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Despite its importance and the undisputable significance of stochastic effects, the problem 
of multiple-excitation multiple-response experimental modal analysis has thus far been 
almost exclusively considered within a deterministic framework. In this paper a novel, 
comprehensive and effective stochastic approach, that, unlike alternative schemes, can oper- 
ate on vibration displacement, velocity or acceleration data, is introduced. The proposed 
approach is capable of effectively dealing with noise-corrupted vibration data, while also 
being characterized by unique features that enable it to overcome major drawbacks of 
current modal analysis methods and achieve high performance characteristics by employ- 
ing: (a) proper and mutually compatible force excitation signal type and stochastic model 
forms, (b) an estimation scheme that circumvents problems such as algorithmic instability, 
wrong convergence, and high computational complexity, while requiring no initial guess 
parameter values, (c) effective model structure estimation and model validation procedures, 
and, (d) appropriate model transformation, reduction and analysis procedures based on a 
novel dispersion analysis methodology. 

This dispersion analysis methodology is a physically meaningful way of assessing the 
relative importance of the estimated vibrational modes based on their contributions ("dis- 
persions") to the vibration signal energy. The effects of modal cross-correlations are fully 
accounted for, physical interpretations are provided in both the correlation and spectral 
domains, and the phenomenon of negative dispersion modes is investigated and physically 
interpreted. The effectiveness of the proposed approach is finally verified via numerical and 
laboratory experiments, as well as comparisons with the classical frequency domain method 
and the deterministic eigensystem realization algorithm (ERA). 

The paper is divided into two parts: the proposed dispersion analysis methodology is 
introduced in the first one; whereas the complete stochastic experimental modal analysis 
approach is presented in the second [23]. 

!. INTRODUCTION 

Time-domain experimental modal analysis approaches may be classified as either determin- 
istic or stochastic. Deterministic approaches [1-6] are often simpler and computationally 
attractive, but they face significant difficulties in dealing with noise-corrupted experimental 
data. Indeed, it is well-known [7-10] that the quality of modal parameters identified via 
deterministic methods decreases drastically as the noise-to-signal (N/S)  ratio ceases to be 
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negligible, and a number of modes may then be completely impossible to estimate. As a 
consequence, emphasis has been recently placed on stochastic approaches that can effec- 
tively account for the presence of noise in experimental data [7-18]. 

Most of the available stochastic approaches, however, are of the single-output type, and 
are therefore restricted to one vibration measurement location. This is a rather severe 
limitation for practical applications where multiple-excitation multiple-response [also 
referred to as multiple-input multiple-output (MIMO)] methods are in demand because 
of a number of advantages that they can offer, including significantly reduced total data 
acquisition and processing time requirements, the use of more consistent data sets, more 
uniform distribution of the excitation signal energy within the structure, more "consistent" 
modal parameter estimates due to the larger number of data used, effective separation of 
multiple or closely coupled modes, and significantly reduced probability of missing vibra- 
tional modes. 

Despite these potential advantages, very few stochastic MIMO approaches are currently 
available. Hu et al. [17] discussed an approach based on multi-variate autoregressive 
moving average (ARMA) models with parameters obtained through the modified Yule- 
Walker estimator. The performance of this estimator is, however, known to vary greatly, 
and result in significant identification scatter and reduced accuracy [19]. In addition, an 
unnecessarily high number of parameters is estimated, the noise dynamics are not identi- 
fied, and a number of issues (such as model structure estimation, estimation of the actual 
number of structural degrees of freedom/model reduction, appropriate selection of the 
excitation signal type and the required ARMA forms, as well as model validation) are 
neglected. The approach proposed by Bonnecase et al. [20] for the case of unobservable 
force excitation is also based on the modified Yule-Walker estimator (or its overdeterm- 
ined form) and is of a very similar nature. 

Part of the reason for the lack of stochastic MIMO experimental modal analysis 
approaches is due to difficulties related to the discrete estimation stage (algorithmic 
instability occurrence, wrong convergence, the need for initial guess parameter values, 
high computational complexity), inappropriate selection of the triple of model structure, 
excitation signal type, and discrete-to-continuous model transformation, the lack of an 
effective model structure estimation procedure, and the lack of a methodology for assessing 
the relative importance of the estimated vibrational modes (necessary for model analysis, 
reduction, and the distinction between "structural" and "extraneous" modes). Although 
most of these issues (except for the last one) were recently addressed and effectively 
resolved for the special single-output case [18], those results are not directly extendable to 
the more general MIMO problem. 

Indeed, it is a well-known fact that the extension from the single to the multiple-output 
case is far from being trivial, as stochastic multi-variate models have a structure that is 
much more complicated than that of their univariate counterparts, and gives rise to deep 
identifiability questions that necessitate the use of identifiable parametrizations and special 
model structure estimation techniques [21]. Additional problems are also encountered as 
parameter estimation in multi-variate models is much more complicated and prone to 
difficulties related to local extrema/wrong convergence and algorithmic instabilities, so 
that the availability of good initial parameter values is of critical importance [22]. The 
computational complexity of multi-variate estimation algorithms is also excessive, to the 
point that it is often considered as prohibitive for many practical applications. 

Regarding the issue of quantitative assessment of the relative importance of a structure's 
estimated vibrational modes, very !ittle has been done [8, 9, 18]. This is so despite the 
issue's apparent significance in model analysis, reduction, and the distinction between 
actual "structural" and "extraneous" vibrational modes in an estimated structural model. 
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Such extraneous modes primarily appear in conjunction with deterministic methods and 
are mainly due to the latter's inability to cope with noise-corrupted data. However, they 
are encountered in the results of stochastic methods as well (although in drastically reduced 
numbers); in that case they are due to the dynamics of imperfect instruments and/or 
statistical errors and estimator inaccuracies. Although some techniques (such as the modal 
amplitude coherence used in conjunction with the eigensystem realization algorithm [4]) 
have been suggested for distinguishing structural from extraneous modes in a deterministic 
setting, those neither address the aforementioned general problem nor work effectively in 
environments in which the noise is not negligible [10, 18]. 

It is thus the goal of this work to develop an appropriate methodology for the quantita- 
tive assessment of the relative importance of a structural system's modes, and also over- 
come the aforementioned difficulties and develop an effective and realistic stochastic 
MIMO experimental modal analysis approach. 

The problem of quantitative assessment of the relative importance of a structural model's 
vibrational modes is studied first, and a novel and physically meaningful methodology, 
referred to as dispersion analysis, that assesses the significance of each mode by determining 
its contribution to the total vibration signal energy under broadband excitation conditions, 
is developed. This methodology fully accounts for all cross-correlation effects (second 
order statistical interactions) among the various modes, and provides a definite and objec- 
tive answer to the question of mode importance. Physical interpretations are also provided, 
and the important phenomenon of modes characterized by negatioe contributions is consid- 
ered and existence conditions are derived. 

