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We count the number of solutions with height less than or equal to B to a system
of linear equations over a number field. We give explicit asymptotic estimates for
the number of such solutions as B goes to infinity, where the constants involved
depend on the classical invariants of the number field (degree, discriminant, class
number, etc.). The problem is reformulated as an estimate for the number of lattice
points in a certain bounded domain. %7 1993 Academic Press, Inc.

1. INTRODUCTION

The simplest Diophantine equations are the linear ones. Some typical
questions often asked in Diophantine equations are easily answered in this
case. There are other (often very important) questions which naturally
arise, however, which do not have immediately apparent answers. For
example, in transcendental number theory and Diophantine approximation
one is often led to the construction of certain auxiliary polynomials with
suitable properties. The problem then becomes cither to explicitly construct
them, or to at least prove the existence of such polynomials. The latter is
typically reduced to finding “small” solutions (usually in rational integers)
to a system of linear equations. For a homogeneous system, results of the
following kind are often used.

SiEGEL’S LEMMA [11]). Suppose | and n are positive integers with 1 <n.
Let

anx;+apx,+ - +a,x,=0
: (1

anx; +apx,+ - +ayx,=0

be a system of | linear equations in n unknowns with rational integer coef-
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SOLUTIONS TO LINEAR EQUATIONS 229

ficients ay; satisfying |azl < A for all i and j. Then there is a non-trivial
integral solution x =(x,, ..., x,,) with

max {|x,} <1+ (nd)""=0,

1sisn

This can be proven using Dirichlet’s box principle, for example. One can
also show that the exponent //(n—1/) is best possible [10]. Bombieri and
Vaaler in [1] tackle the more general problem of finding n—/ linearly
independent solutions of small height, where the coefficients are integers
in a number field K and the unknowns x, are restricted to integers in a
subfield F< K (see also [10]).

Here, instead of trying to prove the existence of certain solutions of small
height, we ask how many solutions with height less than or equal to a
given bound one would expect to find. For instance, suppose the equations
in (1) are linearly independent with coefficients a;; in a number field K. The
system (1) then defines an m-dimensional subspace S < K", where m=n—1.
How many one-dimensional subspaces T < S have height less than or equal
to a given bound? In answer to this question, we prove the following.

THEOREM 1. Let K be a number field of degree d and let S be an
m-dimensional subspace of K", where 2<m<n. The number of one-
dimensional subspaces T < .S with height < B is asymptotically

m

H(S)

a(m, K) +O(B™ ')

as B — oo, where the constant implicit in the O notation depends only on m
and K. If m=2 and d=1, then the error term above is replaced by
O(Blog B).

The value of the constant a(m, K) appearing in the above theorem is
explicitly given as follows. Write d=r, + 2r,, where r| is the number of real
embeddings of K into the complex. numbers C and r, is the number of pairs
of complex conjugate embeddings. Let § be the discriminant, R be the
regulator, h be the class number, and w be the number of roots of unity of
K. Further, let {, be the Dedekind zeta function of K and let V(n) denote
the volume of the unit ball in R”. With this notation,

w \/-l_é—l_ CK(m)
In the special case m=mn, i.e., when S= K", the theorem estimates the

number of one-dimensional subspaces of K", or what is the same, points in
projective (n— 1)-space P"~'(K), of height <B. This has already been
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done by Schanuel [8], although with a slightly different definition of
height. This case is also a specific instance of [12, Theorem 17, where an
estimate for the number of m-dimensional subspaces of K" with height <B
is given.

In Section 4 we prove an analogous result for the inhomogeneous case.

We now give our definition of the height of a subspace. Such a definition
was first given in [9] and is the height used by Bombieri and Vaaler
in [1].

Let

o d (1<i<d)

denote the embeddings of K into the complex numbers, ordered so that the
first r, are real and a“*"™? =" for r; + 1 <i<r, +r,, where & denotes the
complex conjugate of the number a. Given a vector @ = (a,, a5, .., &,) €
K"\ {0}, denote by [a] the fractional ideal generated by the components.
We define the height of a to be

r+r

H@)=N([e]) " [] le”1=Na])""- [] a7

i=1 i=1

where N denotes the norm of the ideal, || || denotes the usual norm on C™:
n 1/2
o =( % 2m)
i=1
and
1 if i<r,
e;= e
2 if i>r,.

