase grain growth when each grain belongs to 
one of two classes. For instance, in a highly textured 
system in which grains belong to one of two 
orientation classes, interfacial energies between like- 
orientation-class grains may be low relative to the 
interfacial energy between unlike-orientation-class 
grains. In systems undergoing recrystallization, 
dislocation cells belong to one class and grains to 
another, and boundaries between dislocation cells 
tend to be low-energy, low-angle boundaries, while 
boundaries between recrystallized grains and between 
recrystallized and non-recrystallized grains tend to be 
high-energy, high-angle. Similarly, during abnormal 
grain growth in a textured material, the interfacial 
energies between abnormally growing grains and 
between normally growing grains may be low com- 
pared to that between normal and abnormal grains. 
In all of these case, long-range diffusive processes 
play no part in microstructural evolution, and inter- 
facial energies are the variables which affect the 
microstructural evolution of the polycrystal. 

The computer experiments described below not 
only reproduce the microstructural feature diagram 

of Fig. 2, but also provide insight into the phase 
distributions, preferred microstructural features, and 
kinetics of two-phase microstructural evolution. 
In fact, these computer experiments demonstrate 
that the cooperative nature of grain growth in a poly- 
crystalline system is critically important to both 
microstructural morphology and evolution. 

2. SIMULATION METHOD 

The Monte Carlo model for the simulation of 
normal grain growth has previously been described in 
theoretical and computational detail [11-18]. A con- 
tinuum microstr~cture is mapped onto a 2-D, discrete 
lattice by assigning each lattice site a non-zero index, 
Si. In the two-phase simulation, the sign of S: 
indicates the phase present at that site; the absolute 
value of S~ corresponds to the orientation of  the grain 
in which the site is embedded. Sites with one or more 
unlike nearest neighbors (i.e. sites located at a grain 
boundary or phase interface) are interface sites; sites 
with only like nearest neighbors are bulk (or interior) 
sites. The total system energy is specified by assigning 
a positive energy to interface sites and zero energy to 
interior sites, and is computed via the Hamiltonian 

1 N z 

H = g i~l,~l {(J~ + J~p + 2J~#)[l - c$ (Si, Sj)] 

+ (J~ + J ~  - 2J~p)sgn(S~)sgn(Sj) 

+ (J~ - J~)[sgn(Si) + sgn(Sj)]} (10) 

where the outer sum is over all sites i, the inner sum 
is over the z nearest neighbors of site i, 6 is the 
Kronecker delta function defined as 6(S~, Sj) = 1 if 
S~ = Sj and 0 otherwise, sgn is the sign function 
defined as sgn(S~) = 1 if Si > 0 and sgn(Si) = - 1 if 
S~ < 0, and J~,  J~  and J~ are positive constants 
which scale with the ~-~, fl-fl and ~-p interfacial 
energies, respectively. In essence, this Hamiltonian 
sums interface energies; the system energy is simply 
J~ times the number of ~-~ boundary segments in the 
system plus Jp~ times the number of fl-fl segments 
plus J~  times the number of ~-p segments. 

Initial grain structures are generated by assigning 
to each site i a random index S~ indicating both the 
phase and grain orientation of the site. (In these 
simulations, 50 different grain orientations were 
allowed in each phase, so - 50 ~< S~ ~< 50 and S,. ~ 0.) 
Grain growth kinetics are determined through a 
Monte Carlo technique. First, a lattice site and a site 
index are chosen at random. The index of the chosen 
site is then changed to the new index if and only if 
the total system energy does not increase. Since only 
negative or zero energy excursions are allowed, the 
implicit Monte Carlo temperature of the simulation 
is T = 0. Note that because the boundary mobility 
remains finite, a Monte Carlo temperature of zero 
does not correspond to a physical temperature of 0 K; 
rather, setting the Monte Carlo temperature to 
zero simply eliminates thermal fluctuations in the 
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boundaries. After each attempted index change, time 
is incremented by ( l /N)  Monte Carlo steps (MCS) 
where N is the number of lattice sites. 

In the present simulations, lattice sizes of N = 
40,000 and 250,000 sites were employed. The micro- 
structures were allowed to evolve for 105-107 MCS. 

3. LATTICE EFFECTS 

The validity of mapping a continuum micro- 
structure onto a discrete lattice requires some justifi- 
cation. For  instance, at a Monte Carlo temperature 
of zero, lattice effects are known to artificially pin 
grain growth on a square lattice with first nearest 
neighbor interactions [the sq(1) lattice], while grain 
growth on a triangular lattice with first nearest 
neighbor interactions [tri(1)] and grain growth on a 
square lattice with equal first and second neighbor 
interactions [sq(l, 2)] proceed to completion [15]. The 
factor which determines whether lattice effects may 
pin normal grain growth at T = 0 is the ability of 
grain junctions to maintain their equilibrium angles 
independent of lattice orientation [16]; an energetic- 
ally anisotropic lattice will tend to force grain junctions 
to low lattice-energy angles which are far from the 
junction equilibrium angles. 

Lattice anisotropy becomes even more important 
in two-phase grain growth, where not only must 
~ctfl and ~flfl grain junctions maintain different 
equilibrium angles, but also, in some cases, nucle- 
ation of an unlike phase grain may occur at ~t~t 
or /~flfl trijunctions. Consider for example, a fl.flfl 
trijunction in a system with R~ = 1.4 and Rp = 1.85. 
Thermodynamically. an ct grain should nucleate 
at the trijunction (see Fig. 2 and Ref. [4]). How- 
ever, in both the tri(l) and sq(1, 2) lattices, there 
are flflfl trijunction configurations which are stable 
and do not permit a nucleation. When grain growth 
occurs on these lattices, the disappearance of 
kinks on the grain boundaries causes the evolved 
microstructures to contain the artificially stable tri- 
junctions as well as other remnants of the lattice 
geometry. For  example, in a system with R~ = 1.4 
and Rp = 1.85, the tri(1) microstructure in Fig. 3(a) 
contains artificially stable flflfl trijunctions and 
many triangular grains; the sq(1,2) microstructure 
in Fig. 3(b) includes artificially stable flflfl trijunc- 
tions and square grains. In addition, both of these 
systems stop evolving at a relatively small grain 
size. 

