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A unified approach to the calculation of the elastic interaction between defects on a surface tbat descrii, for example, steps, 
islands, and stress domains is presented. This is a~mpI~hed by dete~~g tire spatial dependence of the elastic displ~ment 
fields generated by the idealized point and line forces representing these defects and applying a power counting argument. This 
argument is then extended to determine the dependence of the interaction energy of two such elastic defects on their separation. 
In order to apply this analysis to a spatially extended surface defect we develop a multipole expansion of the displacement field 
that can be used to easily classify the force distribution of this defect in terms of its moments and, hence, determine the 
dependence of defect-defect interaction energies on separation. As a specific example, we calculate the elastic interaction between 
two separated circular islands on the surface of an elastic half-space and interpret the results in terms of power counting 
arguments. 

1. Introduction 

A nominally flat surface may contain inhomogeneities or defects such as steps, adatoms, islands, 
domains of different re~nst~ctions, etc. The origin of surface steps may be traced to statistical 
fluctuations in the surface profile or the tilting of a solid surface with respect to the underlying bulk 
crystal planes (i.e., a vicinal surface). The presence of adatoms may be attributed to surface adsorption 
via an equilibrium vapor, through non-equilibrium deposition or as a result of surface segregation from 
the bulk of the material. Both Volmer-Weber and Stranski-Krastonov growth produce islands. Domains 
of different surface reconstructions are thermodynamically preferred in two phase regions of the surface 
phase diagram. In many cases, a single reconstruction may have several degenerate orientations, 
~cluding, for example, the well studied (2 X 1) surface re~ns~ction of Si(OOl), resulting in a recon- 
structed domain structure. These are but a small selection of possible surface inhomogeneities. 

These defects can interact with each other by two distinct mechanisms: through contact and through 
interactions mediated through the crystal. Hard contact occurs when the defects directly impinge upon 
one another. Another type of contact, soft contact, occurs through the interaction of the diffusional fields 
around the defects (e.g., islands on a substrate). The defect-defect interaction that is mediated through 
the bulk may be traced to the elastic fields a surface defect introduces in the underlying crystal. Since all 
surface defects have an associated elastic field, this elastic defect-defect interaction is always present. 
Although the high energy associated with broken bonds (e.g., along steps) or a misfit (e.g., in 
heteroepitaxy) dominates the defect-defect elastic interactions in determining the surface defect energy, 
it is the defect-defect interactions that dictate the spatial arrangement of the surface defects and hence 
controls the surface ~crost~cture. It is this elastic interaction between surface defects that is the focus 
of the present study. 

The effects of these elastically mediated interactions among defects on both the structural properties 
and the energetics of solids have been addressed in several recent studies [l-5]. For example, the stress 
and strain fields associated with a periodically stepped surface were found to decay exponentially into 
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the bulk, leading to spatial variations in interplanar spacing (i.e., surface relaxation) [l] and a step-step 
interaction energy that varies inversely with the square of the step separation [l,Z]. Further, it has been 
found that two atoms adsorbed on an elastically isotropic substrate interact through the substrate with an 
energy that varies inversely with the cube of their separation [3]. The existence of a strain field associated 
with misfitting islands on a substrate can affect the morphology of the surface as these islands may grow 
and possibly cluster [4]. The formation of a single orientation of the (2 x 1) reconstruction of the Si(fKl1) 
surface upon application of an external stress has been attributed to the elastic interaction of the strain 
field of surface domain boundaries with the macroscopic stress field [S]. 

In general, surface defects can be regarded as entities which exert a distribution of forces on a surface. 
For instance, a single step behaves as a line of dipole forces acting primarily perpendicular to the step 
and within the plane of the surface. This force dipole is simply a balance between the surface tensions 
(stresses) of the two terraces that meet at the step E6,2]. A second contribution to the force distribution 
around a step may be associated with the large inward relaxation of the most underbound atoms at the 
top of the step [7] compared with those at the bottom of the step - resulting in another line of force 
dipoles parallel to the step but directed normal to the plane of the surface [l,g]. The distribution of 
forces associated with a misfitting island may be characterized as a line of forces wrapped around the 
perimeter of the island. These forces along the island’s perimeter are in the plane of the surface and 
have signs determined by the sign of the island misfit with respect to the surface. As islands are finite in 
extent, far from the island these forces appear as radial, point force dipoles. In the case of a 
reconstructed surface consisting of a periodic arrangement of alternating stress domains, there is a 
discontinuity in the stress at the domain boundaries and, therefore, a force distribution directed normal 
to the domain boundary and in the plane of the surface 153. 