It will be convenient to write

ry+r

H (@)= [T o,
i=1
so that H(a)=N([a])~' H_(a). This height is projective, as one may
easily verify. Hence, we define the height of the one-dimensional subspace
Kac K" by

H(Ka)= H(a).

Now suppose S is an m-dimensional subspace of K", where 1 <m<n.
If a,, @, .., a,, are a basis for S over K, we can form the wedge product
(see [6, Chap.7])

()

QAU A - AQ, K,
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where () is the binomial coefficient, n!l/m!(n —m)!. Also, we have
A, AU A - A EK*B, ABA - ABL)

if and only if the a’s and the B’s span the same subspace. (For proofs, see
[6].) Thus, the wedge product will give a one-to-one (though not generally

onto) mapping QS m-dimensional subspaces of K” to one-dimensional
subspaces of K*m/. Any such x=a, A@, A --- A @, is called a set of
Grassmann coordinates of S. Such an x is determined up to a scalar
multiple. We define the height of the subspace S to be

H(S)= H(x).

Also, define
H({0})=H(K") = 1.

Finally, we introduce some notation from [12] which we will use.
For X e R"' @ C?"* we write

X =(Xy, X3, - X;),

where
R for 1<igr,,
X;€9 <, .
C for r,<i<d

Let E"< R™ @ C*"* be given by the set of points satisfying x,, ,, =X; for
ri<i<r +r, For X and Y in £™, we define the inner product of X and
Y to be X - Y, the usual inner product in C™. Thus, for X = (x,, X;, ..., X;)
and Y=(y,, Y3, ¥g) in E™,

ri+2ry

X-Y=3% x,;.y,+ Y x,¥.

i=1 i=r+1

One easily verifies that, under this inner product, E* is a Euclidean vector
space of dimension nd. In particular, X -Y is real and X - Y=Y -X.
We embed K" into E™ as follows. Let p: K" — E™ be defined by

pla@)=(a, a?, ., «?),

where the maps o> a'” denote the embeddings of K into C, ordered as
above.
For S a subspace of K", S7={a’:ae .S} will be a subspace of

R if 1<i<r,
c" if r<i<d

(K(l'))n - {



232 JEFFREY LIN THUNDER

For a subspace V= R”, let V! be its orthogonal complement. Similarly, for
V a subspace of C”, let V' be the orthogonal complement

Vi={xeC":x-y=0forallye V}.

Let n'” be the orthogonal projection from R” or C" onto (S'”)* when
1<i<r, or ry <i<d, respectively. Define

a=aVxa®x ... x g
so that
(X)) = (n'"(x,), ..., m'x,))

for all X=(x,, .., x;)eE™. Note that n-p is linear on K" and vanishes
only on S. We remark that (S)* is not necessarily defined over XK'/
When we write © we assume the subspace S is given.

2. A REFORMULATION OF THEOREM 1

We return to the situation in Theorem 1, where S< K" is a fixed
subspace of dimension m > 1. We think of K"~ as being a subspace of K:

K"*l = {u:(al,..., @,,_1,0)6Kn}'

Without loss of generality, we may assume that S g K"~!, so that
V=SnK""!is a subspace of dimension m — 1. We then have

S=K@B. eV, (2)

where pe K"~ ' is unique modulo V. _
Let © denote the ring of integers of K. Let 3(B) be the ideal

3B)={acK:apeV+0O" '}
For aeﬁ=ﬁ+ V, define
J(e)={aeK:aacD" '}
For any ideal 3, let 3* = 3~ O. Certainly, we have
=3B, IM@)=3I*F). 3)

For such an @, we get a unique one-dimensional subspace T=K(a, 1)< §,
and all such one-dimensional subspaces TS, T ¢ V arise in this way.
Since I*(a)=[(a, 1)] ', we have the height H(T)= N(3*(a))-H_(a, 1).
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Evidently, to prove Theorem 1 it will suffice to count the number of such
acp with N(3*(a))-H (g, 1)< B.
Define the sets

e B
L, B)={(l€|3 :3(0)2Wand H_(a, I)SW}

and

LU, B)={ae L(A, B) : I*(a)=UA},

where P is as above and U is any fractional ideal. Note that L(, B) is
empty if U g 3*(f) by (3). Denote the cardinalities of L(%, B) and
L(%A, B) by A(A, B) and A(Y, B), respectively. We will compute (2, B)
and recapture A(2, B) with an inversion.