The complete stochastic MIMO experimental modal analysis problem is considered 
next, and a novel and effective approach that, unlike alternative schemes, is capable of 
operating on either displacement, velocity or acceleration vibration data records, and 
utilizes the dispersion analysis methodology for model reduction and analysis, is intro- 
duced. The performance characteristics of the proposed approach are examined via numeri- 
cal and laboratory experiments, and comparisons are made with the classical frequency 
domain method (FDM) and the deterministic eigensystem realization algorithm (ERA) 
[4]. 

This paper consists of  two parts: the problem of quantitative assessment of the relative 
importance of a structure's vibrational modes and the proposed dispersion analysis 
methodology are discussed in part I; whereas the formulation and testing of the MIMO 
experimental modal analysis approach is presented in part II [23]. The presentation in 
part I is organized as follows. The basic formulation of the dispersion analysis methodology 
is outlined in section 2, and the existence of modes characterized by negative contributions 
is discussed in section 3. Various interpretations of the proposed methodology, with 
emphasis on negative dispersion modes and their physical significance, are discussed in 
section 4, and the conclusions of the study are summarized in section 5. 

2. ANALYSIS OF DISPERSION FOR CONTINUOUS-TIME STRUCTURAL SYSTEMS 

Consider a general, linear, viscously damped n-degree-of-freedom structural system 
described by the differential equation 

M.  ~(t)+C. *( t )+K.  v(t) = f(t), (1) 

in which M, C and K represent the real and symmetric n x n mass, viscous damping and 
stiffness matrices, respectively, f(t) the n-dimensional force excitation signal, and v(t) the 
resulting n-dimensional vibration displacement signal. This system is characterized by n 
vibrational modes, and hence n pairs of complex conjugate eigenvalues of the form 

si, s* = - (,eo,,-I- jto.,x/1 - (2 = -(t6o.,4-jto~, (i= 1 . . . . .  n), (2) 
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where coal represents the ith damped natural frequency o~a, & c0n,~/l - ~'~, ton, the ith natural 
frequency, ~'~ the ith damping factor and j the imaginary unit. Corresponding to these 
eigenvalues are n pairs of complex conjugate eigenvectors (mode shapes) of the form 

(i = 1 . . . . .  n). (3) 

The problem of interest here is that of quantitatively assessing the relative importance 
of each vibrational mode in the system of equation (1), and for its solution a novel and 
physically meaningful dispersion analysis methodology, according to which the relative 
importance of a given mode is judged by its contribution to the vibration energy of the 
structure under broadband (uncorrelated) stochastic excitation conditions, is introduced. 
The key idea behind this methodology is in the appropriate decomposition of the vibration 
energy into modal contributions that will be referred to as (modal) dispersions. The excita- 
tion signal is selected as uncorrelated stochastic because it is then characterized by a 
perfectly fiat spectrum that warrants that all frequencies are excited at the same level, with 
no particular weight being assigned to any frequency or frequency range. 

The foundation of this proposed methodology may be traced to the notion of dispersion 
used in conjunction with discrete time series models [24] which, in turn, has its roots in 
the statistical analysis of variance. The first use of dispersion analysis in structural dynamics 
was based on approximate discrete-time models and may be found in the papers by Ben 
Mrad and Fassois [8, 9], Fassois et al. [16] and Lee and Fassois [18]. Howe~,er, these 
earlier attempts to address the problem suffer from two major drawbacks. 

(1) They are all based on discrete-time models and are therefore approximate and subject 
to errors relating to the fact that actual structural systems are inherently continuous and 
not discrete time. These errors are known to be functions of various factors, including the 
excitation signal type [8, 9], and are very difficult to assess. Furthermore, the utilization 
of discrete models does not allow for physical insight and a clear understanding of the 
role of the global and local modal characteristics in determining the contribution of each 
vibrational mode. 

(2) The frequently occurring phenomenon of negatioe dispersion modes has yet to be 
addressed. As a consequence, a clear understanding of the role of such modes and their 
physical significance is currently lacking. 

It is thus the specific objective of this paper to develop a proper and exact dispersion 
analysis methodology based on continuous-time structural models, explicitly relate the rela- 
tive contribution of each vibrational mode to physical quantities of interest (such as 
natural frequencies, damping factors, and mode shapes), and also provide clear physical 
interpretations of the notion of modal dispersion and the phenomenon of negative disper- 
sion modes. 

2.1. THE NOTION OF MODAL DISPERSION 

The key idea of the proposed methodology is in the proper decomposition of the vibra- 
tion displacement signal energy and the introduction of the notion of modal dispersion. 
Broadly speaking, the modal dispersion is the part of the vibration response energy associ- 
ated with a given mode under broadband stochastic excitation conditions. For a precise 
definition the vibration signal variance for a general viscously damped structural system 
needs to be computed and appropriately decomposed. 
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Towards this end the solution of the general structural system equation (1) for a given 
vector excitation f(t) -~ [f~(t) • • • f,(t)] T is expressed in the form [25] 

[ I ) )] v ( t ) = ~  ~, ~ h , ( t - r ) f , ( r ) d r  +t~* ~ h i* ( t - r ) f k ( r )d r  , (4) 
i=, k=, \ a, -~  k=l \a* 

with 

hi(t)~--f"=e-¢'o'",'(cos cod, t +j sin COd, t), (5) 

h*(t )  ~ e  + =  e-¢"%'(cos COd, t--j sin cod, t), (6) 

and with the constants a, and a* (which are the coefficients of the derivative term in the 
ith uncoupled state equation using normal co-ordinates) given as 

a, ~ 2s, . ~ TMt~, + ~ Tc~i  , (7) 

a* ~ 2s*. ~*TM~* + ~*TC~*. (8) 

The contribution of each vibrational mode will be defined separately for each one of 
the system's transfer functions. As a consequence, and without any loss of generality, the 
mlth transfer function relating the forcejS(t) to the vibration displacement response v,.(t) 
will be considered. Based on equation (4). the autocorrelation function of the vibration 
signal {v,.(t)} may be computed as 

R. . ( r )  = E[v,.(t)v,.(t + r)] 

r( c "io ) = ~ ~ E ""''" ft(t- r,)hi(z,) dr, + ',.i~,, 
,=, k=J L\ ai d o a* f i ( t - r l )h* (z l )dz ,  

x ' , . k ' l k  f i ( t  + r -- r2)hk(r2) dr2+ ~',.k~'lk I \ ak a~ Jo f i ( t+ r - r2 )h~( rE)d r2  , (9) 

where E[. ] denotes the statistical expectation operator. The first term in this expression 
may be rewritten as 

1st t e r m = E l ( " ' * "  f i ( t - r , ) h i ( r , ) d r , l (  ' ' k ' ' k  f f i ( t+r - rE)hk ( r2 )dr2  
L\  ai / \ ak 0 o 