The relationship between a force on the surface and the elastic displacement field in the underlying 
crystal may be determined from the appropriate elastic influence or Green function. Thus, it should be 
possible to make rather general arguments about the spatial dependence of elastic fields generated by 
defects and defect-defect interaction energies from a knowledge of the properties of the force 
distributions that are involved. In fact, it is simply the spatial (multipole) moments of these force 
distributions that determine the elastic fields and defect-defect interactions. In short, one goal of the 
present study is to determine, a priori, the interactions between any two surface defects without having 
to actually perform a detailed calculation. We will reproduce all previous results of surface defect 
interactions known to us (e.g., step-step interactions) and generalize the results to those cases not yet 
studied (e.g., interaction between a m&fitting island and a surface step) by using a consistent formalism. 

This paper is organized as follows. In section 2 we consider the eIastic fields generated by zero- and 
one-dimensional force ~tributions localized on the surface of an isotropic, elastic haIf-space and 
develop a simple ardent that relates the m~ti~le character and spatial dimension of the defect force 
distributions to the spatial dependence of the associated elastic fields and defect-defect interaction 
energies. In the following section, we apply the multipole analysis to the case of two separated circular 
islands on a surface and then compare the results with a nominally exact solution to this problem. 
Finally, we present results for the spatial dependence of the interactions between a wide variety of 
surface defects. An appendix is included which shows how to apply the present method to the general 
case of a spatially extended surface defect. 

2. Elastic fields of surtace defects 

In order to analyze the elastic fields generated by a surface defect, we first need to establish the 
nature of the surface force distribution produced by the defect. This force dis~bution can be thought of 
as a source creating the field. There is an excellent analogy between the force (source) and elastic field in 



elasticity and the charges (source) and electrostatic potential in classical electromagnetic theory. The 
electrostatic potential set up by distribution of charges, depends on the multipole character of the charge 
distribution. In the theory of elasticity the role of the source is played by the force distribution, and we 
conclude that a similar multipole analysis will be useful in characterizing elastic fields. An arbitrarily 
complex force dis~bu~on can be exactly described by a spatial ~st~~ution of elastic multiples. Far 
from the source of these forces, only the towest order muhipoles are important and, hence, from a 
knowledge of the nature of the fields that are produced by prototypical point and line multipoles the 
elastic fields and the interaGtiou energy between separated force dist~butio~s may be calculated in this 
limit. However, because of the vector nature of the forces in the theory of elasticity and the boundary 
conditions associated with the surface geometry, the elasticity analysis is somewhat more ~mp~cated 
than the ~rrespond~g analysis in electrostatics. Teudosiu 191 has made extensive use of multipoles in his 
analyses of point defects in bulk crystals. 

In order to calculate the displacement field t((r) associated with a surface force distribution f(r), 
where r is a two-dimensional surface vector, we start with a surface Green tensor &, r’) that describes 
the displacement field at r generated by a point force r‘ on the surface of the solid. In the following 
development, we shall employ the Green tensor for the elastically isotropic half-space described by z > 0 
and bonded by a free surface which is the x-y plane [Xl]. We note, that while the Green tensor is 
appropriate for a flat surface, nominaliy flat surfaces of real materials may be rough. Surface i~egulari* 
ties produce “image” mo~~i~~tions to the Green tensor. However, provided that the Green tensor is 
employed to describe elastic effects over length scales large compared with that of the irregularities, the 
present approach remains valid. 

Before using the exphcit form for ??, however, it is useful to insider two general properties. Fist, 
due to tr~slational invariance in the x-y plane, ?%r, r’) = @r - r'). Second, the ~~nents of the 
displacement field can be calculated from the relation 

(1) 

where the inte~ation is to be pe~o~~d over the x-y plane, Hence, the ~mponeu~ of the displace- 
ment field associated with the point force f&r> =p$i(r) with strength p are, then, u,(r) =psGol,(r). 