These lattice effects are caused by the energetic 
anisotropy of the lattices. While in a single phase 
system every lattice site reorientation attempt incurs 
an energy change which is an integer multiple of the 
energy scaling factor J , , ,  during two phase grain 
growth the system must respond isotropicaUy to 
energy changes which may be a small fraction of J,~. 
The Wulff plot of bond energy vs lattice orientation 
for the tri(1) lattice is hexagonal and contains minima 
which are 13% lower in energy that the energy 

maxima located n/6 from the minima; likewise, the 
octagonal Wulff plot for the sq(1, 2) lattice has minima 
which are 10% lower in energy than its maxima [19]. 
These lattice energy minima must not overwhelm the 
true, continuum interfacial energy minima in the sys- 
tem, so in order to maximize the energetic sensitivity 
of the lattice, we choose a lattice with very small 
energetic anisotropy. In this case, the triangular 
lattice with equal first and second nearest neighbor 
interactions [the tri(l,  2) lattice], which exhibits only 
a 5% energetic anisotropy in its dodecagonal Wulff 
plot, was found to be sufficiently sensitive. For  the 
test case ofR~ = 1.4 and R~ = 1.85, the tri(l, 2) system 
contains no artificially stable flflfl trijunctions, and 
the grain shapes do not mimic the underlying tri- 
angular lattice, as shown in Fig. 3(c). Finally, note 
that since the Wulff shapes of these growth lattices 
are polygonal, the driving force for boundary motion 
in the simulations is crystalline weighted mean curva- 
ture, as discussed by Taylor [5], and boundaries have 
an arbitrary minimum facet size which depends upon 
the lattice size. 

4. MICROSTRUCTURES 

The Monte Carlo computer simulation on the 
tri(l,  2) lattice, described above, was applied to two- 
phase, congruent-point grain growth over a large 
range of R~ and R, values (at each point indicated by 
a capital letter in Fig. 2). The resultant microstructures 
are analyzed below. 

4.1. R~ = R B diagonal feature fields 

Along the diagonal of the R~-R, microstructural 
feature diagram (Fig. 2), ~t--~t and fl-fl grain bound- 
ary energies are equivalent, so ~t and/~ grains should 
possess identical microstructural features and area 
fractions. The single parameter which influences grain 
structure and distribution when 7~ = 7~ is the ~t-fl 
interracial energy ?~. The progression of micro- 
structures along the diagonal of the R~-R~ micro- 
structural feature diagram show the transition from 
the "normal" grain growth regime where only tri- 
junctions are energetically stable (~,~ = 7~ < ,v/2Y~) 
to the wetting regime where quadrijunctions alone are 
stable (7~ = ?~p > 27~). 

The simplest case of two-phase, congruent-point 
grain growth is the situation where y~ = Dp = ~'~ or 
R~ = Ra = 1 (point A in Fig. 2). Since the interfacial 
energies in the system are equal and isotropic, and the 
free energies of the phases are equivalent, this situ- 
ation should correspond to normal grain growth with 
a random distribution of ~ and fl grains. Figure 4(a) 
shows a typical microstructure in this system; grain 
shapes are spatially isotropic, there is no discernable 
difference between ct and fl grains, and the only 
junctions present are the expected 0t~t~, flflfl, ¢tctfl and 
ctflfl trijunctions. In addition, the area fractions of 
~t and fl are approximately 0.5 until late times, 
when random fluctuations may cause either phase to 
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Fig. 4. Microstructures of two-phase systems with R~ = R#. Grains of phase ct are white; fl grains are gray. 
(a) Normal grain growth in system A. (b) Phase clustering in system A~. Note that grains within phase 
clusters grow almost as if in isolation. (c) Alternating phases in system A2. (d) All microstructural features 
are stable in system B; however, since phases have a tendency to alternate, ~tct~ and flflfl trijunctions are 
present only in small numbers. (e) ~tct~t and flflfl trijunctions disappear in system C. (f) Double wetting 
in system D; phases alternate perfectly and all junctions are quadrijunctions. Grain structures (e) and (f) 

consist solely of very low curvature grains and are pinned. 

dominate as the system approaches a single grain, 
as shown in Fig. 5. 

For a system with R~ = R# < 1, all trijunctions are 
stable, as in normal grain growth. However, in this 
case, the ~t-fl interfacial energy is greater than either 
grain boundary energy, so the system will evolve to 
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t (MCS)  

Fig. 5. The time evolution of the volume fraction of 
phase ~, f~, in on-diagonal, two-phase systems A, A~, A 2, 

B, C and D. 

minimize ~-fl interfaces. For instance, for R~ = R# 
= 0.5 (point A~ in Fig. 2), Fig. 4(b) shows a typical 
microstructure, characterized by continuous, smooth 
clusters of ~t grains and fl grains. These clusters are 
compact, and grain growth within the clusters occurs 
almost as if the grains grow in isolation. (Note the 
bamboo-like grain structure of the straight grain 
boundaries along "channels" of ct and ft.) Figure 5 
shows that the volume fraction of each phase differs 
from 0.5 even at very early times. This effect is geo- 
metric, not energetic. The percolation threshold for a 
two-phase continuum is 0.5, so if one phase randomly 
achieves a volume fraction slightly greater than 0.5, it 
will completely surround the other (non-percolating) 
phase, and thus will always grow at the expense of 
the non-percolating phase. Therefore, in simulations 
with random initial grain configurations, half of the 
independent trials evolve toward an all-or state, and 
the other half approach an all-fl state. 

In contrast, the system with R~ = R# > I favors 
maximizing the amount of ~t-fl interface present in 
the microstructure. For R~ = Ra = 1.25 (point A2 in 
Fig. 2), the microstructure is characterized by ct and 
fl grains which alternate more than in the normal 
growth case, as shown in Fig. 4(c). In other words, 
an ~t grain is more likely to have fl neighbors than 

neighbors. In this system, the volume fraction of 
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Fig. 6. Single phase microstructures produced by an interfacial energy induced phase transition to phase 
ct (shown in white). (a) All trijunctions are thermodynamically stable in system E 2. (b) Quadrijunctions 
are thermodynamically stable in system E 5 . However, due to the phase transition, the only observed grain 

junction in either system is the tract trijunction. 

both phases remains near 0.5 until  very late times 
(see Fig. 5). 