Let u be the Mobius function on ideals:

wO)=1,

1 if Pisaprimeidealandv=1,

WP) = {O

otherwise,
and

u(AB) = pu(A) u(B) if W and B are relatively prime.

One easily verifies that, as in the case for the rational integers (see [4]),

Y wB)=

B3

{1 if 3=90, @)

0 otherwise.

Lemma 1. For W integral,

AU, By= ), w(€) (AC~', B/N(E)).

(R}

Proof. For U integral,

.{_ BN(€)
AU, B)= A (C, )

¢qu1 N(U)
Setting B = AE ~! gives

AU B)y= Y AUB ', B/N(B)).

B (A
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Thus,

2. ME) AUAC!, B/N(E))

(AR

LT e i) )

C|A B)AG! ’N(C)N(%)
= ) AUI ", B/N(3I)) ¥ u(€)

3 €3
=AW, B),

by {4), where 3 = BG¢.
Now for the sum over ideals U = 3*(B) we have

SAUB)=Y Y w(€)A(AC ', B/N(€)) letting A =BE
A

A E|A

=Y. X u(€) A(B, B/N(T)),

¢ 3B

where the first sum is over integral ideals € with N(€) < B and the second
is over integral ideals B < 3I*(f) with N(B)< B/N(C), since L(Y, B) is
empty if N(W)> B (obviously, H_(a,1)>1) and L(UAC ! B/N(E)) is
empty if A€ ! ¢ I*(B). Thus, to prove our Theorem 1, it suffices to prove

the following.

PROPOSITION.  With the definitions above,

"

T Y 1(C) A(B, BIN(E)) = alm, K) e + O(B"~4),

€ B H(S)

where the first sum is over integral ideals & with N(€)< B and the second

is over integral ideals B < I*(B) with N(B) < B/N(Q). In the case m=2 and
K=Q, the error term above is replaced by O(Blog B).

Let P be as above and suppose B is any fractional ideal. We will write
B” ! for the subset of K" !,
BxBx --- xB.

et I
n — 1 times

Let I'=(B")""'. Then for yef, B <= 3(y) is equivalent to ye I

By the definition of 3(p), we have I(F)p< ¥+ 0"}, so that Op< V +
(3(B)"')y"~". This implies that there is some @€} such that f+ae
(3(B)~ )", ie., such that S(B) < 3(B + a). Hence, we may assume that

3(B) = 3(B). (5)
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Suppose B < J(f) and let I" be as above. Then Be I' by (5). fae VT,
then B < 3(a + B) since both @ and P are in I. Conversely, if yep with
B < J(y), then y—Be VI With I(V) written for ¥ nO"~", this shows
that A(®B, B/N(E)) is the number of aeVnI'=B'I(V) satisfying
H_ (a+p, 1)< B/N(BE). In other words, A(B, B/N(€)) is the number of
lattice points X = (X, ..., x,) € p(B ~I(V)) satisfying

B
N(BEC)

d
IT (x+ B2+ V2 <
i=1

Let 7 be the projection in Section 1 defined with respect to the subspace
V, and define

a;= I BP+1  (1<i<a).
By [12, Theorem 3]

d rp+nr
H(S)= H(V) N*®) [T a= HO)NE*@) [T a2 (6)

i=1

Then A(*B, B/N(€)) is the number of lattice points X p(B~I(V)) in some
fixed (depending on PB) translation of the domain

d
{Xe EC= D9 TT (Ix ) +ah)'? < B/N(QB(E)}.

i=1

In order to directly apply the results of Section 5, we embed E” ~ "¢ into
R~ D9 a5 follows. Let

t [E(nvl)d_’ R(n— 1)d
be defined by
HX) = H(Xy, X3, s X4))
= (X1, Xgy o Xpps Xy 415 X425 o0 Xpy 1)

where, for x;= (X1, X;2, s Xjn_ny) and i=r +1, r,+2,. ., r +r;, we
define

x; = (Re(x;,), Im(x), ..., Re(xi(n~ 1)), Im(x,, 1))
One sees that the determinant of ¢ is 2-""~ 1, Denote the composition of

tand p by ¢
For Ye R" Y we write

Y= (yl’ Y2, 0 yrl+r2)a
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where

R ! for 1<i<r,,
L i
Yiflmae-n for ri+1<i<r;+r,.

