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Abstract--The 252Cf source-driven noise analysis (CSDNA) method is an experimental technique, 
developed by J. T. Mihalczo and his collaborators at Oak Ridge National Laboratory, which makes use 
of noise analysis to determine the multiplication factor, k, in subcritical multiplying media. In this work, 
a stochastic diffusion description was used to interpret the CSDNA experiment in an infinite, homogeneous 
medium in order to shed light on the practicality of this experimental procedure in determining the 
multiplication factor. By defining such a benchmark problem, an exact solution is obtained for the 
suberitical multiplication factor in which the locations of the 252Cf source and neutron detectors are 
explicitly taken into account. The expression relating reactivity to the measured data was found to depend 
implicitly on k itself. Through a numerical analysis of this expression, certain limiting conditions were 
identified in which the expression for the reactivity became essentially independent of k, hence dem- 
onstrating some possibility for the viability of this technique. However, under more realistic experimental 
conditions, i.e. for finite systems in which diffusion theory is not applicable, the measurement of the 
suberitical multiplication factor from the measured data, without extensive transport calculations, becomes 
doubtful. 

!. INTRODUCTION 

The 252Cf source-driven noise analysis (CSDNA) method is an experimental technique developed by J. 
Mihalczo at Oak Ridge National Laboratory (ORNL) which makes use of noise analysis to determine the 
multiplication factor of subcritical multiplying media (Mihalczo and Pare, 1975). The method has been 
implemented for the past 15 years by Mihalczo and his collaborators at ORNL for various compositions and 
geometries with seemingly satisfactory results (Mihalczo et al., 1978, 1986, 1988, 1990; King and Mihalczo, 
1983). In recent years, however, a controversy has developed between the ORNL group and others over the 
correct analytic expression needed to relate the experimental data, the power spectral densities (PSDs) of the 
outputs of two neutron detectors and a third external source (252Cf) detector, to the desired result, k (Yamane 
et al., 1986 ; Difilippo, 1988 ; Akcasu and Stolle, 1989; Sutton and Doub, 1991). The origin of this controversy 
has been explained through a careful interpretation of the experiment using the Langevin equation description 
of fluctuations at the transport level (Akcasu and Stolle, 1991). This close scrutiny of the CSDNA method 
has, however, led to other more serious questions concerning the viability of this experiment as a means of 
determining the subcritical multiplication factor from the measured PSDs. In order to address these questions, 
a one-speed stochastic diffusion theory description is applied in this paper to the interpretation of the CSDNA 
experiment for an infinite, homogeneous medium containing a point 252Cf source. By defining a benchmark 
problem in this way, we are able to obtain an exact solution for the multiplication factor, k, in terms of the 
measured PSDs, which explicitly accounts for the locations of the detectors and the source and the frequency 
of the measurement. This exact analysis is performed at the expense, however, of crudeness in the treatment 
of spectral and transport effects. From this solution, we examine the merits and practicality of the CSDNA 
experiment for determining the subcritical multiplication factor in the idealized infinite reactor limit. 

In the CSDNA experiment, the cross power spectral densities (CPSDs) of three detectors, labelled I, 2 and 
3, as well as the auto power spectral density (APSD) of detector 1 are measured. Detector 1 contains a 252Cf 
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neutron source and exclusively detects the occurrence of a spontaneous 2 5 2Cf fissioning event in which multiple 
neutrons may be produced. Detectors 2 and 3, which can be located either inside or outside of the multiplying 
medium, respond to the neutron flux in the multiplying system of interest. A frequency-dependent R ratio is 
constructed from the measured PSDs, Gu(o~), where G,i(o9 ) is the PSD of the outputs of detectors i and j. This 
PSD R (09) ratio is defined as 

R(co) - G i, (o))G23(o9) ' (1) 

where the asterisk indicates the complex conjugate. In general, R(~o) is a complex number  that depends on the 
location of the source and detectors. One can show that for a point reactor model, the R(~o) ratio can be 
related to the multiplication factor, k, by 

1 - k  CIR 
k - 1 - C 2 R '  (2) 

where C t and C2 are constants involving measurable nuclear parameters (Akcasu and Stolle, 1989). In this 
idealized zero-dimensional model, a measurement of the R ratio would directly yield the criticality of the 
system. However, in this paper, we will show that a one-speed, diffusion-level interpretation of the CSDNA 
experiment in an infinite medium can be put  into the same form as equation (2), where the coefficient C~ 
actually becomes a function of the reactivity being sought. t  Hence, a measurement of the R ratio is not  then 
sufficient to determine the reactivity of the medium, as suggested by the point reactor model. However, by 
examining the behavior of C. as a function of the geometry of the detectors and the source as well as the 
composit ion of the reactor, we are able to determine certain limiting conditions in the benchmark problem for 
which this k-dependence is relatively weak, and hence, obtain an explicit solution for k. Details of the numerical 
studies of  the behavior of C~, as well as concluding remarks about  the CSDNA experimental method for 
subcriticality determination, are presented in this paper. 

2. ONE-SPEED LANGEV1N DIFFUSION DESCRIPTION 

Consider a nuclear reactor at a constant  power level. The neutron number  density, N(x, t), describes the 
instantaneous number  of neutrons of a single speed, (v) ,  in a unit  spatial volume element at x and at time t 
in the reactor, and satisfies the following one-speed, stochastic diffusion equation ::~ 

~?N(x, t) 
~t - - V ' J ( x , t ) - a ( x ) N ( x , t ) + S N ( X , t ) ,  (3) 

where we define a(x) = r,(x) - 6frr(x) such that r,(x) = (v)Ea(x) is the probability per unit  time that a neutron 
is absorbed at x, rr(x) = (v)Zr(x)  is the rate of induced fission events at x and 6r equals the mean number  of 
neutrons produced in an induced fission event. The source term, S~(x,  t), is a stochastic quantity accounting 
for the random nature of the capture, fission and external source events occurring in the reactor. In equation 
(3), J(x, t) is the instantaneous diffusion current, and can be represented by the following stochastic Fick's 
law : 

J (x, t) = - O ' ( x ) V N ( x ,  t )+  S i (x, t), (4) 

where D '  (x) = (v )D(x)  and D(x) = l/(3Ztr(x)) is the neutron diffusion coefficient. The random nature of the 
current density is expressed in equation (4) in terms of the stochastic source, Sj(x, t). The mean neutron 
number  density satisfies the steady-state diffusion equation 

t More generally, a transport-level analysis of the CSDNA experiment is shown to exhibit this k-dependence in the coefficient 
C~ in equation (2) (Sutton and Doub, 1991 ; Akcasu and Stolle, 1991). 