Cont inuing up the R~ = R a diagonal, a - a  and fl-fl  
boundaries become relatively more energetic compared 
to ~t-fl interfaces, and the phases are more inclined 
to alternate, until  at R, = Ra = x/2, a f a t  quadri- 
junct ions become stable. For  the system with 
R, = Ra = 1.6 (point B in Fig. 2), the microstructure 
contains these quadrijunctions as well as aafl and otflfl 
trijunctions, as shown in Fig. 4(d). The thermody- 
namically stable aaa and fflfl  trijunctions are also 
present, but  since the phases have a strong tendency 
to alternate in order to maximize the low energy a- f l  
interface at the expense of the higher energy ct--a and 
fl-fi  interfaces, these same-phase trijunctions (which 
require the intersection of three a - a  or three fl-fl  
interfaces) are present in very small numbers.  

For  R~ = Ra > x/3, high a -~  and fl-fl boundary  
energies destabilize the aaa and fflfl  trijunctions. 
Microstructures of the system with R~ = Ra = 1.85 
(point C in Fig. 2), shown in Fig. 4(e), consist of ctctfl 
and ctflf trijunctions and otflctfl quadrijunctions 
exclusively. As discussed below, the structure eventu- 
ally becomes pinned in a checkerboard configuration 
containing mainly aflafl quadrijunctions and a small 
number  of craft and aflfl trijunctions. As in the other 
cases on the R , - R  B diagonal, the area fractions of 

and fl are 0.5, and the cessation of microstructural 
evolution prevents one phase from dominat ing at late 
times, as shown in Fig. 5. 

In the on-diagonal wetting regime with R~ = Rp 
> 2, the only stable microstructural features are 
aflafl quadrijunctions and a- f l  interfaces. Accord- 
ingly, the evolved microstructure of the system with 
R~ = Ra = 2.25 (point D in Fig. 2) contains only these 
features, as shown in Fig. 4(f); phases alternate so 
that ct is surrounded entirely by fl and vice versa. 
The volume fractions of ~ and fl are quickly pinned 
at 0.5. 
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Fig. 7. The time evolution of the volume fraction of phase 
~t, f , ,  in off-diagonal, two-phase systems E, F, G, H and I. 
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(b) 

/ 

Fig. 8. Microstructural evolution in system FI, which favors isolated grains of fl (gray) in an • (white) 
matrix. Isolated//grains follow the "six minus n" growth rule. For instance, the//grain in the upper 
left corner (a) grows when n = 7, (b) stabilizes when n = 6, and (c) shrinks when n = 5 and (d) n = 4. 

4.2. Off-diagonal feature fields 

In the off-diagonal regimes of the R~-Rp dia- 
gram, the difference between ~,--~ a n d  f l -~ grain 
boundary energies adds phase asymmetry to the 

already complex geometric and energetic constraints 
upon the system. 

In the regime where R~< Rp a n d / ~  < 1, ~-~ grain 
boundaries have lower energy than either p - p  
boundaries or ~-fl  interfaces. Hence, the system 
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should evolve to maximize the length of  ~t--~ grain 
boundaries. In fact, a system with R~= 0.5 and 
Ra = 1 (point E2 in Fig. 2) evolves to contain only low 
energy ct--ct boundaries, and the volume fraction of 
ct is unity following a short transient, as shown in 
the microstructure in Fig. 6(a) and in Fig. 7. This is 
an excellent example of a phase transition that is 
controlled by interfacial energy; although the free 
energies of :~ and fl are identical, ~t is the thermo- 
dynamically stable phase in a polycrystalline system 
because an all-~ system minimizes the interfacial 
energy of the system. An exactly analogous situation 
occurs in systems E,, E3, E4 and E5 in Fig. 2; since 
ct-a grain boundaries have the lowest interfacial 
energy, each system evolves to contain only • grains 
in a normal grain structure regardless of the micro- 
structural features thermodynamically accessible to it. 
In fact, even in systems where fl wets ct--~ interfaces 
(i.e. R~ > 2). the microstructure remains a normal, 
all-~ microstructure, as shown for system E4 in 
Fig. 6(b). Once all // has been eliminated from 
such a system, normal single-phase grain growth 
occurs. 

In the regime where R~ < R~ and R~ = 1, ~--~ grain 
boundaries have the same energy as ct-fl interfaces, 
and both have lower energies than fl-fl  grain bound- 
aries. In this case, the system equally favors isolated 

grains in an ct matrix or an all-or system. Three 
examples of such a system are points F~, F 2 and F 3 
in Fig. 2. Because ~t grains may grow whether in 
contact with ~t or /~ grains and fl grains may only 
grow when surrounded by ct grains, ct grains quickly 
surround fl grains. However, since all corners of a 
fl grain surrounded by • grains have interior angles 
of 2n/3, once isolated, a fl grain grows (or shrinks) 
normally among its ~t neighbors; that is, an isolated 

grain follows the "six minus n" growth rule. 
Microstructural evolution in such a system is shown 
in Fig. 8. Note that if an isolated fl grain has fewer 
than 6 sides (as most eventually do) it shrinks and 
disappears. However, if a fl grain has more than 
6 sides [as the large fl grain in the upper left corner 
of Fig. 8(a)], it grows. Because the vast majority of 
grains eventually disappear during normal grain 
growth, very few of these normally evolving fl grains 
remain at late times; thus, the volume fraction of ~t 
approaches 1. For  example, the large, growing fl 
grain in Fig. 8(a) eventually loses neighbors until 
fewer than six remain; then, it shrinks and disappears, 
as shown in Fig. 8(b-d). Note, however, that there 
is a small, finite probability that an isolated fl grain 
will be the single grain that remains when all others 
have disappeared. In that unlikely case, the volume 
fraction of  fl might actually approach unity at very 
late times. 