As a specific appli~tio~ of eq. Cl), we first examine tbe ~spla~ement field pound by a linear 
distribution of forces on the surface (z = 01 acting along the ‘y-axis. A corwenient way to classify this 
distribution is in terms of its multipole moments as a complete knowledge of the multipole moments is 
equivalent to knowing the distribution, With this in mind, consider the prototypical linear force 
distribution J”a(r> -p&P%), where (rn) means the mth spatial derivative and pa is a strength (in units 
of force [length]“-‘). m refers to the order of the multipole - for example, M = 1 ~rres~nds to a 
dipole, m = 2 to a quadrupole, and, in general, m corresponds to a 2m pole. The spatial multipole 
moments of this force distribution F, are given by 

and so this f&r) is ~mpl~tel~ cbara~te~ed by its mth multiple moment. This f@,(r) will be referred to 
here as a linear m-pole by analogy with electromagnetic theory. The relation between these m-poles and 
specific defects such as steps and stress domains will be discussed below. 
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The displacement field associated with f,(r) can now be calculated from eqs. (1) and (2) by 

u,(x) =PBjj-d ‘r’ 
am m 

Gas( r - +I(‘@( x’) =p - 
I PaXm -_m 

ds G,,( x’, s), (3) 

where, in the above relation, we have made use of the properties of derivatives of distributions Ill]. The 
result that u is independent of y is due to the translational invariance of the source in the y-direction. 
Although the integral in eq. (3) may be evaluated explicitly, it is possible to draw some general 
conclusions from the structure of G,@(r). Since GJr) a (l/r)gJ+), where r = (x2 + y*)‘/* and the 
g,J4) are angular-dependent functions [lo], one can see that 

/ 
O” ds GJx’, s) =A,, ln(n/u) +Ba,, (4) 
--m 

where the coefficients A,, and Bas depend on the elastic constants and a is a short-distance cut-off. 
Upon substituting the explicit form for Gas 1101 into eq. (4) we find that 

A,,= ( -2(;;v2))sap- 

B,,= -B,,= ( 2vy)), 

@a) 

B,, = -B,, = P) 

where E is the Young’s modulus, v is Poisson’s ratio and all other Bap are zero. After performing the 
required differentiation in eq. (3) we find that 

uct(x) = 
i 

AaspP W/4 +B,,P,, m =O; 

A,,p@( -l)“-‘(m - l)!(l/x)” m # 0. 
(6) 

Hence, from eq. (6) it is clear that the order of the pole that characterizes the linear force distribution 
and, hence, the type of surface defect determines the dependence of the displacement field on x [12]. 

By using similar arguments, the interaction energy e (per unit length) between two distinct linear 
distributions of force may be calculated (i.e., the interaction between a line m-pole and a parallel line 
n-pole separated by a distance d). This can be done by using a simple virtual work argument, which 
states that the interaction energy e is simply the work that is done in inserting the force distribution of 
defect (1) into the displacement field generated by defect (2). Thus, 

e(d) = -/@ dxf,(x-d)u,(x) 
--m 

and so, from eq. (3), 
am +n 

e(d) = ( - l)“f1pf)pk2)~ 
(j 

m ds G&--x’, s) 
)I 

. 

--o) x-x’=d 

Then, by employing the general result embodied in eq. (4), one finds that 

(7) 

(8) 

e(d) = 
i 

-A In( d/a) -B, m=n=O; 

(-l)“(m +n - l)!A(l/d)m+n, otherwise; 
(9) 

where A’ = A,,pil)pf) and I? = BaPpL1)p$‘). 
Hence, except for the special case m = n = 0, the dependence of e(d) on d is described by a power 

law. The order of the poles that characterize the two linear force distributions determine the dependence 
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of e(d) on d. This result can be understood by examining eq. (8) and making the following power 
counting argument. Differentiating (l/d) M + n times (the sum of the orders of the poles) yields a result 
proportional to (l/d)m*“+f, But, because we are considering line force distributions, an integration 
along the line (over y) remains. This additional integration means that e N (C, In d + C,) (S,,sS,,s) for 
the special case of m = n E= 0 and e N (l/6Ff” otherwise, where C, and C, are constants. 