~t For the sake of clarity, we ignore delayed neutrons in the one-speed Langevin diffusion equation description of fluctuations, 
since the effect of delayed neutrons on the interpretation of the CSDNA experiment is not controversial. A space- and 
velocity-dependent Langevin description of neutron number density fluctuations in the presence of delayed neutrons 
was first obtained by Akcasu and Osborn (1966), and is applied to the interpretation of the CSDNA experiment by 
Stolle (1991). 
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a ( x ) ( N ( x ) )  + V" ( J  (x) )  = (S~ , (x ) ) ,  

where the mean neutron current density is defined by 

<J (x ) )  = - - D ' ( x ) V ( N ( x ) ) .  
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(5) 

(6) 

The mean quantities in equations (5) and (6) imply averages over the stochastic sources. Since the ensemble 
average of  equation (3) should reduce to equation (5), the mean of  the stochastic source term in equation (3) 
must equal the mean value of  the external source of  neutrons, i.e. 

(SN(X, t ) )  = (Sext(x))- (7) 

Similarly, from equations (4) and (6), it is apparent  that  

(SAx,  t)> = 0. (8) 

Fluctuat ions about  the mean of  the stochastic quantities of  interest can now be introduced as 

n(x, t) = N(x,  t) - ( N ( x ) ) ,  (9a) 

j(x, t) = 3(x, t ) -  ( J ( x ) ) ,  (9b) 

SN(X, t) = S~(x, t ) -  (Scxt(x)) (9c) 

and 

sj (x, t) = S i (x, t), (9d) 

and, by subtracting equations (5) and (6) from equations (3) and (4), respectively, we arrive at the following 
diffusion-level Langevin equat ion description of neutron number  density fluctuations : 

0n(x, t) 
- - V "j(x, t) - a(x)n(x,  t) + s~,(x, t) (10) 

~3t 

and 

j(x, t) = - D '  (x)Vn(x, t) + si (x, t). ( I 1) 

The fluctuating source terms, s~c(x, t) and sj(x, t), accounting for the random nature of  the neutron number  
density and current density, respectively, are referred to as the noise equivalent sources (NESs) in the Langevin 
equation description of  fluctuations. 

If  we eliminate j(x, t) by substitution of  the stochastic Fick's  law into equation (10), the stochastic neutron 
continuity equat ion can now be rewritten as 

~n(x, t) 
- V" D '  (x)Vn(x, t) - a(x)n(x,  t) +.q(x, t), (12) 

c~t 

where the fluctuating source term, 9(x, t), is 

9 ( x ,  t) = s ( x ,  t) - -  V" sj ( x ,  t ) .  ( 1 3 )  

At this stage, the fluctuations in the neutron number  density can be obtained formally by solving equation 
(12) as 

f: n(x, t) = du exp ( -  B d i ~ u ) # ( x ,  t - -  u),  (14) 

where Bd~,, is the diffusion operator ,  defined as 

Bdie = -- V " D"  (x)V + a(x). (15) 

The two-time and two-space-point  correlat ion function of the neutron number  density fluctuations, i.e. 

q~..(x, x' ,  z) = (n(x,  t)n(x',  t + r ) ) .  (16) 
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can then be directly expressed in terms of the NES correlation function as 

4~..(x, x', r) = du dv exp [ -  (uBai.+vB'aier)14)~s(x, x', u-v+T), (17) 

where the operators Bd~e and B~rr operate on x and x', respectively, and the NES correlation function. 
4~ss(x, x', O, is defined as 

q~s(x, x', r) = <,q(x, t)y(x', t+z)>. (18) 

The calculation of ~b,s(x, x', z) is the central problem in the implementation of the Langevin equation method, 
in general. The physics of the problem actually lies in this calculation. Once the NES correlation function is 
known, one can proceed directly and analyze any diffusion theory problem involving different detector 
configurations. Akcasu and Stolle (1991) show that the statistical properties of the stochastic source in equation 
(13) are obtained through a mathematical reduction of the NES correlation function at the transport level. 
The details of the reduction of the transport-level description to obtain the stochastic diffusion description of 
neutron number density fluctions will not be repeated here, but involve the following mathematical steps: 
(a) integrating the transport-level stochastic rate equation and NES correlation function over the neutron 
speed, leading to the stochastic, one-group, transport-level description of fluctuations ; (b) further eliminating 
angular dependence by a spherical harmonics expansion, leading to a space-dependent, one-group, P ~ approxi- 
mation; and (c) further simplifying the P~ approximation by taking the large transport-rate limit and 
thereby introducing the concept of stochastic Fick's law. Through such a reduction procedure, the correla- 
tion function of  the NES in equation (18) was subsequently shown to be of the form 

(y(x, t),q(x', t ' ) )  = 3 ( t -  t')Q~(x, x'), (19) 

where 

Qdx, x') = 6 (x -x ' ) [ ( a (x )+of (o r - - l ) r r (x ) ) (N(x) )+~(S~x t (X) ) ]+2V.V ' [D ' (x ) (N(x)>~(x-x ' ) ] .  (20) 

The stochastic diffusion description in equations (12), (19) and (20) provide the necessary mathematical 
expressions to proceed with the evaluation of the R(¢o) ratio in the CSDNA method for subcriticality 
determination. 