In the regime where R, < R B and R, > 1, the ~t-~ 
interface is of lower energy than any other interface 
in the system, and • and fl grains tend to alternate. 
Because the total lengths of ct--~ and fl-fl  interfaces 
are minimized by grain alternation, the relative 

Fig. 9. Alternating phases in system I. Grains of phase 
are white; fl grains are gray. Note the similarity to the 
system C microstructure [Fig. 4(e)]; the two systems differ 

only in the stability of ~t////trijunctions. 

magnitudes of ),= and ~p~ have very little effect upon 
the phase distribution of the system. In fact, the 
volume fractions of each phase are about equal, 
and all stable microstructural features are present. 
Hence, the microstructures closely resemble those of 
the on-diagonal systems containing the same stable 
features as the off-diagonal system. 

For  example, if x / 3 < R p < 2 ,  R~<x/3 ,  and 
R~ + R~ > 4, all features except flflfl trijunctions are 
thermodynamically allowed. As shown in Fig. 3(c), 
an evolved structure for the system R~ = 1.4 and 
Rp = 1.85 (point G in Fig. 2) contains only stable 
features in a microstructure very similar to the R~ = 
Rp = 1.6 case in Fig. 4(d). This might be expected, 
since the stable features of the R~ = 1.4, R~ = 1.85 
system differ from those of the R~ = R~ = 1.6 system 
only in the instability of flflfl trijunctions, which occur 
very infrequently in the P~ = R B = 1.6 system. The 
volume fraction of  • and fl become pinned near 0.5 
(see Fig. 7). 

Likewise, for x/3 < R~ < 2, R~ > 2, only ~ctfl tri- 
junctions and ~//a// quadrijunctions are stable. As 
shown in Fig. 9, an evolved structure for the system 
R~ = 1.85 and R~ = 2.25 (point I in Fig. 2) contains 
only stable features in a microstructure very similar 
to the R~ = Ra = 1.85 case in Fig. 4(e). This might be 
expected, since the stable features of the R~ = 1.85, 
Rp = 2.25 system differ from those of the R~ = R B = 
1.85 system only in the instability of ~flfl trijunctions. 
Since the most common grain junction in these 

AM 41/4~J 
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Fig. 10. Quadrijunction angles in a system C micro- 
structure in which q~, = ~ ~ n/4. Quadrijunction stability 
criteria require all quadrijunction angles ¢ be greater than 

3n/12 but less than 9n/12. 

systems is the quadrijunction, the presence or absence 
of ~t[3fl trijunctions affects the appearance of the 
microstructures very little. As i n t h e  R~ = Rp = 1.85 
system, the microstructure eventually becomes pinned, 
which causes the volume fraction of~t and fl to remain 
near 0.5 at all times (Fig. 7). 

4.3. Quadrijunction angles 

Recall that according to equation (8), otflotfl quadri- 
junctions are stable when quadrijunction angles ~ 
and ~a are within the ranges tk~ ~< ~ ~< n - ~  and 
~b# ~< ~p ~< n - ~b~. Figure 10 shows measured ct and 
fl grain quadrijunction angles in a simulated micro- 
structure in which R~ = Ra = 1.85 and ~b~ = ~bp ~ rr/4 
[system C in Fig. 2 and the microstructure in Fig. 4(e)]. 
In this system, equation (8) requires all quadrijunction 
angles • to be greater than 3rr/12 but less than 9rc/12. 
Indeed, the distribution of quadrijunction angles falls 
almost entirely with the limits given by equation (8) 
and is peaked at the center of the stability range 
(i.e. at about 6n/12). A very few quadrijunction 
angles fall outside of the stable range (about 3% have 
an angle of about 2n/12 and 1% have an angle of 
about 10n/12). Because there are so few unstable 
angles, it is possible that they occur during a transient 
configuration of a forming, decomposing, or moving 
quadrijunction. Additionally, the anisotropy of the 
tri(1, 2) lattice makes it slightly more energetically 
favored for boundaries or interfaces to intersect one 
another at an angle of 2n/12 than at 3n/12 and at 
10n/12 rather than 9n/12. The slight depressions in 
the quadrijunction angle distribution at 5n/12 and 
71t/12, also less favored intersection angles, tends to 
corroborate the possibility of lattice effects upon 
quadrijunction angles. 

5. PHASE AND FEATURE DIAGRAMS 

During microstructural evolution from an initially 
random system, the effects of cooperative grain growth 
and the assumption of a phase-volume noneonserved 
system strongly influence grain arrangement, phase 
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Fig. 11. The effects of interfacial energy ratios on a 
two-phase polycrystal in which phase volumes are not 
conserved. (a) The phase diagram of the system. The 
interfacial energy ratios R, and R~ control the phases 
present in the system. (b) Microstructural features in the 
system. Although Fig. 2 may indicate that a number of 
features are stable, the condition that phase volume is not 
conserved may effectively eliminate certain features from 

the microstructure. 

distribution, and preferred microstructural features. 
For  instance, since the bulk free energy of ~t and fl are 
equivalent, grain boundary and interfacial energies 
control the phases present in the system. Thus, a 
phase diagram for the ct-fl system may be plotted in 
the R~-Rp plane, as shown in Fig. 1 l(a). Four distinct 
phase fields occur. In an infinite system, along the 
R~ = Rp diagonal each phase has a volume fraction 
of exactly 0.5, while in the off-diagonal regime where 
R~ > 1 and Rp > 1, the phase volume fractions only 
approximate 0.5. Similarly, along the isolated grain 
lines, the phase fraction of the majority phase is close 
to unity, while in the interfacial energy induced phase 
transition regime, the volume fraction of the favored 
phase goes to exactly 1. 
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The microstructural features present in a phase- 
volume nonconserved system are also functions of 
R, and Ra, as shown in Fig. 11 (b). When the volume 
fractions of ~t and fl are not nearly equal, some 
thermodynamically permitted features may never 
appear in evolving polycrystals. For instance, single 
phase systems may contain only same-phase tri- 
junctions no matter which other features are thermo- 
dynamically stable. Likewise, in isolated grain systems, 
only one same-phase and one two-phase trijunction 
ever occur. However, when the phase volume fractions 
of et and fl are essentially equal, all thermodynamically 
stable features are observed throughout micro- 
structural evolution. 