For 0g/<(m—1)d and xeR™, define V(x, I, B) to be the sum of the
/-dimensional volumes of the projections of the domain

ry+ra
D(x/B)= {Ye R4 T (y 2 + a2y < B/x}

i=1

on the various coordinate axes obtained by equating (m—1)d—1
coordinates to zero.

LEMMA 2. For B < 3(B) and € any ideal,

(B, B/N(G))— V(N(BQ), (n—1)d, B) (N(QS) 2r2),,, ’

H(Y) NG
m—2 d-1

<Y Y V(N(BE),id+j, B) N(B)+/,

i=0 j=0
where the constant implicit in the < notation depends only on m and K.

Proof. The domain D(x) is certainly a coordinate domain (see
Section 5). After a unitary transformation 1 of R~ D4 A(B, B/N(E))
is the number of lattice points Yetot' (B '1(V)) in D(N(BE)/B). The
determinant of this lattice is

H(V)( V191 )m}.

272N(B)

(See [12, Lemma 1].) Now by [12, Lemma 10]
(det(p(B ' 1(¥)) Lm0y T N(BY M

The lemma follows from Theorem 5 (and the remark following it).

3. PROOF OF THE PROPOSITION
We estimate

Y N(B)" ' V(N(BE), (m— 1)d, B), (7)

8
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where the sum is over integral ideals B < S*(ﬁ) with N(B)< B/N(C)=M.
By the Dedekind-Weber theorem (see [5]), the number of such ideals is
M ‘
I o),
N(3*(B))
where
_2nTnganR
w /19l

If we set u,=|y,| for 1 <i<r,+r,, the volume of the domain D(x) is

(m=1) V(im—1)" (2(m—1) V(2(m—1)))*

ry+r
T e
Alx) =)

where the domain of integration A4(x) is given by
it
[T wi+a})?<1/x, u;=0.
i=1
Using summation by parts (see [12, Lemma 127]), the sum (7) is
hy22(m=1)" 2 (Vim— 1) (V(2(m —1)))”
N(S*(B))

M i+
x[xmr [ ] wm D ' du,dx
0 Al M)

2 rn+r
+O<J x’"“f---f I1 u}'""""’"’du,dx)
0 A(XIM)

1

M it
+0<'f xm—l—l,r‘dJ._“j. H uim—lie,—l du,dx), (8)
1 AXiMYy [

where the second error term is not needed if 4= 1. We compute

M ritr2
j xm—Al J'j H ui_mfl)e,—l du,dx
0

Alx/M) [_y

ry+r

1
=M'"J y’"‘lJ....J. n u"_m“l)f’xflduid},
0 A(V) =1t

II:I:*1’:("IZ+HIZ)7U"2 l ri+r
= 1}
J ¥ dy n du;

i=1

-
M| g ment
-M fo !

0

6414329
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Mm ry+r X
— (f u(m - t)ei—~ l(ug + ag)—me,jz du)
m '=l 0 ? i L3 ¢
Mm rp+r2 o ) 4]
— H ai~—e, j‘ U(m - 1) — I(UZ + 1)—m‘e2 dU
m i=1 0

x j oI Ny 4 1)y M d )
[t}

_Mm ri+r2 el mV(m) ry
= 1« ((m—l)V(m—1)2>

i=1

x( 2mV(2m) n
2m—1) V(2(m—1)) 27t> '

Straightforward estimates show the error terms in (8) are O(M™~'¥),
Thus, by (6) the sum (7) is

a(m,K)cK(m)H(V)<\/ﬁ>m*< B >m+0<i>m~u
N(C) N(€) '

H(S) 2" (€

Now

2 E) NE) "= +0(B" ™),
¢«

1
{x(m)

where the sum is over integral ideals € with norm < B. Similarly, unless
m=2and d=1, we get

2 (@) N(€) == 0(1),

[}

and in the case m=2 and d=1 we get
Z w(€) N(€) '=O(log B).
«
As for the error terms in Lemma 2, we may compute as above and show
that, unless m=2 and d=1,

% 3 H(E) VIN(BE), id+ ), B) N(B) /< B~ 1

¢ B
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for any 0<i<m—2 and 0<j<d— 1. In the case m=2 and d=1, the
error term from Lemma 2 is

Y Y w€)<Blog B.
cC B

Thus, our proof of the proposition, and hence Theorem 1, is complete.