3. DETERMINATION OF THE R(¢o) RATIO 

Consider an infinite, homogeneous reactor containing a point neutron source and two neutron detectors (2 
and 3) at positions x0, x2 and x3, respectively, in the multiplying medium. A third detector (1) exclusively 
detects the spontaneous fission of 252Cf, the neutron point source located at x0. Let So represent the mean 
rate of occurrence of ~52Cf source events. The proposed benchmark problem is examined for one-speed 
neutrons in an infinite medium characterized by the following spatially uniform parameters : r a, rf and D'. The 
detection rate is included in r,, so that the medium is uniform in the presence of the detector. A steady-state 
solution to the benchmark problem can be found from equations (5) and (6), where (Sc~t(x)) = thSo6(X-x0). 
First, we express the mean neutron number density in Fourier space with respect to x as 

thSo exp (iq" x0) 
( N ( q ) ) =  D,(q2 +ba ) , (21) 

where 

f 
(N(q))  = Jd3q exp ( -  iq" x)(N(x)) ,  (22) 

and by performing the inverse Fourier transform on equation (21), we obtain the desired and well-known 
result 
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rhSo exp - ix-x01 
( N ( x ) )  = (23) 

4riD' Ix-xol 

We now apply the stochastic Langevin diffusion description to the analysis of the temporal behavior of  
neutron density fluctuations in this benchmark reactor. A stochastic diffusion description of  the CSDNA 
experiment requires, in addition to the stochastic Langevin equation for fluctuations in the neutron number 
density, stochastic rate equations describing fluctuations in the accumulated counts in detectors 1, 2, and 3. 
The fluctuations in the instantaneous detection rate of detector j  are defined as 

ii(t ) = l j ( t ) -  ( l j ) ,  (24) 

where (I/) represents the mean detection rate in detector j.  Hence, the coupled set of Langevin equations 
become 

t~n(x, t) = D,V2n(x, t ) -  an(x, t)+9(x, t), (25) 
~t 

io,(t) = I ,  d3xs°,(x' t) (26) 
. I v  iJ i 

and 

C 
io,(t) = I.. d3x[r°, n(x't)+s°,(x't)]' j = 2,3. (27) 

d v  17/ 

The detection rate of neutrons in detector j is defined by ro: The NES terms, so,(x, t), account for the 
probabilistic nature of  the detection process in detector j.  The statistical properties of the NESs appearing in 
equations (25)-(27) must be known in order to analyze the benchmark problem. Equations (19) and (20) 
define the NES correlation function for ,q(x, t). In addition, the following correlation functions are needed in 
this analysis : 

(so, (x, t)9(x', t')) = 6(t-- t')p, rhSo6 (x - x 0)6(x - x ')  (28) 

and 

(g(x,  t)so,(x', t') = - ~ ( t - t ' ) 6 ( x -  x ' )rof  N (x) ). (29) 

A derivation of these correlation functions is provided by Stolle (1991). Here, it is assumed that a neutron is 
removed upon detection. We now proceed to an exact determination of the R(~o) ratio by directly evaluating 
its defining quantities : G~ ~ (o9), G ~ z (o9), G ~ 3 (o9) and G 23 (w). 

The ASPD of detector 1, G~(co), is determined by applying a random point process procedure described 
by Akcasu and Stolle (1991). In this reference, the APSD for the output of detector 1 is directly determined 
by treating the fluctuations in the rate of ~52Cf source events as a Poisson impulse process (shot noise 
treatment). The details of these calculations are not repeated, instead the results are simply restated here as 

G,,  (~o) = p, So. (30) 

Next, we proceed with the evaluation of the CPSD between the ~52Cf source detector (1) and neutron 
detector j  ( j  = 2, 3). Starting with stochastic rate equations (26) and (27) for fluctuations in the detection rate, 
the correlation function for the outputs of  source detector 1 and neutron detector j  becomes 

(io,(t)io~(t'))= f v , , , d 3 x f  d3x' ro,(so,(x,t)n(x',t ')) 
J vt~/ 

= O,/(t,t'), (31) 

where we have implemented the relationship 

(so,(x, t)so,(x', t ' ) )  = 0 for i :/: j (different detectors), (32) 
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a statement of the uncorrelated nature of the NES terms for the outputs of two different detectors. Hence, the 
determination of the desired CPSD, G ~i(to), is reduced to evaluating the correlation function (so, (x, t)n(x', t ' ) )  
in equation (31). At this stage in our CPSD calculations, as well as in the following calculations performed to 
evaluate G23(to), mathematical manipulations are simplified and certain cancellations become more apparent 
by working in Fourier space with respect to both time, t, and space, x. Neutron number density fluctuations 
in Fourier space are defined as follows : 

f ~(q, to) = dtexp(itot) d3xexp(iq'x)n(x,t). (33) 

If we now take the Fourier transform of the stochastic rate equation (25) with respect to space and time, 
~(q, to) can be expressed in terms of its Fourier-transformed NES as 

~(q, to) 
ri(q'to) = D,(qZ + a ~  i,'~)" (34) 

The determination of the correlation function (so, (x, t)n(x', t ' ) )  in equation (31) can now be transformed into 
the evaluation of the correlation function of the NESs in (q, to) space, i.e. we take the Fourier transform of 
the stochastic rate equations (26) and (27) with respect to t and t', respectively, such that 

(io,(to)io,(to'))=fr,,d3xfv,,,d3X'rD,(So,(x, to)n(x',to')) 

1 2 (sD, (q, to)g(q', to')) 

The relationship of the correlated function (il~,(to)io~(to')) to the desired CPSD, G tj(to), is not immediately 
obvious, but can be shown by returning to the definition of the CPSD : 

G ,,(to) = f ~i d~ exp (itoz)( iz,, (t)io, (t + z) ) 

= dz exp (itoz)ro~ d~x d3x ' (so,(x, t)n(x', t+ r)). (36) 
- ~ ~l) I "J V l ) j  

Here, the CPSD, G ~i(to), is defined above by the Fourier transform of the current-current correlation function 
(io,(t)ioj(t+z)) with respect to the time difference, z, whereas the current-current correlation function in 
equation (35), equated in terms of the correlation function of the NESs, is derived by Fourier transforming 
the stochastic rate equations for current fluctuations in detector 1 and j with respect to t and t' (t' = t+z), 
respectively. A relationship between equations (35) and (36) is developed by utilizing our general knowledge 
of stationary Markov processes. That is, we recognize that the correlation function, th ~j(t, t'), in equation (31), 
for a stationary Markov process is a function of t ' -  t = z. Employing this property, we say 