Together with the microstructural feature stability 
diagram of Fig. 2, Fig. 1 l(a,b) provides a complete 
description of the phases and features present in a 
polycrystalline, two-phase microstructure in which 
phase volume is not conserved during microstructural 
evolution. 

6. KINETICS AND MICROSTRUCTURAL FEATURES 

6.1. Trijunction-only systems 

The grain size evolution kinetics for systems con- 
taining only trijunctions (i.e. all A, E, and F systems) 
are shown in Fig. 12. Such systems undergo normal 
grain growth (average grain area ( A )  proportional 
to t m where m is asymptotic to one at late times [17]) 
with late-time kinetics very similar to those of single 
phase systems. 

As shown in Fig. 12, trijunction-only systems in 
which f~ ,,, 1 at late times (i.e. all E and F systems) 
show slightly depressed grain growth kinetics at early 
times. This initial transient is due to the disappear- 
ance of fl grains. At early times, a grains grow at the 
expense of fl grains. So while the a grains maintain 
their single phase grain growth dimensions, the fl 
grains are all much smaller than in normal grain 
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Fig. 12. The evolution of mean grain area (A) in systems 
containing only trijunctions. Late-time kinetics are very 

similar to normal, single-phase growth kinetics. 

growth, and the mean grain size is depressed relative 
to the single phase case. At later times, when f~ ~ 0, 
the 0t grains (and isolated fl grains, if any) are at 
the size they would have been if no shrinking fl grains 
had ever been present, and the structure continues 
to grow normally. Hence; phase transition (E) and 
isolated ~ systems (F) display slow initial grain 
growth kinetics which accelerate and catch up to 
those for the single phase systems at late times. 

For trijunction-only systems in which ~ and / / a re  
present in approximately equal quantities (points A, 
At and A2 in Fig. 2), grain size evolution kinetics 
are very similar to the single phase case at all times 
(Fig. 12). This is a consequence of the independence 
of the grain growth kinetics from grain geometry. In 
particular, Mullins and Vifials have shown that nor- 
mal grain growth kinetics (i.e. ( A )  = kt) are required 
when the grain size and topological distributions are 
self-similar during grain evolution; the time prefactor 
k in the normal growth equation is determined by the 
shapes of the size and topology distributions [20]. 
Since the experimentally observed grain size and 
topology distributions are self-similar after initial 
transients (t > 1000MCS) in all trijunction-only 
systems, these systems must follow normal grain 
growth kinetics. 

Moreover, if the topology and grain area distribu- 
tions of two trijunction-only systems are the same, 
the growth kinetics of the systems must be identical 
as well. While such similarity between trijunction- 
only systems is not a necessity, grain area distribu- 
tions are found to be statistically equivalent in the 
three systems studied. Grain topology distributions 
for these systems vary slightly and are shown in 
Fig. 13. The alternating phase case A2 differs most 
from the single phase grain topology (case A) with 
a peak at n = 6 neighbors rather than n = 5, and 
indeed, the time prefactor is smaller and kinetics are 
depressed relative to case A (Fig. 12). The grain 
clustering system A1 has grain topology essentially 
equivalent to the single phase case, and its kinetics 
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Fig. 13. Distr ibut ion of  grain topology in trijunction- 
only systems. Note  that  the phase clustering system (A t) 
is very similar to the single-phase system (A), while the 
alternating phase system (A2) has a broader ,  more  sym- 

metrical distr ibution o f  grain shapes. 
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are nearly identical to the single phase kinetics. 
Therefore, the degree of similarity in grain evolution 
kinetics between trijunction-only systems is associated 
with topological similarity, regardless of the respect- 
ive geometries of the systems• This observation re- 
emphasizes the governing role of topology in grain 
growth in polycrystals, elucidated by Smith 40 years 
ago [1]. 

Besides controlling the rate of grain evolution, 
topology also governs the persistence of grain growth. 
In a single phase system with trijunction angles of 
2n/3, the only non-evolving grain structure is the 
topologically ordered hexagonal array of  grains• 
However, a topologically disordered system does 
not evolve toward the hexagonal system (either for 
energetic or kinetic reasons)• For instance, a 6-sided 
grain is locally stable but does not offer resistance to 
topological perturbations; that is, the 6-sided grain 
does not inhibit its neighbors from either growing 
or shrinking away. So during grain growth from a 
disordered initial system, clusters of hexagonal grains 
are not particularly favored to form or to persist. 
In fact, even an infinite hexagonal array of grains 
is unstable with respect to a single 5-7 topological 
perturbation [21, 22]. 

The topology of a trijunction-only grain in a two- 
phase system is fully described by three parameters: 
the number of corners n, the number of unlike-phase 
neighbor grains rid, and the number of switches from 
~t to fl as we examine the neighbor grains in clockwise 
order ns. The values which these parameters may take 
are limited by a set of  inequalities and may be deter- 
mined by linear programming [4]. The integrated 
curvature of  a trijunction-only, ~t grain G~ is given by 

f o x  ds = (7r/3) • (6 - n) + (tk~ 2n/3) 

• (no - n,) - ( $ a -  2n/3) • ns (11) 

(for a fl grain, switch the ~t and /~ subscripts) [4]. 
A grain with zero integrated curvature is termed a 
ZIC grain. Since the change in area of a grain is 
proportional to its integrated curvature by equation 
(4), a ZIC grain is kinetically stable and will neither 
grow nor shrink. A structure comprised solely of 
ZIC grains (as the single phase hexagonal array of 
grains) has no driving force for microstructural 
evolution. Even though the lowest energy configur- 
ation for the system is a single crystal, an array of 
ZIC grains is metastable and will persist. Conversely, 
a structure containing even a few non-ZIC grains 
must evolve. 