As a concrete application of these results, we consider the following well known cases: the elastic 
interaction between surface steps [13] and the interactions between stress domain walls 151. As described 
above, a line dipole ~st~bution may be associated with a step [13] - i.e., each step corresponds to a 
m = 1 multipole. In this case, we find e(d) = 2(1- v”Xp~r)p{‘) +~~1~~~2))/(~~2). Therefore, the dis- 
placement field of each step decays as l/x (eq. (6)) and the interaction energy between two identical 
steps decays with their separation d as + l/d2 (eq. (9)). The pr terms are associated with m-plane forces 
and p3 with normal forces. If the two parallel steps have opposite sign (i.e., one steps up and the other 
down), then the p1 p1 (‘) (2) term remains unchanged and the p3 p3 (‘) (‘) term changes sign and hence the 
interaction may be either repulsive or attractive. A stress domain wall such as the domain wall separating 
a region of (2 X 1) reconstruction on the Si(oO1) surface from a region of (1 X 2) reconstruction, may be 
described as a line force monopole (m = 0) neglecting steps [S]. The interaction energy associated with 
two opposite sign stress domain walls (which, for example, bound a single (2 x 1) or (1 X 2) domain) 
decays as -in(d), i.e. these two domain walls are repulsive. Eq, (9) predicts that the interaction between 
a stress domain wall and a surface step decays as l/d, where the sign depends on the sign of the step or 
domain wall. The dependence of e(d) on d for these (and other) cases is sawed below in table 1. A 
complete analysis of these types of interactions requires knowledge of f. S&e f is determined on the 
atomic scale, we believe that atomistic simulations are required to predict A and hence the magnitude 
and/or sign of the defect interactions. 

2.2. Point multiples 

The same type of power counting argument can also be made for elastic point poles. Unlike the case 
of line multipoles discussed above, it is, in general, difficult to construct general expressions for the 
displacement field and the interaction energy for point poles as the corresponding force distributions 
may involve higher-order tensors. In order to avoid these complications we consider, as a specific 
example, the case of a ho-d~ensional point dipole which has a force distribution 

f,(r) = C=@F 7 (10) 
B 

where Gas are the components of a second-rank tensor 1131. This distribution can describe, for example, 
an adsorbed impurity atom [3] or a distant misfitting island on a surface. In general, the components of 
the force distribution of a two-dimensional point m-pole will involve terms like 6cm)(x)S(n-m)(y), where 
m s n. By integrating this force distribution against the elastic Green tensor, as in eq. (31, one finds that 
u will involve terms of the form 

Is d2r’ G,,( r - r’)i;cm)( x’)S(“-‘@( y’) = ( - 1)” a*c;,,(x -x’, Y -Y') 

a~fmwn-m )I x’-f-0 

Since G+(r - r’) scales as l/l t - r’ I, di~erentiat~g n-times (for a 2”-pole) shows that u(r) a (l/r)“+‘. 
This is analogous to the line pole result, except that in the point pole case there is no integration along 
the line and hence u scales as l/P+l instead of as l/r”. It then follows that the interaction energy E(d) 

between a point m-pole and a point n-pole that are separated by a distance d is given by 

E a (l/d)“+“+‘. 



216 J.M. Rickm.an, D.J. Srolovitz / Defect interactions on solid surjaces 

Table 1 
The dependence of the elastic interaction energy for two distinct surface defects separated by a distance d 

D=Q,m=O D=O,m=l D=l,m-Q D=l,m=l 

D=O,m=O d-’ d-2 In(d), C d-’ 
D=O,m=l d-2 d-3 d-’ d-2 
D=l,m=Q In(d), C d-’ h(d), C d-l 
D=l,m=l d-’ d-2 d-’ d-2 

D refers to the spatial dimension of the defect and m refers to its multipole character. For the cases where D = 1 for both defects, 
the interaction energy is e(d), the energy per unit defect length. Otherwise the interaction energy is E(d), the total interaction 
energy. For cases where the interaction energy does not have a power law behavior, it depends on either In(d) or C (a constant) 
depending upon the relative orientation of the defects. The cases considered are a point force (D = 0, m = 01, an impurity atom or 
island (D = 0, m = l), a stress domain (D = 1, m = 0) and a step (D = 1, m = 1). 

Eq. (12) suggests that the interaction energy associated with two adsorbed atoms (surface points dipoles) 
varies as l/d3. 

2.3. Point multiple /line multipole interactions 

Before summarizing the results of the multipole analysis, we consider the mixed case of a point 
m-pole interacting with a line n-pole. The interaction energy between the point and line poles can be 
determined by inserting the displacement field for the point pole and the force distribution for the line 
pole (or vice versa) into eq. (7). Performing this operation and integrating along the line yields 

C, ln(d/a)+C,, m=n=O; 

(l/d)“+“, otherwise; 

where C, and C, are constants. 