(iD,(to)io,(to')) = dt dt" exp(--itot)(iD,(t)iD~(t'))exp(--ito't') 

= dt dt'exp[-i(tot+to't')]d?~/(t'-t) 

= ;_~ d-r exp (itor)~b,.fQ f . ~  dt'exp[-i(to+m')t ']  

= 2rc~(to+to')Gij(to). (37) 

The statistical properties of the NESs are also a function of this time difference [see equations (28) and (29)]. 
Performing similar mathematical maneuvers to those above, we write 
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<sD,(x,m)y(x',oY)> = dt dt' exp(-imt)<so,(x,t)9(x',t')>exp(-ioYt' ) 
oo - oo 

,; f: = ptr~So6(x-xo)6(x-x" dt dfexp[-i(o)t+m't')]6(t-f) 

= p, rhSo6(X - Xo)6(x - x') 2x6 (~o + ~o'). (38) 

From equations (35), (37) and (38), we are now able to express Gu(~o ) by 

G'A~°) = fv,', d3X fv,', d3x'rD'Z~x f d3q" exp(-iq''x')p'r~x°6(x-x°)exp(-iq''x°)2 ' {q'k a - ko'~ , (39) 
D + ~v-]  

where we have transformed equation (38) into q, q' space and integrated over all q. Equation (39) immediately 
reduces to 

( a - i r a  ) 
exp - ~  Ix-x0[  

Gu(c°)=PChS° fv d3x' Ix-xol (40) 41tD ~ rD, o, 

such that we obtain the desired solution for the CPSD for the outputs of source detector I and neutron detector 
j. We emphasize here that equation (40) is exact. Results are obtained from the Langevin diffusion theory 
description directly applied to the infinite benchmark reactor under consideration. The limitations of equation 
(40) arise only in connection with the applicability of diffusion theory to adequately model neutron behavior 
in the system, and hence is not an issue in our benchmark problem solution. 

The determination of the CPSD between the outputs of neutron detectors 2 and 3 proceeds in much the 
same fashion as the evaluation of Gu(fo ). Stochastic rate equation (27) provides us with the cross-correlation 
function describing neutron detector current fluctuations as 

(iD:(t)izL(t')) = I d3x I d3x'[ro:rD~(n(x, t)n(x', t ' ) )  +ro:(n(x, t)so~(x', t')) +rD~(so,(x, t)n(x', t '))]. 
d V o ,  d Vo~ " _ 

(41) 

Correlation functions on the right-band side of equation (41) are expressible directly in terms of the NES 
correlation functions, and mathematical simplifications are very straightfoward by again proceeding in 
q, q', ~, co' space. Thus, in light of these observations, the t ! 'SD between the outputs of detectors 2 and 3 
becomes 

G23(o2) = dzexp(--imz)(iD (t)iD,(t+z)) 

= i d 3 x l  d3x'(2~fd3qfd3q'exp(-iq'x)exp(-iq"x') 
d v j ,  2 d v o  3 

[ ( (if(q, ~o)ff*(q', co)) ) (~2 (q', o)) g* (q, oa)', (gD: (q, o2) if* (q', eo))q 
x rD:rD~ a+ko'~[" ,: aDim +ro: ,[" 2 a+im'~ +rD, ,I / ,: a-io)'~ 1" 

D "2 q : + ~ ) k q  + ~  D kq +-~7-}  D ~q + - ~ )  ] 
(42) 

The transformation of NES properties into q,q'  space is performed is a straightforward manner. From 
equation (20), the NES correlation function in q, q' space can easily be determined to be 
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(~(q, co)~*(q',og)) = [a+or(or-l)rr]N(q+q')+m2Soexp[i(q+q')'xo]-2D'(q'q')l~l(q+q'). (43) 

The two remaining NES correlation functions in equation (42) are also transformed to q, q' space such that 

(~(q, co)g*i(q' , o9)) = - ro3Al(q+q') (44a) 

and 

(£o2(q, ~°)9" (q', (o)) = --ro2N(q+q') .  (44b) 

Inserting equations (43), (44a) and (44b) into equation (42), the following expression remains to be simplified : 

G23(o9)= d3xf d3x'ro,ro~ ~ d3q d3q'exp(-iq'x)exp(-iq"x ') 
D 2 J VI~ 

x { ~ S o  exp [ i (q+q')"  x0] + [a+~)r (Or- l ) r¢-  2D 'q -q ' ]N(q+q ' )  

D'2(q2+~,m)(q'2+~) 

L ~ ~q + ~ )  D'( q'2+ 
By acquiring a common denominator, immediate cancellations occur whereby 

f d 3 x f  3 1 / ' 3  / ' 3  rD'-rD~ G23(0)) = • • d x' (21t~ | d  q exp ( -  iq 'x)  | d  q' exp ( - i q ' - x ' )  
d v#) 2 d vo~ J J D'2(q2+ a~;i,m~)(q'2+ a~D~m ) 

x[~Soexp[i(q+q')'Xo]+Or(Or-1)rrN(q+q')-D'(q2+q'2+2q'q'+~)~l(q+q')]. (46) 

By inserting the Fourier-transformed function N(q+q ' ) ,  which is defined in equation (21), into equation (46), 
and performing further simplifications, we find that 

f d 3 x f  3 l ( ' 3  ( ' 3  G23(~o) = • . d - x ' ~  j d q  exp ( - - i q ' x )  J d  q' exp (--iq"x')rD,ro~ 
d vo 2 d vo~ 

re(m-- l)S0 exp [i(q +q ' ) "  x0] + v,-(Or- 1)rr N(q+q ' )  
x (47) 

D'2(q2+~,~)(q'2+a~) 

The above inverse Fourier transformations are performed so that we arrive at the following final expression 
for the CPSD of the outputs of neutron detectors 2 and 3 : 

G23(c°)= fv,, d3x f J3 J~,,, [°f(Or-1)rrfftS°-" o x ro:ro~ [ (4~D')~ six,  x', 09) 

io9 a--  io9 , m(m-l)So exp - ~ , ,  IX-Xo] exp - x -Xol 

+ (4riD') 2 Ix-xol Ix'-xol _1' (48) 

where 



A stochastic diffusion description to interpret the CSDNA method 175 

/, exp - z 
J(x,x ' , to) = Jd32 -- exp ~ ' - X / - D w - l x - z [ )  e x p ~ - x / ~ l x ' - z l )  

Ix-z l  Ix ' -z[  (49) 

Notice that equations (40) and (48) are essentially a Green's function for the CPSD G~j(to) and G23(to), since 
these expressions are derived for a point source at x0. 