The 6-sided grain surrounded by like-phase 
neighbors is a ZIC grain in any system; however, in 
a two-phase, alI-ZIC system, some ZIC grains must 
have unlike-phase neighbors. Equation (11) shows 
that ZIC grains with no v ~ 0 can form only along 
certain lines in the ~b~- ~bp plane [Fig. 2(b)]. For 
instance, 4-sided ZIC grains occur for (n, ha, n~) of 
(4,4,0), (4,3,1), (4,2,1) and (4,2,2); setting equation 
(11) to zero and inserting these parameters generates 

the set of stability lines for 4-sided grains [i.e. the 
(4,3,1) grain is a ZIC grain if ~ = q~a/2]. 

Even in systems which permit ZIC grains, 
topological or geometric constraints may prohibit an 
alI-ZIC grain structure from forming. For example, 
in a trijunction only system, the Euler-Poincare 
relation requires that the average number of edges per 
grain ( n )  equal 6; thus, any alI-ZIC grain structure 
must have some ZIC grains of n ~< 6 present• In 
the trijunction-only energetic regime, there are only 
26 types of  ZIC grains with n ~< 6; any system with 
interfacial energetics that do not fall upon one of 
those 26 ZIC lines can never form a kinetically stable 
structure of ZIC grains, and grain growth must persist. 

It may be shown by writing equation (11) for ct and 
fl grains and setting both expressions to zero that for 
any system which allows some ZIC grains of  phase 
with n(~t) ~< 6, some fl grain with n(fl) = 12 - n(~) is 
stable as well. While this would seem to imply that a 
structure comprised of half ~t grains with n(ct) sides 
and half fl grains with n(fl) sides is stable, there is 
no guarantee that the geometry of these ZIC grains 
permits such a structure to tile 2-D space. So even 
when the Euler-Poincare relationship is satisfied, a 
space-filling, all-ZIC grain structure may not form. 

Finally, in the trijunction-only two-phase systems 
which can form tilings of ZIC grains, there is no clear 
driving force to form the all-ZIC grain structure. 
Because trijunction angles are thermodynamically 
fixed, the junctions of a ZIC grain can only adjust to 
changes in neighbor grain shape or ari'angement by 
moving, and since junction angular constraints are 
thermodynamic boundary conditions, junction motion 
proceeds freely. Therefore, in the two-phase, trijunc- 
tion-only system, just as in the single-phase system, 
a ZIC grain does not offer resistance to perturbations 
in its number or arrangement of neighbors. So during 
grain growth from a disordered initial system, clusters 
of properly tiled, ZIC grains are not particularly 
favored to form or to persist. In fact, the complexity 
of tiling phases as well as shapes ensures that large ZIC 
clusters will form from a random initial configuration 
with essentially zero probability• 

Therefore, in any system in which all grain junction 
angles are fixed, grain growth must occur and persist• 

6.2. Quadrijunction systems 

In 1952, Smith wrote, "Quite contrary to Harker 
and Parker [23], [this] writer predicts that grain 
growth will slow and stop (in the absence of inclu- 
sions) only when grain corner angles can depart from 
120 degrees instead of when they approach i t . . . "  [1]. 
On the basis of the above discussion, we may gener- 
alize Smith's statement to multiphase systems: grain 
growth cannot  cease (in the absence of inclusions) 
when grain junction angles are thermodynamically 
fixed. 

However, recall that quadrijunction angles are 
not thermodynamically fixed; equation (8) shows that 
quadrijunctions are stable over a range of junction 
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angles. Can grain growth cease in a system in which 
grain junction angles may vary? 

The topology of any grain in a two-phase system 
is fully described by four parameters: n, na, ns, and 
the number of quadrijunction comers nq. (Note that 
neighbors are now defined as grains with which the 
grain of interest shares an edge.) The integrated curva- 
ture of an ~ grain with topological characteristics 
(n, nd, ns, nq) is given by 

- I _  x ds = (n/3) • (n - 4ns + 2nd) + ~a'  ns 
d t J  

- - ( c ~ ) . ( n d - - n s - - n q ) - - ~ - - 2 n  (12) 
nq 

where ¢~ are the n q  quadrijunction angles, which may 
all be different [4]. In fact, since each ~ may vary 
within the limits given in equation (8), a grain with 
a given set of topological parameters (n, nd, ns, nq) 
and nq :/: 0 may possess zero integrated curvature over 
a range of ~ and ~ba. In addition, for a given ~ and 
~ ,  a grain of topology. (n, rid, ns, nq) may possess zero 
integrated curvature in an infinity of geometries. 

Just as the energetic constraints for ZIC grain 
formation are relaxed in grains containing quadri- 
junctions, the topological and geometric constraints 
are eased as well. For example, the Euler-Poincare 
rule for systems containing trijunctions and quadri- 
junctions requires only that 4 ~ (n)~< 6. [In fact, 
(n )=(6+2 fq ) / ( l+ fq )  where fq is the fraction 
of junctions which are quadrijunctions.] While ZIC '  
grains with n ~ 6 must be present in an all-ZIC 
system, all the quadrijunction systems studied here 
possess multiple ZIC grain configurations with n ~< 6. 

The quadrijunction stability conditions of equation 
(8) permit quadrijunctions to be stable over a range 
of angles if qS~ + ~ba is less than n. When junction 
angles can vary over a finite range of values, an 
infinite, disordered array of  straight-sided (ZIC) 
polygons which obeys all topological constraints 
can exist. (For a 3-D example, note Polk's model for 
the continuous random network structure of amor- 
phous silica [24].) Therefore, the geometric flexibility 
of quadrijunction-containing systems allows ZIC 
grains to tile space in an infinite number of different, 
disordered, finite arrays. 