4. THE INHOMOGENEOUS CASE

Consider the system of linear equations

apuX,+apXa+ - ay, (X, =b,
: 9)

anx,+a,px+ - +a, X, =5,

where the a;'s and bs are elements of K (not all b,=0). We will assume
the equations are linearly independent, so that the system

apX;tapx,+ - ta, X, ,—byx,=0

apx,+apx;+ - +a, %, ,—bx,=0

defines a subspace S< K" of dimension m=n—1 Solutions to (9)
correspond to points of the form (a, 1)e .S, where ae K"~ '. We will write
S=K(B, 1)@V as above in (2). Solutions to the system (9) are then of
the form x=a+p, where aeV. For such a solution we define the
inhomogeneous height H,(x)= H(x, 1). We will count integral solutions to
(9) with inhomogeneous height < B. We may assume that m > 1, since this
case is trivial.

THEOREM 2. Using the notation above, the system of inhomogeneous
linear equations (9) has an integral solution if and only if © < 3(8). If this
is the case, then the number of integral solutions a with H,(a)< B is

asymptotically

b(m—1, K)

m— 1 Br1+r371 m— 1 rp+ -2
HV) B (log B) +O(B (log B) )

as B — cc, with an error term of O(B™ "2} if r, +r,=1. Here the constants
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implicit in the O notation depend on K, m, and H(S)/H(V). The constant
b(m — 1, K) is defined to be

(m_ 1)r1+r271

" 3 r 2r2 m—1
O (Vm— 1)) (V2m -2) <\/ﬁ>

if ri+r,>1, and the term r, +r,— 1 in the denominator is replaced by 1 if
ri+ry=1.

Note that 3(a)=2 0 is equivalent to a being integral. An easy conse-
quence of this together with (3) and (5) gives us the first statement in
Theorem 2. Also, if 3(a)=>90, then I*(a)=0 and H,(a)=H(a, 1)=
H_ (a, 1)

We will now assume that © gS(fi). The number of integral solutions to
(9) with inhomogeneous height less than or equal to B is then simply
A(D, B). By Lemma 2 we have the estimate

V{1, {(m—1)d B)/ 27 \" !
A B =y (\/W)
m-—-2 d-1
<Y Y V(l,id+], B). (10)

i=0 j=0

Lemma 3. For B> H(S)/H(V),

blm— 1, K)(/181/2%)" ! B™~!(log B)"*"2~!

+ O(B™'(log B)"*"~72) if ri+ry>1,
bm—1, KN/18]/27)y" = B" ! + O(B™ %)

if ri+ry=1

V(l, (m—1)d, B)=

Here the constant implicit in the O notation depends on r,+r,, m, and
H(S)/H(V).

Proof. As was shown in Section 3,

Vi, m—1)d, By=((m—1) V(im—1))" 2(m—1) V(2(m—1)))"

ry+r2

-1
xJ-J. [T wim Ve du,

i=1
where the domain of integration is given by

ri+nr
IT wi+a2y?<B, 4,20

i=1
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and the a/’s are defined as above in Section 2. Note that

H(S "I’:I’Z
by (6). Setting w,=u,/a, gives
V(l,(m—=1)d, B)=2"m—1)"*"2(V(m— 1)) (V(2(m — 1)))"

ri+r ry+r2

X H a(M*I)e.J' f H w(m—l)e,—ldw”

i=1 i=1
where the domain of integration is given by

ri+rz B

, e;/2
H (W +1) <Hr1+r2ae| W,ZO.
i=1 i=1
Set v,=w?+1 and
B
X= I—I:Ijlrz ae:

A routine induction argument on r,+r, shows that for X>1 and
ri4r,>1,

ry+r2

—[ f 1 (v, 1)on—b=22 gy

i=1

3 2”X"'7 ‘(log X)r1+rzfl

OXm—ll Xr'1+r2—2’
m—Dr, +r,—1) T O (g ) )

where the domain of integration is given by

If ry4+r,=1, then the r, +r,—1 in the denominator of the main term
above is replaced by 1 and the error term is replaced by O(X™~?). This
proves the lemma.

Similar arguments show that

Bm-ll Br|+r2¥2 if 1’
WLM+L&<{ (log B) montrn> (11)

B2 if r4r=1,

for i<m—1 and j<d Theorem2 then follows from Lemma 3, (10),
and (11).
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Our methods can be used to prove results that are more precise than
that of Theorem 2. For example, we can also give estimates for the number
of “primitive” integral solutions as well (solutions x with [x]=0).