 0f0 - -  ' n , i ' l i ' m k ' l k  ~o E[ f i ( t -  r0N(t  + r -  r2)lh,(rOhk(r2) dr, dr2 
aiak 

' m i ' l i ' , n k ' l k  oo R I ( r +  r , -  r 2 ) h i ( r , ) h k ( r 2 )  d r ,  d r 2 ,  (10) 
aiak 

with Rf(" ) representing the autocorrelation function of the force excitation signal { fi (t)}. 
In the case of uncorrelated excitation Rs(- ) is of the form 

Rf(r  + r , -  r2) = Rfot~(r + r l -  r2), (11) 

where t~(. ) represents the Dirac's delta function, and Rf0 its intensity. The substitution of 
equation (l l) into equation (10) then yields, for r~>0, 



38 J. E. LEE AND S. D. FASSOIS 

f: 1st term=Ryo ~,ni~li~,nk~lk hi(rj)hk(r + rt) drl 
aiak 

E f o  l =e-¢*a~"*r(COS COdk*:+j sin fOdkr) Rfo ~mi~)li$'nk~)lk hi(*dt)hk(*:l)  drl • ( 1 2 )  

aiak 

By similarly computing the remaining three product terms within the square bracket of 
equation (9), the autocorrelation function Ro.,(r) may be finally expressed in the decompo- 
sition form 

Rv..(z) A ~. Dk(r)& ~ [exp(--(kOg.,r)(rl~k)cosCOd, Z+rlt2k) sinogd, Z)], (13) 
k=l  k=l  

with Dk(*:)  obviously defined and 

rl~k)=Rfo ~ ~,.,~#C~,____.k~lk h,(t)hk(t) dtq ~,.,~#~,.k~lk h,(t)h'~(t) dt 
,=l \ alak ajar. 

~)mi~)li~mk~lk h*(t)hk(t) d t+  tllmitPlitYmktl)lk h*(t)h*(t) d t ,  (14) 
4 a*ak a'a* 

c f: " f :  r/p)=jRf ° ~. qb,.iqb#$,.kqblk hi(t)hk(t) dt qb,.iqb,,qb,.k$tk h,(t)h*(t) dt 
i= i \ aiak a ia~ 

~)'ni¢li~mk~)lk hi*(t)hk(t) dt-~.,.i~.li~,,.k~'tk h*(t)h~(t) dt . (15) 
-~ a*ak a'a* 

Observe that both 1/I k) and r/C2 k) (k= l, 2 . . . . .  n) are real-valued since their first and 
fourth, as well as their second and third, terms are complex conjugate. 

From equation (13) it is evident that the autocorrelation function Rv.,(r) has been 
decomposed into n decaying trigonometric terms Dk(r) (k = l, 2 . . . . .  n), each one of which 
is associated with each one of the system's vibrational modes and represents that mode's 
contribution to Ro,.(r). 

The energy associated with the vibration displacement signal { o,.(t)} may be then evalua- 
ted from equation (13) by setting r = 0  

[ ( I: R..,(O)= ~. 2 %  ~ Re dA"idP#dA-----2"ktktk hi(t)hk(t) dt 
k = ! i= ! \ alak 

• f: )] ff qb"'~#dA"kqblk hi(t)h~,(t) dt , (16) 
aia~ 

with Re(- ) denoting the real part of the indicated quantity. Since 

f: I: hi(t)hk(t) d t=  e-t¢'*''+¢*%)'[cos (~a,+ tod,)t +j sin (c0a,+ OJdk)t] dt 

_ ((;co.,  + (k 0~.,) +j(cod, + rod,) 

to. 2, + r_o.2, + 2(1(k CO.,CO., + 2CO.,tO.,X/(1 - ~'~) (I - ¢],) 

=A r/~i/,), (17) 
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and 

fo ° h,( t)h~( t) dt = 
(¢ico., + ¢,co.,) +j(coa,- coa,) 

2 (D 2 co., + . ,  + 2¢i~',co.,ro.,- 2co.,co.,x/( 1 - ¢2)(1 - ~'~) 

=a O~i,k) (18) 

Ro,,(O) may be rewritten in the decomposition form 

" /1  Ro,.(0) & Dk(O) & 2Rio R e  . ¢ , n i ¢ l i ~ , , , k  ~ l k  ~(3,.k ) .~ o( i .k)  
k = I k = I i= I \ a i a  k a i a ~  

(19) 

Based on this, the kth modal dispersion is now defined as follows. 
Definition. The kth modal dispersion is defined as the kth mode's contribution to the 

vibration signal energy given by the expression 

Dk(O) a- 2R/° ~=~, Re ( aiak r1(3'~) 4 ~bm,.¢,, ¢,,*k ¢*aia~, q~.k) ). (20) 

In addition, the dispersion percentage (or normalized dispersion) of the kth mode is defined 
as the dispersion of that mode normalized by the total vibration signal energy; that is, 

8k ~ Ok(0) × 100% ( k = l , 2  . . . . .  n). (21) 
E DAo) 

j = l  

Note that expressions (20) and (21) represent the kth modal dispersion and dispersion 
percentage, respectively, for the mlth transfer function. The additional subscripts indicat- 
ing this have been dropped for the sake of simplicity, but should be used in cases of 
potential ambiguity. 

The dispersion percentage of a given mode within a particular transfer function therefore 
constitutes a "measure" of that mode's relative significance within that transfer function. 
For an n-degree-of-freedom structural system characterized by n modes, an n x n transfer 
matrix incorporating all scalar transfer functions may be defined, and the dispersion per- 
centages of a given mode may be correspondingly written in the form of a dispersion 
percentage matrix. 

Example. Consider the two-degree-of-freedom proportionally damped system of Figure 
1, with physical parameters 

001 c I °81 ,,01 M = [ 1 . 0  2.5 
L0"0 1"0 ' -0"8 2-5 ' [_-11-0 110"0 

The modal parameters and complete dispersion analysis results, indicating the importance 
of each vibrational mode in each one of the system's transfer functions, are given in Table 
1 in the form of dispersion percentage matrices. 

As it is evident from these results, mode 1 is a heavier contributor to the vibration 
energy, and hence of greater importance than mode 2 for this particular system. Another 
interesting observation is that the dispersion of mode 2 is negative in both transfer recept- 
ance cases (transfer functions or~f2 and o2/fi); a phenomenon that deserves further atten- 
tion and will therefore be discussed in detail in what follows. 
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ml  m 2 

¢2 

L,, 
Figure 1. Two-degree-of-freedom structural system. 