2.4. Summary of results 

From the preceding general considerations it is evident that the spatial dependence of elastic fields 
associated with surface defects and the dependence of defect-defect interaction energies on separation 
are determined both by the dimensionality and the multipole character of the defects. In terms of the 
specific surface defects considered here one can now state, for example, the dependence of the 
interaction energy E on the (large) separation d for the following representative pairs of surface defects: 
two misfitting islands (dw3), a n&fitting island and an isolated step (dm2), and an adsorbed atom and a 
stress domain wall (d-l). Other combinations of defects are also possible. These results are summarized 
in table 1. 

While the multipole analysis presented above predicts the spatial dependence of the displacement 
fields and interaction energies for both point and line-like surface defects, many surface defects (such as 
islands) are not truly point or line-like. Nonetheless, the present analysis yields the appropriate decay of 
the displacement field and interaction energy at distances large compared with the actual spatial extent 
of the defect. In this limit, the detailed shape of the surface defect is immaterial. This may be stated 
more rigorously by noting that, especially for widely separated defects, the lowest-order moments of the 
force distributions that describe these defects determine their interaction energies. In order to demon- 
strate the validity of these assertions, we consider the general case of extended force distributions in the 
appendix. This analysis does indeed confirm these expectations and so, in order to determine the 
dependence of defect-defect interaction energies on separation for widely-separated spatially extended 
defects, one should first calculate the multipole moments associated with each defect and then use the 
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Island I Island 2 

Fig. 1. Two ~t~r~t~g circular islands, each of radius u, that are centered on the origin and displaced a distance d along the 
positive x-axis, respectively. 

power counting arguments (or, equivalently, table 1). Since the results in the appendix are formal, we 
consider a simpler extended force ~st~bution in the next section. In particular, we obtain exact results 
for the displacement field of a circular island and approximate results for the energy of two interacting 
circular islands of finite extent. These results are then compared with those found by the simple power 
biting agents. 

3. ~~s~t~ng circular islands - an example 

As au ~lus~at~on of the previous analysis, we now consider the case of two misfiling circular islands 
with equal radii on the surface of the half-space that can interact elastically through the medium. This 
situation is shown ~hematic~ly in fig. 1. In order to determine the ~teraction energy for large island 
separation, we first calculate the moments of the appropriate force distribution for a single island and 
then use the power counting scents. We then employ the results found in the appendix to calculate 
the displacement field due to a single island exactly as well as the (approbate) interaction energy 
between islands. 

‘The ~nt~uous radial force ~strl~ution associated with an isolated, misfitting circular island of radius 
Q centered on the origin of the x-y plane is modelled by 

f(r) =p&(r--a)i, (14) 
where p is the force per unit circu~erenti~ length, r = (x2 + Y~)“‘~, and i = &x/r) +..Xy/r>. In this 
case we have chosen to neglect any forces normal to the plane. The rna~~de of p is detested by the 
ratio of the lattice parameter of the island to that of the substrate (i.e., by the misfit strain) and by the 
elastic moduli of the island. The sign of p is determined by the sign of the misfit and is radially outward 
(inward) for positive (negative) misfit strain. The (Madrid) m~ti~le moments, M,, associated with a 
circular island, may be determined from the relation 

Mm= J dA’ fr’)” e-im#~(r’), (15) 

which, for a given rn, is a linear combination of the Cartesian moments of order m. The primes in the 
integrand in eq. (15) refer to the ordinates of the force dist~bution. Inserting eq. (14) into eq. (15) we 
find that 

Mm = ?Tj?iP+’ %z,le- Cm 2 01, (16) 
where E _ = i - i3 describes a right circularly polarized field. 

Since the only non-vanishing multiple coefficient is MI it is expected, from section 2, that u N (u,,+)~ 
to lowest order in (a/r), a dipole field. From the circular symmetry of the forces it is also apparent that 
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u 11 P and is radially outward (inward) for p > 0 (< 0). So, from the power punting event developed 
in section 2 (see table 11, it is expected that the interaction energy E N dm3 for two circular islands 
separated by a distance d that is much huger than a. The sign of the interaction energy can aiso be 
determined with this information. Since the displacement fields decay with increasing separation, the 
strongest interaction occurs for the point on island 2 closest to island 1. The force associated with this 
point on island 2 and the displacement field due to island 1 (at the position of that point on island 2) are 
parallel (antiparallel) for p(“)/p@ < 0 ( > 01, where p(l) and pc2) are the forces per unit length associated 
with islands 1 and 2, respectively. Hence, like islands repel. This same type of ardent can always be 
used to determine the sign of the interaction between two surface defects. Care must be taken, however, 
to determine the points on the surface defects where the iteration is maximum. We emphasize here 
that, for simplicity, we have not considered forces normal to the surface. The inclusion of such forces 
might change the sign of the interaction in the case of unlike islands. 