We now introduce one assumption into our thus far exact analysis before putting the R ratio in its final 
form. Evaluating equations (40) and (48) for the CPSDs G u(to) and G23(to), respectively, requires integration 
over neutron detector volumes. We will now examine these expressions in the small detector limit. In this limit, 
we assume the integrands in equations (40) and (48) remain constant over the detector volume with that 
constant value determined by evaluating each integrand at the location of  the center of the neutron detector 
volume over which the integration is performed. Reducing the CPSD expressions in this small detector limit, 
we present our final results as 

G i, (to) = p iSo, (50) 

ro,p,rhSoVo: e x p ( - ~ l x 2 l )  

G,2(to) - 4nD" Ix21 ' (51) 

G,  3(to) - 4r iD '  I x~ I (52) 

and 

[-Of (Vf-- l)rftnS o 
G23(to) = rD,rD~Vo~Vd~[ ~ J(x2, x3, to) 

( a + i t o  _ ~ .  ~ t ~  ) ]  

+ (enD') 2 Ix21 Ix3[ ' 
(53) 

where we now have assumed that the 252Cf point source and detector 1 are located at the origin, without any 
loss of generality. 

As a final step, the resulting expressions for Gtt(to), G~z(to), G~3(to) and G23(to ) are inserted into the 
definition of R in equation (1) to obtain the final form for the ratio of PDSs as 

pith 2 
g = , (54) [1 ] 

re(m- 1) + vr (vr-  1)rrrh 4n~;  [x211x31 exp (21x2 l) exp (2"1x3 I)J(x2, x3, to) 

where 

Hence, equation (54) is an exact diffusion theory solution to the theoretical determination of R for the infinite, 
homogeneous benchmark reactor. The form of equation (54) contains explicit dependence on the spatial 
location of the neutron source and detectors in its description of  R. In addition, the R ratio is shown also to 
be a function of the frequency, to, of the measurement. However, despite its complicated appearance, notice 
the striking similarities that exist between equation (54) and the R ratio expression for a point reactor, a form 
previously determined to be (Akcasu and Stolle, 1989) : 

ANE 20;3-C 
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p l f f / 2  

R = 1 (55)  

re(m-- 1) +or(Or-- 1)rr~ - 
¢/ 

We now wish to utilize the similarities in equations (54) and (55) noted above and attempt to cast the R 
ratio for the benchmark reactor into the point form expression for the multiplication factor expressed in 
equation (2), where the, as yet, undetermined coefficients will now contain space- and frequency-dependent 
terms. How we extract the reactivity from the involved expression for the R ratio in equation (54) is not 
altogether apparent. The k~ dependence is buried in the exponential terms in equation (54), where we note 
that parameter a = r~(l - k ~ ) .  Hence, an explicit solution for koo is essentially impossible. However, we find 
that the point form expression for system criticality in equation (2) can be achieved if coefficient C l is itself 
allowed to contain k~ dependence. To demonstrate how this point form is obtained, we must rewrite the 
function 

1 
Y(x2, X~, k~, to) = 4~D' ]x2] Ix3[ exp (2[x2[) exp (2"[x3 I)J(x2, x~, k~., to) (56) 

in terms of new, "scaled" parameters 

such that equation (56) becomes 

Y2 ~ X 2 ,  

# Y3 "~ X 3 ,  

Z ~ ~ Z 

j;:;: 2 
2 '  - - = . / l + i t o ' : _ ,  

(57) 

where 

(58) 

(59) 

1 ( ' )~?-l) l(x2,  x3,k~,,to)R 
1--k~ p ,-~h \ ~2v 

1 . . . .  1 R  
p ~r~ 

where, from equation (2) it is apparent that 

(63) 

(62) 

Although we have done nothing more than rewrite the function Y(xz, x3, k,~, ~o), the l/a factor that arises in 
equation (61) by the parametric substitution above in equations (57)-(60) allows us to cast equation (54) into 
an expression for k~ in the desired point form. That is, by substituting equation (61) into equation (54), we 
find 

l O . - Z  . . . . . .  - Z  . . . . . . . .  " l(x2 x~ k:~, to) = 4~ lydly3l exp ().'[y2[) exp (2"1y3 D ~J~ e x p  ( - z ' )  exp ( - ) - ' l y 2 - z '  D exp ( - 2 ' * l y 3 - z ' l )  
- J z' [Y2-- ' l  ]y~--z'[ 

1 
Y(x2, x3,k~,to) = al(X2,x3ok.,,,to), (61) 

to  
to' = - (60) 

a 
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C l~--(~-l)I(x>x3,k~ w) 
I =p,rhko--r (64) 

and 

) C2 = - -  - 1 . (65) 
Pdh 

What explicitly have we accomplished by rewriting equation (54) in the form of equation (63) above? The 
statement of equality in equations (54) and (63) is obviously the same. A defining equation for the subcritical 
multiplication factor is not achieved, since a k,~-dependent function itself would exist in the definition. However, 
if closer examination into the k~ behavior of l(x2, x3, k~, co) provides certain limiting conditions for which 
this k~-dependence is relatively weak, a technique unfolds in which an experimentally measured R ratio can 
be used to evaluate system criticality through an expression involving known nuclear and geometrical 
parameters. In other words, application of the CSDNA method for the determination of the subcritical 
multiplication factor could then be justified for the benchmark reactor under investigation, while the effects 
of neutron source and detector locations are now explicitly accounted for by a spatial correction factor to the 
point model. Therefore, we now proceed with a parametric investigation into the numerical behavior of 
l(x2, x3, k~, w). 