Finally, the geometric flexibility of quadrijunctions 
provides the resistance to topological perturbations 
that trijunction-only grains lack. Quadrijunctions 
may adjust to changes in neighbor grain shape by 
changing angle rather than by moving. In addition, in 
systems with sufficiently "flexible" quadrijunctions, 
ZIC grains may even be stable with respect to topo- 
logical perturbations. For instance, in the system 
~b~ = ~ = n/4, both the (4, 4, 0, 4) and the (3, 3, 0, 3) 
grains are ZIC grains, so if the (4, 4, 0, 4) grain loses 
one of its neighbors (and hence one quadrijunction), 
it forms a (3, 3,0, 3) grain and remains stable; 
examples of the geometric and topological stability 
of the (4, 4, O, 4) ZIC grain in- the ~b~ = tkp = n/4 

(4,4,0,4) 

geometric 
perturbation 

(4,4,0,4) 

--5 
topelogieal 
perturbation 

(3,3,0,3) 
Fig. 14. The geometric and topological stability of the 
four-sided (white) • grain with four (gray)/~ neighbors, no 
neighbor phase switches, and four quadrijunction corners 
(i.e. the (4, 4, 0, 4) grain) in the 0~ = 0~ = n/4 system. Due 
to quadrijunction flexibility, this grain can maintain zero 
integrated curvature despite a shape change or even the loss 

of a neighbor. 

system are shown in Fig. 14. Therefore, in a quadri- 
junction system, it is reasonable to expect ZIC grains 
to form, cluster, and persist. 

While the above arguments do not constitute a 
proof of the necessity for alI-ZIC grain structures to 
form in systems containing quadrijunctions, they do 
provide a delineation of the fundamental difference 
between grain evolution in trijunction-only and 
quadrijunction systems. In addition, these arguments 
comprise a justification for the quadrijunction- 
pinning observed during simulations of systems 
containing quadrijunctions. 

Indeed, in all the simulated systems which contain 
quadrijunctions grain growth was found to stop 
eventually. As observed in videos of microstructural 
evolution in quadrijunction systems, the pinning 

1 0 4  
. . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . .  i 

1 0  3 

~.>..'"_i~ 
1 0 2  Z "" " 

101  

1 0 ° 1 0  z . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I , , , . .  
1 0  3 1 0  4 l O  s 1 0  6 10  7 

t (MCS) 
Fig. 15. The evolution of mean grain area (A) in systems 
containing quadrijunctions. Kinetics are depressed relative 
to normal, single phase growth kinetics, and grain growth 
eventually ceases altogether due to a loss of curvature 

driving force for growth. 
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mechanism appears to be the formation and augmen- 
tation of ZIC grain clusters. Examples of  the kinetics 
of  grain growth in quadrijunction systems are shown 
in Fig. 15. The onset of  pinning is fairly abrupt on the 
logarithmic scale of this plot. The grain size at which 
pinning occurs depends upon the "flexibility" of  the 
quadrijunctions; for the double wetting case (D), 
quadrijunction angles from 0 to n are stable in both 
phases, and pinning occurs at a small grain size (the 
microstructure in Fig. 4(g) is a pinned structure). For  
the system in which all microstructural features are 
stable (B), the quadrijunction angle range is 0.2n 
(74 ° < ~ < 106°), and the pinned grain size is much 
larger and more variable. In the off-diagonal cases, 
phase asymmetry complicates the analysis of  the 
pinned grain size, but the same trend holds: more 
angular flexibility (hence more available ZIC grain 
topologies) results in a smaller pinned grain size. 

That pinning occurs due to a loss in the curvature 
driving force for grain boundary motion is exper- 
imentally supported by measurements of the excess 
curvature in the grain boundaries of the simulated 
systems. As an estimate of  boundary curvature in the 
present discrete simulation method, we focus on the 
system activity, defined by 

H =  E ~ P(S,--,S:) (13) 
i sj:sjesi 

where the first sum is over all sites L the second is over 
all sites indices S: which differ from the current index 
Si, and P ( S : - . S : )  is the probability of site i changing 
from index S~ to a new index Sj (i.e. P is unity if the 
change is energetically favorable and zero otherwise). 
That 17 scales linearly with the total grain boundary 
curvature at late simulation times is shown in Fig. 16 
for normal grain growth• The time evolution of the 
normalized activity (the activity per unit length of 
grain boundary) is given in Fig. 17 for a number of 
systems. Trijunction-only systems all fall on or near 

25OO 

200O 

1500 

1000 

50O 

0 , I , I , I , I , 
0.O 0.02 0.04 0.06 0.08 0.10 

1( 

Fig. 16. The dependence of system activity H upon grain 
boundary curvature r for isotropic, single phase grain 
growth on a triO, 2) lattice. At late times (low curvatures), 

the system activity scales linearly with curvature. 

101 
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i 0  "1 
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......... "2,, 
~'.o.....°~ 
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t (MCS) 
Fig. 17. The time evolution of the normalized activity (i.e. 
the activity H per unit length of grain boundary L). During 
isotropic, single-phase grain growth, the normalized activity 
asymptotically approaches a constant. In systems contain- 
ing quadrijunctions, the normalized activity continuously 

decreases until grain pinning occurs. 

the upper curve in Fig. 17; the normalized activity 
decreases at early times and becomes constant in the 
scaling regime (t/> 10,000 MCS). In systems con- 
taining quadrijunctions, the normalized activity also 
decreases at early times and continues to decrease 
until grain pinning occurs. The constant (pinned) 
value of  the normalized activity is about the same for 
all pinning systems and is significantly lower than the 
constant value reached in trijunction-only systems. 
These results imply that the pinned systems not only 
possess far less curvature per unit length of boundary 
but also that the curvature characteristics of all 
quadrijunction-pinned systems are very similar. 

To further confirm that grain pinning effects arise 
from a drop in driving force (curvature), we increased 
grain boundary fluctuations by increasing the system 
temperature. We found that microstructures which 
were pinned at a Monte Carlo temperature of zero 
remain pinned at elevated temperatures. 

Finally, recall that normal grain growth kinetics 
arise from the fact that boundary velocity is pro- 
portional to curvature and curvature scales with the 
inverse of grain radius. Since the curvature in quadri- 
junction systems decreases more quickly than the 
inverse grain radius, we might expect to see sub- 
normal growth kinetics in quadrijunction systems. 
In fact, Fig. 15 shows inhibited kinetics for all 
pinning systems. 