TABLE 1 

Modal parameters and dispersion analysis results for the two-degree-of-freedom 
proportionally damped system 

Dispersion 
percentage matrices 

(%) 

Mode l 1.5836 0.08543 ~ I 132.28 61-61J 

Mode 2 1.7507 0-15000 ~ - l  -32.28 38'39_] 

3. MODES CHARACTERIZED BY NEGATIVE DISPERSIONS: THE CASE OF 
PROPORTIONALLY DAMPED SYSTEMS 

The definition of a structural mode's dispersion, and its interpretation as the mode's 
contribution to the vibration response energy under broadband stochastic excitation condi- 
tions, provides an objective and physically meaningful approach for assessing the relative 
importance of vibrational modes within a given structural system. However, as it has been 
already observed, a problem arises in that the dispersions of some modes are negative for 
certain structural systems, and this creates difficulties, as it is not immediately evident how 
negative contributions can be interpreted within this context, or what their exact physical 
significance and role are. As a consequence, and in order for the relative importance of 
such modes to be properly judged, satisfactory answers to these questions have to be 
provided. 

In achieving this objective alternative interpretations of the notion of modal dispersion 
and the dispersion analysis methodology, allowing for additional insight into the underly- 
ing physical mechanisms, will be now sought. In this section our attention will be focused 
on the special, but interesting, case of proportionally damped systems, for which somewhat 
simpler and easier to interpret expressions can be derived. The more general non-propor- 
tionally damped case will be examined in section 4. 

Based on expression (20), the contribution Dk(O) of the kth mode in the vibration signal 
energy may be decomposed as 

Dk(O)= flkk-t- flk, ( 2 2 )  
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where 

14~'k121~b'k12 0(4 k'k)) (23) flkka=2Ryo Re \ ~ - k  q(3k'k)4 lakl ~ 

flk ~-~ ~ [~ik, (24) 
i = I, i~k 

• ) fl~k a= 2R/o Re (~b,,,~bt, c~,,k q~tk O(3,.k ) 4 rl~ 'k) . (25) 
\ aiak aia~ 

The t e r m  flkk in this decomposition depends upon the kth modal parameters and will be 
therefore referred to as the kth modal autocorrelation, whereas the term flk depends upon 
the remaining modal parameters as well, and will be referred to as the kth modal cross- 
correlation. This latter term represents the part of the energy due to the interactions 
between the kth mode and the rest of the modes present in the system. 

In the special case of proportionally damped structural systems the above expressions 
reduce to~" 

_ Rio 
kk ~ , (26) 

~k Conk 

il k= ~ 2 222Rf°dA"'d~"~"~c~tk(('w"'+2 2 (kco.,) 
C0.k) +4[~i(kCo.,CO.k(CO.,+CO.k)+(~+i.'k)CO.,CO.~]2 2 2 ' i=l,i~-k (Conl-- 

(27) 

where qi represents the ith mass-normalized eigenvector, and the fact that the ai's of 
equations (7) and (8) can, in this case, be simply expressed as a~=j2cod, (i= 1, 2 . . . . .  n), 
was used. Based on these expressions the following corollaries follow. 

Corollary 1. The modal autocorrelation is non-negative for any mode of a proportionally 
damped system. The dispersion of any particular mode will thus be negative if and only 
if its modal cross-correlation is negative and of magnitude larger than that of its modal 
autocorrelation. 

Corollary 2. In a proportionally damped system no negative dispersion modes can occur 
within a point receptance transfer function (that is, a transfer function relating identical 
excitation 1 and response m co-ordinates). However, negative dispersion modes can be 
encountered in transfer receptance cases, in which the excitation and response co-ordinates 
are different (lv~m). 

Corollary 3. A necessary condition for the kth mode to be characterized by negative 
dispersion within the mlth (m ~ l )  transfer function of a proportionally damped system is 
that at least one of the products of mode shape elements dp,.~dpl~(~,.kqblk for i= 1, 2 . . . . .  n 
be negative. 

As it will be shown later, the validity of Corollary 1 can be extended to the case of non- 
proportionally damped systems as well. 

In order to gain further insight into this problem, the natural frequency ratio between 
two modes is defined as 

e~,~ ~ co.,/co.~.. (28) 

1" These expressions are analogous to those in Elishakoff [26], who distinguishes modal autocorrelation and 
overall cross-correlation terms in the total vibration energy of proportionally damped systems. 
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Then, the kth modal cross-correlation flk of the proportionally damped structural system 
[equation (27)] may be written as 

2 Ri0 ¢,,, ¢,, $,,k ¢,k ((, eo,,~ + (k) (29) 
l ,  = Z corr. 2 (¢, i=J.i#k n, l t eo , , -1 )2+4[ ( i ( , eo ,~ (e2~+l )+  2+ 2 2 • 

(i) (ii) 

It is interesting to observe that both the modal autocorrelation ilk* [equation (26)] and 
3 cross-correlation fl, [equation (29)] have the term ton, as a common factor in their denomi- 

3 nators. By using appropriate natural frequency ratios, the quantity con, may thus be made 
a multiplicative factor in the total vibration signal energy expression and, as a consequence, 
the dispersion percentages 8k (k= 1, 2 . . . . .  n) calculated from equation (21) will be 
independent of it; in fact, independent of any one of the exact natural frequency values. 
This observation is organized into the following corollary. 

Corollary 4. The kth mode dispersion percentage 8k of a proportionally damped struc- 
tural system does not depend upon the exact value of any one of the system's natural 
frequencies con, (i = 1 , . . . ,  n), but only upon the natural frequency ratios e,~ (i= 1 , . . . ,  n). 

For the rest of this section we will further limit our analysis to the case of proportionally 
damped systems satisfying the following assumptions: (AI) the structural system is lightly 
damped ((;<< 1, Vi); (A2) the mass-normalized mode shape elements are all of the same 
order of magnitude. 

Apart from being of obvious practical importance, this case allows for some additional 
calculations that provide insight into the physical conditions under which negative disper- 
sion modes may appear. Towards this end let us examine the dispersion percentage t~k as 
a function of the natural frequency ratios eo,~ (i= 1, 2 , . . . ,  n). 