4. NUMERICAL ANALYSIS AND DISCUSSION OF RESULTS 

Any further comments regarding the applicability of the CSDNA technique to the determination of reactivity 
first requires, at this stage in our benchmark analysis, an investigation into the numerical behavior of I as a 
function of neutron detector locations, x 2 and x 3, the multiplication factor, k ~, and the measurement frequency, 
~o, where 

, f l(x2,x3,k~,c)) = ~ ly2Fly31 exp(2'ly2Dexp(2'*ly3l) d3z'eXp(-z ' )  e x p ( - R ' l y 2 - z ' l )  e x p ( - R ' * l y 3 - z ' l )  
z' ly2-z'l ly3-z'l 

(66) 

and the scaled parameters are defined in equations (57)-(60). Of particular significance in this study is 
identifying certain limiting cases or parametric regions, i.e. neutron detector locations, in which the k~ 
dependence of I becomes, for all practical purposes, negligible. Under such limiting conditions, we have shown 
that the CSDNA method for k,~ determination for this idealized benchmark reactor can be implemented by 
utilizing equation (63). 

Simplifications were introduced into equation (66) by considering a colinear detector-source-detector 
configuration in the infinite medium. Numerical calculations were then performed under three different sets 
of assumptions. First, we examined the behavior of / ,  and in turn R, as a function of both detector distance 
from the source and reactivity for neutron detectors equidistant from the source. The calculations for equally- 
spaced detectors were again divided into two subcategories. In Case 1, the measurement frequency was taken 
to be 0, while co was allowed to vary in Case 2. Finally, the complex nature of the function I was exhibited in 
Case 3 by allowing detectors 2 and 3 to be unequally positioned from the source in the colinear configuration 
and by introducing a non-zero measurement frequency into the calculations. Each of the cases described here 
is now presented in turn below with numerical results shown graphically. 

Case I 
The first set of numerical calculations were executed by considering colinear neutron detectors at equal 

distance from the source and for ~ = 0. Under this set of assumptions, we find that the following mathematical 
simplifications occur : 

A ' = l ,  l y d = / y 3 [ = [ y l = y ,  

where y --- ~/(a/D')x and x is the magnitude of the distance of the neutron detectors from the source. In 
addition, we notice 
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[Y2 --Z[ = lY3 --Z[ = y2 +z 2 -2yz#, 

where p = cos 0. Introducing these simplifications into equation (66), one finds 

fo , 

l(y) =y2exp(2y)  d z z e x p ( - z )  I d /~exp[-  
do ~2x/1 _g2p2 ' 

where 

(67) 

2yz and ~ = v@2+z  2. 
8 --y2+z2 

The set of assumptions made in Case I reduced the form of I to a function of the single parameter, y, now 
requiring only double integration. The parameter, y, a function of both detector distance and system criticality, 
can be rewritten in terms of the neutron diffusion length as 

~ ,  X - - - -  y =  x = 

Hence, the value of y is a measure of the number of diffusion lengths the detectors are placed from the source 
for a given k~. Numerical results were obtained for l(y) as a function ofy  by employing a numerical integration 
scheme available in the packaged software Mathematiea (Wolfram, 1988). All numerical calculations were 
performed on the Macintosh personal computer. Figures 1-8 present graphically our numerical findings for 
Case 1. 

In Fig. 1, l(y) is plotted as a function of the parameter y. The numerical results show l(y) to be a non- 
decreasing function of y which initially demonstrates a relatively rapid increase followed by a leveling off or 
plateauing of the function for large values. This asymptotic behavior of l(y) can be predicted by examining 
equation (67) in the large y limit. That is, 

,~ , [ _ x / y  ~ 2yz - -  .Il l 
f0 f° d/~exp + z 2 ( ~ l - Y ~ + - ~ # + ~ I + Y Z + Z Z  2+z2) [l 4y z 2 Z lira l(y) lim y2 exp(2y) dz exp ( -z )  F 

fo ;o' ~ y  2 exp (2y) dz z exp ( -  z) dg exp - 2),) 

-* ~ dz z exp ( -  z) = 1. 
Jo 
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Y 

Fig. 1. l as a function of the parameter y. 
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The numerical results reflect this asymptotic limit since I(y) is seen to approach 1 for increasing values of y. 
In general, large y values correspond to highly subcritical systems with neutron detectors located many diffusion 
lengths from the source. However, we utilize our  numerical results [I(y) vsy] to examine these trends in more 
detail by studying the effects of k~ and X/Ld~fr separately. 

For  several fixed values of k~,  the behavior of I and R as a function of x/Lu~r is shown in Figs 2 and 3. As 
expected, increasing subcriticality from 0.95 to k~, values of 0.75 and 0.5 for any given X/Ldjfr, i.e. a trend which 
translates directly into increasing y, produces increasing values of I. All three curves in Fig. 2 approach an 
asymptotic limit of 1 ; however, when k~ is close to critical (k~ = 1), very large values of x/La,,, are required 
to approach this asymptotic limit. On the other hand, an increase in I for a given k~ reflects a decrease in the 
value of R, demonstrated in Fig. 3. The asymptotic behavior of I leads to an asymptotic limit for R for large 
values of x/Lj,r, a limit easily shown to be 

R = p,/~2 

Vf(of--l) _ k_~ 
m ( m - 1 ) + - -  m - - -  

of 1 -- k:~ 

Nuclear parameters used in this numerical study were assigned the following values 

p, = 1, ~ = 2.408, 

or (0r- 1) 
rh --- 3.773, ~z  - 0.8, 

m 2 --- 15.818. 