7. THREE-DIMENSIONAL AND 
PHASE-VOLUME CONSERVED SYSTEMS 

It is instructive to consider the applicability of 
the 2-D simulation results to 3-D systems. Since a 
system in any dimension tends to minimize the total 
length of high-energy interfaces, we would certainly 
expect the phase diagram of Fig. 1 l(a) to apply to 
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3-D systems. For instance, an interfacial energy 
controlled phase transition would occur when one 
grain boundary energy is the lowest interfacial energy 
in the system; in contrast, phases would tend to 
alternate when the ct-fl interfacial energy is lowest. 
Moreover, since 2-D grain junction stability criteria 
are the same as 3-D grain edge criteria and grain 
growth is spatially isotropic, we would expect the 
grain junction angles in a cross-section of a 3-D 
microstructure to be the same as those in a 2-D 
microstructure. However, note that there is no funda- 
mental necessity for the topology of the 2-D system to 
be equivalent to that of a 3-D cross-section (although 
single phase 2-D grain structures do show a strong 
topological similarity to cross-sections of 3-D systems 
[13]). Finally, it is unknown whether quadrijunction 
pinning can occur in 3-D systems, since grain comer 
and edge angular conditions combine to control grain 
growth. 

The results of this phase-volume nonconserved 
simulation also provide a good framework for under- 
standing and predicting microstructural evolution in 
more usual phase-volume conserved systems. In par- 
ticular, phase-volume is effectively conserved in the 
phase-volume nonconserved systems which maintain 
f~ ~f~ ~ 0.5 at all times [see Fig. l l(a)]. Since grain 
growth is an energetically driven process, we expect 
phase-volume conserved microstructures with f~ ~f~ 

0.5 to appear structurally equivalent to their phase- 
volume nonconserved counterparts. Even in phase- 
volume conserved systems in which f~ ~fa or in 
energetic regions in which phase-volume nonconserved 
systems undergo effective phase transitions, the 
evolution concepts outlined in this paper hold. For 
example, in a phase-volume conserved system with 
isolated fl grain energetics (R~ = 1, Rp > 1), we would 
expect to see a microstructure comprised of isolated 
fl grains in a continuous ct matrix. So while the 
preferred microstructural features diagram of phase- 
volume conserved systems may differ from Fig. 1 l(b), 
microstructures in these systems must still be con- 
sistent with the microstructures of the phase-volume 
nonconserved systems. 

Since microstructurai evolution of phase-volume 
conserved polycrystals may be controlled by long- 
range diffusion processes, the kinetics of microstruc- 
tural evolution may differ greatly from phase-volume 
nonconserved systems. In fact, evolution kinetics will 
depend on the rate-limiting evolution process(es). 
However, since quadrijunction pinning results from 
a loss in the curvature driving force for boundary 
motion and is independent of the growth mechanism, 
quadrijunction pinning should occur in phase-volume 
conserved systems containing quadrijunctions just as 
in phase-volume nonconserved systems. 

8. CONCLUSIONS 

1. For a 2-D polycrystalline system composed of 
or-phase and //-phase grains, the thermodynamic 

stability criteria for microstructural features such as 
the ct~ct, fl[Jfl, ctotfl and ¢tfl]J three-grain junctions and 
the ctflctfl four-grain junction may be derived in terms 
of the ~t-ct, f l - f l  and ct-fl interfacial energies. Rules 
for the curvature-driven growth of individual grains 
in such systems may be derived in a similar manner 
to von Neumann's rule for single-phase systems. 

2. Monte Carlo Potts model computer simulations 
provide a general method for modeling micro- 
structural evolution in 2-D, two-phase polycrystals 
provided that the underlying simulation lattice is 
chosen with care. For the systems studied here, the 
triangular lattice with equal first and second neighbor 
interactions was found to be an appropriate simula- 
tion lattice. Simulated microstructures are realistic 
and consistent with thermodynamic predictions; 
that is, they contain only thermodynamically stable 
features, trijunction angles are near their equilibrium 
values, and quadrijunction angles fall within their 
stable ranges. 

3. For systems in which the c~--~ and f l - f l  interfacial 
energies are equal or in which the ct-fl interfacial 
energy is the lowest energy, microstructures contain 
all thermodynamically stable features and the volume 
fractions of each phase are approximately equal. 
Phase arrangements in such systems may vary from 
phase clustering to a random phase distribution to 
alternating phases. 

4. When one grain boundary energy is the lowest 
interfacial energy, the polycrystal undergoes an inter- 
facial energy induced phase transition to the phase 
of low boundary energy. When one boundary energy 
and the ct-fl interfacial energy are equal and low, 
the system isolates the high boundary energy phase 
grains in a matrix of the low boundary energy phase. 
Once isolated, these second phase grains grow or 
shrink normally. Systems such as these in which 
the volume fractions of ct and fl are not nearly equal 
may not contain all the microstructural features 
thermodynamically accessible to them. 

5. Since the bulk free energies of ct and fl are 
equivalent, the interfacial energies control both the 
phases and the microstructural features present in a 
phase-volume nonconserved system. Thus, a phase 
diagram for the ~t-fl system may be plotted in terms 
of the interfacial energy ratios; four distinct phase 
fields occur. Likewise, the microstructural features 
present in an evolved structure are completely 
described by the interfacial energy ratios. 

6. The kinetics of microstructural evolution in the 
two-phase, phase-volume nonconserved system are 
much more complex than in normal grain growth. 
Despite great differences in junction geometries, poly- 
crystalline systems which contain only trijunctions 
evolve with essentially normal, single-phase grain 
growth kinetics; the topology of such systems is 
found to be similar to the topology of normal, single 
phase grain systems. In contrast, structures which 
contain quadrijunctions eventually stop evolving 
due to the angular flexibility of quadrijunctions. We 
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conclude that grain growth cannot cease when grain 
junctions angles are thermodynamically fixed; grain 
growth can and does cease when grain junction angles 
may flex. 

7. Predictions concerning 3-D and phase-volume 
conserved systems may be made on the basis of  the 
2-D phase-volume nonconserved results. 
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