If z~,,>>l, Vi, i # k ,  the terms (i) and (ii) in expression (29) may be approximately 
expressed as 

(i) ~ 4 . . . . .  3 / ; ~ ,  (n) ,.~ 4~i~k ~ ,  (30)  

and thus (i)>> (ii); an inequality further strengthened by the light damping assumption A1. 
If, on the other hand, e~,~<< 1, then by neglecting terms of order higher than two we 

have 

(i) ~ 1, (ii) ~ 4 ( i f k  ea~, (31) 

and (i)>> (ii) in this case as Well. 
As a consequence, if the lightly damped structural system has well-separated modes 

(~o,~>> I or eo,~<< 1, Vi, i # k ) ,  the term (i) is dominant to (ii), and the kth mode dispersion 
Dk(O) may be thus approximated as [see equations (26) and (27)] 

R F.~2 .~2 2~,n,¢,,¢,.k¢,k(¢,eo,~+(k) 1 
(32) 

t,°nt L ~k i=l.iMk (~,ta~-- ) J 

(iii) ( iv) 

with the denominator of (iv) further approximated as e~,, (if eo,~>> 1) or 1 (if e~,~,<< l). In 
both cases, however, and under assumptions Al and A2, the term (iii) will be dominant, 
in magnitude, to (iv). Due to the difference in magnitude between these two terms, and 
for reasonably small number of degrees of freedom n, (iii) will be dominant when compared 
to the sum of the terms (iv) as well. That is, the modal autocorrelation will be significantly 
larger, in magnitude, than the modal cross-correlation, and we, therefore, arrive at the 
following corollary. 
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Corollary 5. For a proportionally damped system satisfying A l and A2, and charac- 
terized by well-separated modes (e~,~>> 1 or e~,~<< 1, Vi, i#k) ,  the modal autocorrelation 
terms dominate, in magnitude, the corresponding modal cross-correlations, and thus, by 
virtue of Corollary l, no negative dispersion modes exist. 

Based on this result, it is evident that a necessary condition for the kth mode of a 
proportionally damped structural system satisfying A l and A2 to be characterized by 
negative dispersion is that at least one additional natural frequency be close to a~n,, so 
that the term (ii) in equation (29) can dominate (i), and the modal autocorrelation flu 
does not necessarily dominate (in magnitude) in equation (32). This is a somewhat expected 
result, since for 8, to be negative the kth modal cross-correlation needs to be negative and 
of magnitude larger than that of its modal autocorrelation (Corollary 1), with the former 
(modal cross-correlation) becoming maximum as another damped natural frequency 
approaches coak (cod, ~ coak) (see last remark in subsection 4.1); a fact that, in the case of 
lightly damped systems, occurs only when con, approaches co, k. This behavior of the modal 
cross-correlation is in agreement with a related observation in reference [26], that in a 
two-degree-of-freedom system the contribution of the overall cross-correlation term to the 
total vibration energy becomes significant as the two natural frequencies crowd together. 

In order to investigate how close two modes should be in order for the term (i) not to 
necessarily dominate in the denominator of expression (29), the special case of a two- 
degree-of-freedom system is now considered. By defining the quantity A through the 
expression 

e~n& l + A , A<<I, (33) 

and substituting it into the terms (i) and (ii) of equation (29), we obtain 

(i) = ((l + d )  2 -  I)2=4A2+4A3+A 4, (34) 

(ii) = 4[(j(2(1 + A)[(1 + A)2+ 1] + (52+ (~)(1 + A) 2] 

= 4[((i + 52) 2 + (i (2(4A + 4A 2 + d 3) + (52 + (22)(2A + A 2)]. (35) 

By neglecting terms involving orders of d higher than two, and noting that, in view of 
A1, the terms 16(1(2A 2 and 4((2+ (~)d 2, are also negligible, we have 

(i) ~4A 2, (ii) ~4(( i  +52)2+ 16(1(2A + 4((2 + (~)d 2. (36, 37) 

In order for term (ii) to be dominant, 

4A2<4((i +52)2+ 16(t(2A +4(52+ (22)A2oA2-2((t  + (2)2A - ((i +52) 2<0, (38) 

or, equivalently, 

a~--(( ,  + (92 -x / ( ( ,  + (2)'+ ((, +52)2<3 <(5, + (92 + x/((, +52)'+(5, + (2)2= A,, 
(39) 

where, obviously, A,>  0 and A2 < 0. By approximating the quantity under the square root 
as ((I + (2) ~-, and neglecting terms of order higher than two, equation (39) may be simplified 
a s  

lal < 5, + 52. (40) 

Expression (39), or its approximate version (40), therefore composes a necessary condi- 
tion for a negative dispersion mode to appear in a two-degree-of-freedom proportionally 
damped system satisfying A1 and A2. As is evident from this condition, the lighter the 
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damping of the system, the smaller the magnitude of A (and thus the smaller the distance 
between the two natural frequencies) that is necessary for a negative dispersion mode to 
appear. These facts are illustrated in the example that follows. 

Example (continued). Consider the two-degree-of-freedom structural system of Figure 
1. With mode shapes fixed (same as in Table 1), the dispersion percentages of the transfer 
function o2/)q are shown in Figure 2 as functions of the natural frequency ratio e~,,2 for 
four cases, as follows: (a) (i =0.35, (2=0-5; (b) (, =0-07, (2=0.1;  (c) (j =0.007; (2 = 
0.01 ; (d) (~ =0-0007, (2=0.001. As is evident from this figure, the lighter the damping of 
the system, the closer the two natural frequencies should be in order for a negative disper- 
sion mode to occur. Although condition (40) is, of course, not applicable to the high 
damping case (a), it is easy to verify that it is satisfied in all of the remaining cases for the 
intervals of A for which a negative dispersion mode occurs. Indeed, in case (b) mode 2 
has negative dispersion for 0" 9 < so,,2 < 1.05 (-0.1 < A < 0.5), whereas (, + (2 = 0.17. Simi- 
larly, in case (c), mode 2 has negative dispersion for 0.993<eo,12<1-006 
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Figure 2. The dispersion percentage of  a proportionally damped system as a function of  the natural frequency 
ratio, eo, n=o~,,/o~,2: , mode I; - - - ,  mode 2. (a) ~'~ =0.35, ~2=0.50; (b) (~ =0.07, (2=0.10;  (c) (~ = 0-007, 
~'2-- 0"01 ; (d) ~'~ = 0.0007, (z = 0' 001. Two-degree=of-freedom system; transfer function v2/ft. 
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(--0"007 < A < 0" 006), and (j + (2 = 0" 017, and in case (d), mode 2 has negative dispersion 
for 0-9994< e~,l~< 1.0006 (-0.0006<zi  <0.0006) and (j +(2=0.0017. 

4. INTERPRETATIONS AND PHYSICAL SIGNIFICANCE OF DISPERSION 
ANALYSIS: THE GENERAL NON-PROPORTIONALLY DAMPED SYSTEM CASE 

In this section the non-proportionally damped system case is considered, and various 
interpretations of the notion of modal dispersion are derived. These offer additional phys- 
ical insight into the proposed dispersion analysis methodology and further clarify the issue 
of negative dispersion modes. 