For  a given detector configuration, we now investigate the behavior of I and R as a function of k~. In this 
study, maximum values of I occur at k~ --- 0, such that Im,x = l(x/Ld,r). This behavior is shown in Fig. 4. 
Predictably, larger values of I are reflected for larger values of x/Ld~r for any fixed k~. The corresponding R 
behavior is plotted in Fig. 5. Here we notice that for k~ = 0 

pl~/2 
R -  _ _ . -  1.1819, 

m(m-- I) 

irregardless of neutron detector locations. Figure 4 also sheds light on the applicability of the CSDNA 
technique to determine the subcriticality of the infinite reactor under investigation. For  a system configuration 
which positions neutron detectors far from the point source, especially for x/La~>>- 100, I(k~) remains 
essentially a constant  for a large range of k~ values. Therefore, in the experimental determination of R would 
translate directly into system criticality through equation (63) with a constant  value for I equal to I(x/Ld,r). 

The effort to account for spatial effects in our benchmark reactor requires both extensive theoretical analysis 
to obtain an exact solution for the R ratio and numerical calculations to evaluate R. Therefore, we are led to 
an inevitable question, especially if we view equation (63) from an experimental standpoint.  How well can the 

Fig. 2. I as a function of x /Ld i  ff for k = 0.5, 0.75 and 0.95. 

l.O 1.2 L 
I.o ~ k=0.5 0,8 
o . s ~  

0.6 ~ 0.6 

0.4 

I 0.2 0 2 

0.0 0:0 
0 10 20 30 40 50 0 10 20 30 40 50 

x/Ldfff x/Ldiff 

Fig. 3. R as a function ofx/Ldl,r for k = 0.5, 0.75 and 0.95. 
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t.0 
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• x/Ldiff=5 

x/Ldiff=10 

" - - ¢ " - -  x/Ldiff=50 

x/Ldi~-100 

0.8 

0.6 

0.4 

0.2 I 

0.0 
0 . 0  0.2 0.4 0.6 0.8 1.0 1.2 

k 

Fig. 4. I as a function ofk for x/La~ec = 1, 5, 10, 50 and 100. 
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Fig, 5. R as a function ofk for x/Ldiff = 1, 5, 10, 50 and 100. 
Symbols as in Fig. 4. 

multiplication factor be predicted for the infinite, homogeneous reactor by employing a simple point reactor 
model? From Akcasu and Stolle (1989), a point reactor model of the C S DNA experiment corresponds to 
I = 1 in equation (63). We extend the definition of the point reactor model here to include any constant  value 
for L not  necessarily equal to 1. In Figs 6-8, we present exact results for R as a function of k~ given different 
detector locations. In addition, for each detector configuration, we attempt to fit several point model solutions 
to the exact behavior of k~,. The constant  values of I are chosen such that Rpt = Rexac t for several fixed values 
of k~. A comparison is also performed for I = 1. For  neutron detectors placed at 1 and 5 diffusion lengths 
from the source, Figs 6 and 7 demonstrate the crudeness of the fitted point solution and thus, the strong 
presence of spatial effects. However, as the detectors are positioned farther from the source, spatial effects 

-----e--  R(k) 
• Rpt=R(0.99) ] " - - - ~ ' ~  R(k) 

Rpt=R(0.75) Rpt=R(0.99) 

Rpt=R(0.51) Rpt=R(0.51) 
m R(I=I.0) R(I=I) 

1.2 1.2 

1 .o 1 .o 

0.8 0.s 

0.4 0.4 

0.2 0.2 

0 0 0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1,2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

k k 

Fig. 6. Po in t  model  of  space-dependent  p rob lem,  X/Ldiff  = 1. Fig. 7. Po in t  mode l  o f  space-dependent  p rob lem,  X/Ldi  ff = 5. 
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Fig. 8. Point model of space-dependent problem, x/Ld~e = 10. 

become negligible, as evidenced in Fig. 8. Results are presented in this figure for detectors at l0 diffusion 
lengths from the source, where the exact solution becomes almost indistinguishable from a fitted point solution. 

Case 2 

In general, the functional form of  I includes a dependency on the measurement frequency, co. We examine 
this dependency for the colinear detector-source-detector  arrangement and now perform numerical cal- 
culations for 

l(y) = ~y2 exp [ (2 '+2 '* )y ]  dzz  exp ( - z )  , ~2x/1 -e2g  2 (68) 

as a function of  the variable, to, where, as noted earlier, 

=,/i+ito, = V/l+," a" 

These numerical results are acquired by considering the benchmark reactor with equally-spaced neutron 
detectors at 20 diffusion lengths from the source and a system criticality of  k~ = 0.75. Through this numerical 
study, we discover that I suffers an initial rapid decline which tapers off as I -~ 0 for increasing values o f  to. A 
corresponding asymptotic limit is approached by R as this increasing function tends to 

p,rh 2 
R ~ _ _ =  1.1819 

re (m-  l) 

for increasing values o f  the frequency. These findings are displayed in Figs 9 and 10. Worthy of  mention here 
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Fig. 9. I as a function of to' for x/Laiw = 20 and k = 0.75. 
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Fig. 10. R as a function of co' for x/Laiw = 20 and k = 0.75. 
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Fig. 11. Real part of ! as a function of o2 for x2/Ld~n = 5, 
x~/La~fr = 10 and k = 0.75. 
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Fig. 12. Imaginary part of I as a function of ~o for x2/L,~,- = 5, 
x3/Ldi~ = 10 and k = 0.75. 

is the complex na ture  of  the funct ion I. Fo r  col inear  detectors at  equal  distance f rom the source, we find the 
values of  I to be purely real. However ,  this observa t ion  leads us to our  third and  final case study of  the 
numerical  behav io r  of  I. 