In order to see this more explicitly, we now use the results of the appendix. Since f, = &(f. k> = 0 
here, it is only necessary to calculate u,, = &, -I-&, in order to calculate the interaction energy between 
islands. The spatial dependence of u,, can be characterized by calculating the multiple coefficients in eqs. 
tA.7) and (A.@. One finds that 

X,(r) =pjdA’ (r’)” ewim#” ,F&?z + Q,$; m + 1; (rt/rJ2)S(r’ -a)i 

= VP@“+’ 2F+z + &$; m f 1; (a/r)2)s,,JE_ (m r 0), (17a) 

and 

Y,(r) =pfdA’ (F-~)~+’ ewimtb ,FI(m 4 3,;; m + 1; (r’/rJ2)S(r’ -a) 

= 2a-@z”f2 &n “i- +,j; M + 1; ( a/r)2)&m,-J, (17b) 

where F is a hypergeometric function. As noted in the appendix, X, =&I,,, in the limit that (r/a) m 1. 
Since the only non-vanishing multipole coefficients are X, and Y0 it follows, again from the appendix, 
that u,[ u (cz,/~)~ to lowest order in (a/r), a dipole field. u, can be obtained by substitu~g the results 
from eqs. (17) into eqs. (AS) and (A.61 and then using eq. i A.2a) to yield 

where we have used the relationship between the hypergeometric functions, their derivatives and the 
complete elliptical integrals I? and k: [14] to simplify the expressions. 

A come&on can now be made with the previous power counting argument. Expanding D in powers 
of (a/r) we find that eq. (18) reduces to 

‘Ihis result may be directly compared with the result of the power counting argument which suggest that 
u a l/r2. This demonstrates that for r % a, the power counting result and the exact result coincide. 

The interaction energy, E, between the two circular islands, one centered on the origin and one 
displaced by d = &, can be caIculated from the expression 
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where, for simplicity, only the leading order term for u,\ was used in this approximation. From eq. (20) it 
can be seen that the elastic interaction energy is repulsive for islands with like sign misfit and attractive 
otherwise. This is the result obtained earlier from geometrical considerations and power counting 
arguments. The (1/~.2)~ behavior of E is characteristic of a dipole-dipole interaction energy, as can be 
seen from table 1. 

4. Conclusions 

It has been shown that, from the nature of the force distribution associated with surface defects, it is 
possible to make rather general arguments as to the spatial dependence of the associated elastic fields 
and the dependence of defect-defect interaction energies on separation. This was done by first 
considering the displacement fields associated with point and line defects and associating these defects 
with prototypical force dis~butions. From a general ardent based upon the spatial dependence of the 
Green function that describes the elastic medium, a power counting argument was developed to predict 
the elastic displacement field of these defects and the energy associated with their interactions. It was 
found that a surface defect can be classified in terms of its (multipole) moments and that the spatial 
dependence of the fields generated by the defect and the dependence of defect-defect interaction 
energies on separation are determined by the lowest-order multipoles. Thus, by knowing that, for 
example, a step can be viewed as a line of dipoles and an impurity atom as a point dipole, one can 
determine the nature of their elastic interaction. 

This analysis was applied to the case of extended surface defects, in general, and interacting circular 
islands on the surface of an elastic medium, in particular. These defects were classified in terms of the 
multipole moments of their associated force distributions and then also described by a power counting 
argument. Although only the case of an elastically isotropic medium was considered in this paper, it is 
important to note that the nature of our conclusions as to the relation between the properties of the 
defects and their associated fields is unchanged for the case of an anisotropic medium. That is, the same 
power counting arguments apply to the case of an isotropic solid, although the angular dependence of 
the fields will, in general, be more complex. The interaction between defects described by multipoles has 
essentially the same power law dependence on defect separation in the bulk as it does on the surface due 
to the fact that the bulk and surface Green tensor have a l/r dependence. 
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Appendii 