4.1. I N T E R P R E T A T I O N  I N  T E R M S  O F  M O D A L  I M P U L S E  R E S P O N S E  F U N C T I O N S  

A key interpretation in this context is based on the currently introduced notion of 
modal impulse response function for general viscously damped structural systems. For this 
purpose consider the function x(t), defined as 

x(t) = ~ j  h,(t) h*(t) . (41) 
'= L ai a* 

From the examination of the response equation (4) of a non-proportionally damped 
structural system, it can be shown that x(t) may be interpreted as the impulse response 
function of the mlth transfer function and be decomposed as 

x( t )~ ~ [zi(t)+z*(t)] = ~'. 2 Re [zi(t)]& ~" x~(t), (42) 
i= l  i= l  i=1  

with obvious definitions for z~(t) and x~(t) (i= l, 2 . . . . .  n). From these expressions it is 
evident that xi(t) is real-valued and represents that part of the impulse response function 
x(t) that is associated with the ith vibrational mode, and will be thus referred to as the 
ith modal impulse response function within the mlth transfer function. 

Based on this, the vibration signal energy given by equation (16) may be rewritten as 

E f0 Rvm(0) = ~ 2Rfo ~ Re [z,(t)zk(t)+zi(t)z*(t)] dt 
k = l  i = l  

f f0 ] = ~. 4R:- o Re [zi(t) l Re [zk(t)l dt 
kffi l  i 1 

= ~ Rfo xi(t)xk(t) dt , (43) 
kffi l  i = 1  

and the contribution Dk(O) of the kth vibrational mode to the total vibration signal energy 
may be expressed as 

;0 fo Dk(O) gflkk+flk=Rfo X~k(t) dt+R/o ~ x,(t)xk(t) dt. (44) 
iffi I , i ~ k  

From this form it is evident that the kth modal autocorrelation ~kk is proportional to 
the deterministic autocorrelationfunction of the kth modal impulse response {xk(t)} evalua- 
ted at lag r = 0, and that the kth modal cross-correlation flk is proportional to the sum of the 
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deterministic cross-correlation functions between {xk(t)} and {x,(t)} (i= 1, 2 . . . . .  n; iv~k), 
also evaluated at lag r = 0. The coefficient of proportionality is, in both cases, equal to the 
intensity of the uncorrelated stochastic excitation signal. Based on these observations, the 
following corollary (that is an extension of Corollary 1 to the case of non-proportionally 
damped structures) follows. 

Corollary 6. All modal autocorrelations are necessarily non-negative. As a consequence, 
in order for the kth vibrational mode to have negative dispersion, its modal cross-correla- 
tion has to be negative and of magnitude larger than that of its modal autocorrelation. 

Based on equation (44), the contribution of the kth mode to the vibration signal energy 
may alternatively be expressed as 

f0" f0 Dk(O) =Rfo ~ xi(t)xk(t) dt=Rfo x(t)xk(t) at, 
i=1  

(45) 

and the corresponding dispersion percentage rewritten in the form 

~o x(t)Xk (t) dt 
5k -- X 100%. (46) 

~o X2(t) at 

The following interpretations in terms of deterministic correlation functions are now 
immediate. 

Corollary 7. The contribution (dispersion) of the kth mode to the vibration signal 
energy is equal to the product of the uncorrelated stochastic excitation intensity and the 
deterministic cross-correlation between the total impulse response {x(t)} and the modal 
impulse response {Xk(t)} evaluated at lag r = 0. The corresponding dispersion percentage 
is hence equal to the cross-correlation between {x(t)} and {xk(t)} at lag zero, normalized 
by the autocorrelation of {x(t)} at that same lag. 

Corollary 8. A mode characterized by negative dispersion has an associated modal 
impule response function {Xk(t)} that is negatively correlated with the total impulse 
response {x(t)} in the time interval [0, oo). This means that the kth mode is, on average, 
acting in a way that opposes {x(t)}, and therefore reduces its magnitude. 

Remark. The degree ofcross-correlatedness between {x(t)} and {xk(t)}, that determines 
the kth modal dispersion, may also be assessed in terms of the quantity 

x(Ox,(t) dt 
oo , ( 4 7 )  

Pk-x /~o  x2(t) dt S0 x~(t) dt 

which, due to the Cauchy-Buniakovski inequality [27], is normalized in the interval 
[-1,11. 

These ideas are now illustrated through an example. 
Example (continued). Consider the two-degree-of-freedom proportionally damped sys- 

tem of Figure 1 with modal parameters and dispersion analysis results presented in Table 
1. As it may be observed, and in accordance with Corollary 2, the dispersion percentages 
are both positive in the point receptance cases (transfer functions vt/f~ and v2/f2), but of 
opposite signs in the transfer receptance cases (transfer functions v:/fj and vt/f2). The 
transfer receptance case v2/]] is further examined in Figure 3. The modal impulse responses 
x,(t) and x2(t) are shown in part (a) of the figure, and are apparently negatively correlated 
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Figure 3. (a) The first [xl(t)]h ( ) and second [Xz(t)], (-  - - )  modal impulse response functions; (b) the 
products xt  (t)x2(t),  ( ) and x2(t), (-  - -)  ; (c) the total [x(t)], ( ) and second modal [x2(t)], (-  - -)  impulse 
response functions; (d) the product x( t )xz( t ) .  Two-degree-of-freedom system; transfer function o2/./',. 

in the observation time interval. Indeed, the second modal cross-correlation is (assuming 

that R co = 1) 

fo" fl,2 = xl(Ox2(O dt 

= xl( t )x2( t )  d t +  xl( t )x2( t )  d t +  xl( t )x2( t )  d t+"  • • . 
! 2 

71 Y2 7'3 
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F i g u r e  3--continued. 

In the first time interval [0, tl] the modal cross-correlation is negative (71 <0), then (time 
interval [t~, t2]) positive (y2>0), and so on. As time grows, the impulse responses decay, 
and their overall (in the time interval [0, oo)) cross-correlation is negative. This is also 
illustrated in part (b) of the figure, where the curves xj(t)x2(t) and x22(t) are shown. The 
area between the former curve and the time axis represents the modal cross-correlation 
term (]32=,8~2), whereas the area between the latter curve and the time axis represents the 
second modal autocorrelation term (/322). It is apparent that P2 +/322 < 0, so that the second 
mode is characterized by negative dispersion. Similar observations may be made from 
parts (c) and (d) of the figure, which depict the impulse responses x(t), x2(t) and the 
product x(t)x2(t), respectively. Indeed, it is evident that the two responses are negatively 
correlated, so that on average (in the time interval [0, oo)) x2(t) tends to suppress x(t). 
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Remark. Based on the discussion thus far and the above example, it is evident that for 
general (non-proportionally damped) structural systems with adjacent damped natural 
frequencies (COd, .~ COd2), one mode will necessarily have negative contribution (dispersion), 
provided that the modal impulse responses {x,(t)} and {x2(t)} start out in opposite 
directions. In addition, it is also evident that the modal cross-correlation has maximum 
effects when Ogd, = rod2. 