Case 3 

The complex na ture  of  I is exhibited for non-zero  co when  we analyze the colinear de tec to r - source-de tec to r  
system for neu t ron  detectors  which are unequal ly  posi t ioned from the source. Unde r  these circumstances,  
equa t ion  (66) reduces to 

I: f ) ' . e x p ( - - ~ 2 2 ' x / 1 - - ~ 2 , u - - ~ 3 2 ' *  1 ~ - ~  ) 
l (y )  = ~.P2Y3 exp ( J . ' y2 -k - ,~ /*y3)  d z z  exp ( - z  d#  -- . (69) 

' ~2~x /1  - ~ 2 / ~ , / i  + e,,~l 

where 

and  

XL~ x /  2y2z Y 2 = i Y 2 I =  1-k,~:,; s ~ -  , 2 
" " y~+z 

X3 2 y 3 z  
Y3 = [Y3[ = ~ - - , , / l - k ~  ; e~ - 2 , 72  

Ld,n- -  3 '3+-  

and  x2 and  x3 define the distance of  neu t ron  detectors  f rom the source. Both  real and  imaginary  componen t s  
of  I are plot ted as a funct ion of  co in Figs 11 and  12, where the numbers  reflect a reactor  with ks  = 0.75, 
x2/Ldin = 5 and  x3/Ld~n. = 10. Due to the differences in the relative magni tudes  of  the real and  imaginary 
componen t s  of  I, the sinusoidal  features displayed in Fig. 12 represent ing the imaginary behavior  of  I are not  
reflected in the graphical  representa t ion  of  II(co) l, the magni tude  of  the funct ion,  presented in Fig. 13. 
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Fig. 13. Magnitude of I as a function of ~o for x2/Laifr = 5, x 3 / L d i  . = 10 and k = 0.75. 
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5. CONCLUSIONS 

Through a theoretical and numerical investigation of the CSDNA technique for the defined benchmark 
reactor, we obtain an exact expression in equation (63) relating the R(w)  ratio to the suberitical multiplication 
factor of the reactor. In the previous section, the function I was found to be relatively insensitive to k~., for a 
wide range of k~ values if a colinear detector-source--detector configuration was implemented for detectors 
far from the source and equally spaced. Under these conditions, the reactivity can be determined from an 
experimental R value without prior knowledge ofk~ to determine L Applying equation (63) to the investigation 
of the CSDNA experiment for a realistic reactor configuration, however, may not accurately predict the 
reactivity if the experimental conditions are far from the benchmark conditions considered. However, under 
more realistic experimental conditions, i.e. for finite systems in which diffusion theory is not applicable, the 
determination of the subcritical multiplication factor from a single measured ratio of PSDs without extensive 
transport calculations, becomes doubtful. 

Obtaining an exact expression for the R ratio becomes increasingly complicated as the sophistication of the 
physical reactor model increases. In addition, Langevin diffusion theory may eventually need to be discarded 
for a more realistic treatment of neutron behavior, such as the P~, one-speed transport, or even complete 
transport Langevin descriptions. Eventually, one may encounter a situation in which a detailed theoretical 
description of the experimental set-up is achieved, but that the corresponding set of equations becomes 
essentially impossible to solve. How may the measured R ratio then be utilized to evaluate the unknown 
reactivity for an arbitrary system? 

From our benchmark studies, we discover some evidence to support the use of a calibration curve in the 
determination of k from the measured R ratio. In particular, by employing a colinear detector-source~letector 
configuration such that detectors are placed far from the source, I may become relatively insensitive to the 
properties of the infinite medium. Thus, using equation (63) and a constant value for/ ,  we may immediately 
plot k ,  as a function of R. By maintaining the same source~tetectors configuration, a measured R ratio might 
then translate directly into the subcritical multiplication factor of the system from such a calibation curve for 
any medium which meets the infinite medium description. 

In general, one needs to determine the reactivity of a finite, space-dependent multiplying medium. For a 
fixed geometrical configuration, between the point source, finite medium and neutron detectors, a calibration 
curve can be evaluated using Monte Carlo calculations. If the same geometrical configuration is then 
maintained, and assuming we can extrapolate from our benchmark reactor analysis, this calibration curve may 
possibly be used to interpret a measured R ratio to determine the multiplication factor of an unknown medium. 

As a final remark, some of the results obtained, such as the high-frequency limit of R(o), and conclusions 
reached in this paper using the benchmark problem may be due to the use of the diffusion approximation and 
the infinite medium model. The benchmark problem, in which spatial effects are now included in the expression 
for R(~), should be considered as one step beyond the point model. The correct limiting behavior of R(co) or 
k~ should, in general, be investigated at the transport level using the general results presented previously by 
Stolle (1991). 

REFERENCES 

Akcasu A. Z. and Osborn R. K. (1966) Nucl. Sci. En.qn.q 26, 13, 
Akcasu A. Z. and Stolle A. M. (1989) Ann. Nucl. Eneryy 16, 493. 
Akcasu A. Z. and Stolle A. M. (1991) Trans. Am. NucL Soc. 64, 300. 
Difilippo F, C. (1988) Nucl. Sci. Enyng 99, 28. 
King W. T. and Mihalczo J. T. (1983) Trans. Am. Nucl. Soc. 44, 290. 
Mihalczo J. T. and Pare V. K. (1975) Ann. Nucl. Energy 2, 97. 
Mihalczo J. T., Pare V. K., Ragan G. L., Mathis M. V. and Tillett G. C. (1978) Nucl. Sci. Engny 66, 29. 
Mihalczo J. T., Kryter R. C., King W. T. and Blakeman E. D. (1986) Ann. Nucl. Energy 13, 351. 
Mihalczo J. T., Blakeman E. D. and Ragan G. E. (1988) Trans. Am. Nucl. Soc. 57, 133. 
Mihalczo J. T., Blakeman E. D., Ragan G. E. and Johnson E. B. (1990) Nucl. Sci. Engng 104, 314. 
Stolle A. M. ( 1991 ) Anatomy of a controversy : application of the Langevin technique to the analysis of the '52Cf source- 

driven noise analysis method for subcriticality determination. Ph.D. Thesis, Dept of Nuclear Engineering, Univ. of 
Michigan, Ann Arbor, MI. 

Sutton T. and Doub W. B. 0991) Ann. Nucl. Energy 18, 491. 
Williams M. M. R. (1974) Random Processes in Nuclear Reactors. Pergamon Press, New York. 
Wolfram S. (1988) Mathematica. Addison-Wesley, Reading, MA. 
Yamane Y., Watanabe S., Nishina K., Miyoshi Y., Suzaki T. and K-Bayashi I. (1986) J. At. Energy Soc. Japan 28(9), 850. 