In this appendix, a general relation between the spatial moments of the force distribution that 
describes a surface defect and the associated displacement field will be derived. Before proceeding with 
the analysis of the fields set-up by a (possibly) extended source, we first decompose the source and the 
resulting displacement field as is customary, into in-plane and transverse (i.e., normal to the surface) 
components. That is, 

f=f,, +fJ_ Y u=III+u~, (4 
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where f,, = ifx +$,, is the in-plane component and f I = $fz 
decomposition was used for I( = u,, + u I . 

is the transverse component. The same 
Upon substituting the Green tensor for an elastically isotropic 

half-space 1101 into eq. (0, the displacement field due to the force distribution can be written as 

f,,(r’)‘(r-r’) 
)r--.‘I 

(1+v)(1-2v) 
27rE 

dA’f,(#) Sk I,, Ir_r’l 
9 

(A.2a) 

uI= ( (lic))jdA’r:(::)l + ( (1+~~~2”))b’*(jdA’ f,,(r’) In lr-rrl), (A.2b) 

where the integration is over the planar surface, E is Young’s modulus, Y is Poisson’s ratio, I r - r’ I = 
[(x - XY + (y - y’Yl1’2, and V = &/ax) +_f((a/ay), a two-dimensional gradient. 

In order to deal with the case of circular islands in section 3, we first consider the special case of 
in-plane forces (f I = 0). A multipole expansion of the in-plane displacement field, u,,, can be obtained 
by expanding the l/l r - r’ I in the integrand. A useful expansion in circular cylindrical coordinates is 
Ml 

(A.31 

where J, is a Bessel function of order m. Eq. (A.3) can be rewritten, upon carrying out the k-integration 
D41, as 

1 

It-&l 

co (2-SJ?8,Cl)r(m + +) eim(d_+‘) r’: 

= RemG0 r(m + l)r(+) ( 1 
ym+l *Fi(m + +,f; m + 1; (~</r,)~), 

> 

(A.4) 
where r< (r>) is the smaller (larger) of r and r’ , ,F,(rn + i,i; m + 1; (r’/r)*) is a hypergeometric 
function and Re means the real part. 

Upon substituting eq. (A.4) into eq. (A.2a) one finds that u,, can be generated from the following two 
types of terms: 

A(r, 4) = 2 - eim” (2 - 6,,0)+ + 3 x (r) 

m==O ?+I r(m+ l)r($) m ’ 

?qr, 4) = it $yl im9 (2-6m,0)r(m + i) ym(r) 

m=O T(m + l)r(f) ’ 

(A-5) 

(A-6) 

where 

X,Jr) = jdA’ (r’)m emim@ *F,(rn + f,$; m + 1; (r’/r)*)f(r’), (A-7) 

Ym(r) = jdA’ (r’)” e-ims’2Fl(m + 3,;; m + 1; (r’/r)*)( f(r’) .r’), (A-8) 

and where X,(r) and Y,(r) are cylindrical multipole coefficients. Eqs. (AS) and (A.6) apply to the 
displacement field outside of the force distribution. From eq. (A.2a) it can be seen that ZJ,, contains the 
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terms A, V(r *A), and VP, and so the spatial dependence of u&r, 4) is known once the m values that 
contribute to eqs. (AS) and (A.61 are determined. The allowed values of m are determined from eqs. 
(A.71 and (A.@. 

Both X,(r) and Y,(r) contain information about the mth moments of the source. In fact, in the limit 
that (r/a) * 1, where IL is a characteristic d~ension of the source, we have that 

(A.9) 

and similarly for Y,(r). Eq. (A.9) can be obtained by substituting a series expansion for the hypergeomet- 
ric function [16] into eq. (A.7) and then examining the far-field lit in which the hypergeometric 
function is, to zeroth order in (u/r), replaced by unity. Thus, the leading behavior of uI is (l/r)“*“*, 
where m* is the first integer for which either X, or Y, does not vanish. 

In order to calculate u it is often necessary to consider those terms in eqs. (A2a) and (A.2b) with 
In 1 t - r’ I in the integrand. Proceeding as above, we can first expand In I r - r’ 1, the two-dimensional 
electrostatic Green function, as [WI 

fn If-r’\=lnr- e i $ 
( )( 1 

m cosfm(# - 4% 
??I=1 

(ASO) 

and then substitute this expansion into the relevant terms in eqs. (A.2a) and (A.2b). It is again possible to 
write a multipole expansion analogous to eqs. (A.5) and (A.6) for these terms. 
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