4 . 2 .  I N T E R P R E T A T I O N  IN T E R M S  O F  M O D A L  R E S P O N S E S  D U E  T O  U N C O R R E L A T E D  

S T O C H A S T I C  E X C I T A T I O N  

Due to the duality between the deterministic delta function and uncorrelated stochastic 
signals, it is expected that the foregoing results and interpretations should be (appropri- 
ately) extendable to the case of stochastic force excitation by considering corresponding 
modal responses. That is indeed the case, and may be shown as follows. 

Consider a structural system excited by an uncorrelated stochastic excitation { f i ( t ) )  and 
define the part of the response associated with mode k, referred to as the kth modal 
response, by the convolution integral 

v,.,(t) = Xk(t-- Off(r)  dr. (48) 
oO 

The total system response may be similarly expressed as 

v,.(t) = x ( t -  r)fi(r) dr. (49) 

and the cross-correlation between the signals {o,.(t)} and {v,.~(t)} at lag r =0 is then 

f_f_ E[v,.(t)v,.~(t)] = x ( t -  r , )xk( t - -  rE)E[fi(r,)f i(r2)] dr, dr2 

= x ( t -  r , ) x ~ ( t -  r,)R/0 dr, 

fo = RI0 x(Z)xk (;0 dZ. (50) 

By comparing this expression to equation (45), the following interpretation in terms of 
stochastic cross-correlation functions is obtained. 

Corollary 9. The contribution (dispersion) of the kth mode to the vibration signal 
energy is equal to the cross-correlation between the corresponding total vibration response 
and the kth modal response evaluated at lag zero; that is 

Dk (0) = E[v,,. (t)v,. k (t)]. (51 ) 

In the case that mode k is characterized by negative dispersion. E[v,.(t)v,.,(t)] will be 
negative, so that at every time t the kth mode is. in an ensemble average sense, acting in 
a way that opposes the total response {v, .( t)} ,  and therefore reduces its magnitude. 

4.3. S P E C T R A L  I N T E R P R E T A T I O N  

The notion of modal dispersion is now examined in the spectral domain. Towards this 
end define as Fk(jco) the Fourier transform of the part of the output autocovariance 
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associated with the kth vibrational mode 

zx 1 I ° e_jW r Fk(jw) =~--~ J _  Dk(r) dr  (k= 1, 2 . . . .  , n). (52) 
oo 

The spectrum of the vibration signal {v,,(t)} may be then expressed in the decomposition 
form 

Sv,(co)= 1 Rv,,,(r) e-J '~dr  = ~ Fk(jco) =~ So,(co) = ~. Sk(CO), (53) 
--oo k=l k=l 

where Sk(W) is defined as the real part of Fk(jC0) : 

Sk(og) =~Re [Fk(jw)]. (54) 

Based on these expressions it is evident that Sk(CO) represents the contribution of the 
kth vibrational mode to the vibration signal energy at each particular frequency o9, and 
will be thus referred to as the spectral contribution of the kth mode. The relationship 
between the modal dispersion and Sk(CO) may be readily established by considering the 
inverse Fourier transform of equation (52) for r = 0  

f_° Dk(O) = Sk(o~) dog. (55) 
o o  

The dispersion of the kth vibrational mode is thus equal to the integral of its spectral 
contribution; that is, the area between the latter curve and the frequency axis. Dk(O) will 
therefore be negative exactly when the integral of Sk(09) is negative, and the following 
interpretation of negative dispersion modes follows. 

Corollary 10. A mode is characterized by negative dispersion if and only if its overall 
[in the frequency range (-0% oo)] contribution to the power spectrum of the vibration 
signal produced by an uncorrelated stochastic excitation is negative. This result is comple- 
mentary to the time-domain results of Corollaries 8 and 9, and indicates that a negative 
dispersion mode acts in a way that suppresses the spectrum of the vibration signal, and 
therefore its energy, in the frequency range (-oo,  oo). 

For the computation of the spectral contribution Sk(CO) of the kth mode to the vibration 
signal energy in the general case of a non-proportionally damped structural system, we 
proceed as follows. Rewrite the modal contribution Dk(r) to the vibration signal autocova- 
riance in the form [see equations (9), (10) and (13)] 

Dk(r) = ,_~. Rr(z + r l -  1:2)hi(rl)hk(r2) dr, dl'2 
= \ aiak d _oo o0 

ff ~P,,,,~a~P,,,kt~lk Ry(r + "rl - -  r2)hi(r l )h~'(z '2)  d r j  d r2  
a i a ~  -oo  oo 

. .  f_of_  
÷ ~b,.i~l;~,.k~blk R1(r + r j -  r2)h*(rOhk(r2) drl dr2 

a *  a k  oo oo 

2,.* 2~*,4.* .4.* ;_o ;_~o ) 
Jr ,e.,iWUO.,,.kU/tk Ry(Z + rl - r2)h*(rOh~(r2) dr1 dr2 . (56) 

a*a~. ~o ~o 
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The Fourier transform of  the first term in this expression may be written as 

;_f/ f_° ( # , n l ~ ) . ¢ m k ( ~ l  k 00 hi(vt)hk(V2) drt dr2 x 1 
aiak oo oo ~ Rf(v + vt - r2) e -J'r d r  

oO ;° 
_ ~mi~li~mk¢lk hi(r|) e j~°~' dr, x hk(r2) e -j~°~2 dr2 

aiak -oo oo 

,f_° x - -  R/(/~) e -j~x dA, 
2z  ~o 

where the substitution ~ =  r + v~ - r2 was made. Next notice that 

1 foo oo 
-~ff -oo Rf('~ ) e-J~°~ d A ' = l  f-oo Rf°5( X ) e-J°'X d~=Rf°& (57) 

where the constant Sfo represents the spectrum of the uncorrelated stochastic excitation. 
Also, by using equations (5) and (6), 

f_ 
o • = 1 

oo h i ( r | )  e -s°'*'  drl  s i - - J  cO 
&Hi(jco), (58) 

¢o • = 1 A/~;( j (o), 
h i ( r | ) e  j~'*'dr, si+jro (59) 

f_ ° . _ l A/~*(jco), ~o h?(r , )  e -J°'*' dr, s* -j----~ (60) 

f° - ,  h~*(r,) e j°~' dr, s .  +j~  & H~*(jco), (61) 

based on which [as well as equations (53) and (54)] S k ( C O )  may be finally expressed as 

Sk(CO) = Re [Fk(jw)] 

= Re Sfo ~ "(~'ni~)li~)mk ~)lk fli(jcO)Hk(j09 ) + / t i ( j 0 ) ) / t ~ ' ( j c 0 )  
i= I L aiak aia* 

4 a~ak 4. ~,.i~liW,,,kWlk H~(jco)/t~(j0))  . (62) dA.,¢#q~,.kq~lk Hi*(jcO)Hk(jco) a*a~ 

Remark. In the special case of  proportionally damped systems, the above expression 
for Sk(CO) reduces to 

Sk(CO) = Re [Fk(jco)]--SZ0 ~ dA.~.q~,.k¢~k X Re [G,.*(jco)Gk(jco)l, (63) 
i f ,  

with 

Gi(jco)A_(Ha(jco) +/~*(jco)/__ 1 
\ ae a* ] co2,-co2+jX(;to,,r-o (64) 

representing the complex frequency response function for the ith normal co-ordinate 
system [25]. 
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Example (continued). Consider again the two-degree-of-freedom proportionally 
damped system of Figure l, and more specifically the point receptance o~/J~ and transfer 
receptance o2/J] transfer functions. The point receptance case is examined in Figures 4(a) 
and 4(b), where the decomposition of the impulse response x(t) in terms of the modal 
impulse responses x,(t) and x2(t) is shown, along with the decomposition of the vibration 
response spectrum Sv,(co) in terms of S~(co) and 5'2(<o). As it may be readily observed, 
both modal impulse responses are positively correlated with x(t), and are therefore charac- 
terized by positive dispersions (a result which is in agreement with the dispersion analysis 
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Figure 4. (a) The first [xl(t)], (--  --)  second [x2(t)], (- - -) and total [x(t)], ( ) impulse response functions 
of the transfer function ol/j~. (b) The decomposition of the vibration signal spectrum S°,(eo), ( ) into the 
modal components St(m), ( - - - - )  and S2(to), ( - - - )  for the transfer function vl/f~. (c) The first [xl(t)], 
( - - - - )  second [X2( t ) ] ,  ( -  - -) and total Ix(t)], ( ) impulse response functions of the transfer function o2/~. 
(d) The decomposition of the vibration signal spectrum S,2(c0), ( ) into the modal components Sl(m), 
( - - - - )  and $2(o)), (- - -) for the transfer function o2/ft. Two-degree-of-freedom system. 
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results for this system and also Corollary 2). The same conclusion may be reached by 
examining the spectral results, from which it is evident that both modes contribute posi- 
tively to the vibration signal spectrum (in this case, in particular, they contribute positively 
at each and every frequency o~) and therefore add to the vibration signal energy. The 
particular contribution of each mode to the vibration energy can be computed as the area 
between the corresponding Sk(Oa) and the frequency axis. 

In the transfer receptance case, however, the modal impulse response x2(t) is negatively 
correlated with the overall impulse response x(t), as indicated in Figure 4(c), and the 
second mode is therefore characterized by negative dispersion. This is in agreement with 
the dispersion analysis results of the system (see the discussion in the previous subsection) 
and also the spectral results, as it is evident that $2(o~) has a negative overall contribution 
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to the vibration signal spectrum S(co) (although for a particular frequency range the 
contribution of the second mode to the spectrum is in fact positive) (Figure 4(d)). 

5. CONCLUSIONS 

In this paper, the problem of quantitatively assessing the relative importance of a struc- 
tural system's vibrational modes was addressed, and an appropriate and novel dispersion 
analysis methodology was introduced. The proposed methodology assesses the significance 
of each mode in an objective and physically meaningful way by determining the mode's 
contribution (modal dispersion) to the total vibration signal energy under broadband stoch- 
astic excitation conditions while fully accounting for all cross-correlation (interaction) 
effects among the various modes. 

Physical interpretations of the modal dispersion have been derived in both the correlation 
and spectral domains based on the notion of modal response functions, and the dispersion 
of a mode has been shown to be equal to the deterministic (stochastic) cross-correlation 
between the corresponding modal and the total vibration responses due to a deterministic 
delta function (uncorrelated stochastic signal). The modal dispersion may be thus clearly 
interpreted as a measure of the mode's influence in shaping the total vibration response. 

Explicit and physically significant expressions that relate the modal dispersion to the 
structure's global and local characteristics have been derived, and the phenomenon of 
modes characterized by negative dispersions investigated. Conditions for the existence of 
such modes were derived, and physical interpretations provided. Negative dispersion 
modes were thus shown to be encountered in cases of strong modal interference, specifically 
in cases where the modal cross-correlation effects dominate over those of the modal auto- 
correlation; something that can, for instance, happen in cases of structural systems charac- 
terized by closely spaced modes. Once encountered, negative dispersion modes have a 
negative overall contribution to the vibration response power spectrum, and act in a way 
that tends to suppress the structural system's total response. 

In the second part of the paper [23], the problem of stochastic MIMO experimental 
modal analysis will be considered, and a realistic and effective approach will be developed 
that uses the dispersion analysis methodology for model analysis and reduction/distinction 
between structural and extraneous modes. 
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C 
Dk(~) 
Ok(0) 
f(t) 
Fk(j~) 
G,(jo~) 
J 
K 

APPENDIX:  NOMENCLATURE 

viscous damping matrix 
part of Ru,(r) associated with the kth mode 
kth modal dispersion 
(vector) force excitation 
Fourier transform D,(r)  
frequency response on the ith normal co-ordinate system 
imaginary unit (if not an index) 
stiffness matrix 
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M 
n 

x(t) 
x,(t) 
Rr(r) 
R:o 
R,.(r) 
Sl 

s:o 
S,(fo) 
S~.(co) 
v(t) 
v,.(t) 
o...(t) 
IJ** 

6, 
A 
~a~tk 
( ,  
fOnt: 
fOd, 

Conventions 
E{.} 
Re(. ) 
Xi 

x(t) 
Ix(t)} 

T 
capital bold face 
lower-case bold face 

Abbreviations 
ARMA 
ERA 
FDM 
MIMO 
N/S 

J. E. L E E  A N D  S. D.  F A S S O I S  

mass matrix 
number of degrees of freedom 
impulse response of a scalar receptance transfer function 
ith modal impulse response function (part of x(t)) 
autocorrelation of the excitation {fi(t)} 
intensity of an uncorrelated force excitation signal 
autocovariance of the ruth vibration displacement signal 
system eigenvalue 
uncorrelated stochastic force excitation spectral intensity 
kth mode spectral contribution (real part of Fk(jfo)) 
spectrum of {v,.(t)} 
(vector) vibration displacement 
the ruth component of the vibration displacement vector 
kth modal response due to uncorrelated force excitation (part of ore(t)) 
kth modal autocorrelation 
kth modal cross-correlation 
kth mode dispersion percentage (normalized dispersion) 
= i - -  e ~  2 

= co.,/co.k, natural frequency ratio 
kth damping factor 
kth natural frequency 
kth damped natural frequency 
kth mode shape 
ith element of kth mode shape 

denotes statistical expectation 
denotes real part 
ith scalar component of vector x 
value at time t of the analog signal x 
signal x 
(superscript) denotes complex conjugate 
(superscript) denotes transpose 
denotes matrix quantity 
denotes (column) vector quantity 

autoregressive moving-average 
eigensystem realization algorithm 
frequency domain method 
multiple-input multiple-output 
noise-to-signal 