THEOREM 3. Using the notation above, suppose that O < W< J(B). The
number of solutions @ to the system of linear equations (9) with 3(a)=U
and H,(a)< B is asymptotically

b(m—1, K)
H(V)

+0(B"'(log By 7 %)

(N(U) By"~ " (log B)"* 71} (€) N(€)' ~™

as B— oo, where the sum is over integral ideals €| UI(P) ' and the
constants imp[icit in the O notation depend on H(S)/H(V), K, m, and the
ideals N and J(B). If r,+ r, =1 then the error term is replaced by O(B™2).

Proof. For U as in the statement of the theorem, let
L*A B)={ach:3(a)=Uand H_(a, 1)< B}

and denote the cardinality of this set by A*(2, B). The theorem then
estimates this cardinality, For © <% < 3(f) we have

A, B)=> i¥(UB ', B/N(N)),
|8

where the sum is over integral ideals B|UJ3(f) . Thus,

2. u(€) AACT, BN(U)/N(€)) =) u(€) Yy i*(A(BE) ', B)
[\

[\ B
=Y U3, B) ¥ u(€)
3 €3

= }"*(Q‘[’ B)’

by (4), where tlle first and fourth sums above are over integral ideals
containing AI(B) ' and the third is over integral ideals B containing
A(EI(B)) ' Theorem 3 then follows from Lemmas 2 and 3 and (11).

5. THE NUMBER OF LATTICE POINTS IN A BOUNDED DOMAIN

A fundamental problem in Diophantine approximation is to estimate the
number of lattice points in a given domain in R”. Often the domain will be
unbounded, but in many instances the domain considered will be bounded;
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for example, in estimating the number of integral ideals of bounded norm
in a given ideal class (see [5, Theorem 121]). If we let 4 be an
n-dimensional lattice in R”, ie, a Z-module of rank n, and DcR" be
bounded, we have

Vol(D)

card{AnD} = et )’

where “card” denotes cardinality, Vol(D) the volume of D, and det(4) the
determinant of A. The main question is what one means by
“approximately.” In the case of a homogeneously expanding domain with
a “nice” boundary, one has

, Yol(D) _—
card{AntD}—¢ det ) =0(" ),
where the constant implicit in the O notation depends on n, A, and the
boundary of D. (See, for example, p. 128 of [7].) However, it may very
well turn out that such a bound is inadequate. One may need an error term
or terms which are more explicitly given in terms of the domain and the
lattice.

If one is only concerned with counting integral points in a bounded
domain, the following theorem due to H. Davenport gives an explicit
formulation for the error term.

THEOREM (Davenport [3]). Let D be a compact domain in R” satisfying
the following two conditions:

(1) Any line parallel 1o a coordinate axis intersects D in a set of points
which, if not empty, is the union of at most s intervals. (A point is considered
an interval.)

(2) The same is true (with m in place of n) for any of the
m-dimensional regions obtained by projecting D onto one of the coordinate
spaces defined by equating n—m of the coordinates to 0; and this condition
is satisfied for all m=1,2, ..,n— 1.

Then

n—1
lcard{DNZ"} - Vol(D)| < Y s "V,(D),
m=0
where V(D) is the sum of the m-dimensional volumes of the projections of
D on the various coordinate spaces obtained by equating n —m coordinates
to zero if m>0, and Vy=1.
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Now the above result may be applied to counting arbitrary lattice points
as follows. Let ¢ be a linear transformation of R” taking A to Z". Specifi-
cally, let b, b,, ..., b, be a basis for 4 and let 4 be the n x n matrix with
columns b,, b,, .., b,,. We let i be the linear transformation represented by
multiplication by 4~ '. Then

card{Dn A} =card{y(D)nZ"}.
We apply Davenport’s result to (D). We have

Vol(D)

Vol(y(D)) = det( )"

Now consider the terms V,(¥(D)). Let o be some m-clement subset of
the numbers | through n. Let V', be the space spanned by the vectors B,
for ie o, and let V. be the space spanned by the remaining vectors §;.
A typical summand of V,(¥(D)) will be the m-dimensional volume of the
image under ¥ of the set

S,={xeV,:x+yeDforsomeyeV,.}.
We have

Vol(S,)
det(A,)’

Vol(y(S,)) =

where A, is the sublattice of A4 spanning V,, since ¢ takes A to Z"™.
What we have then is the following statement of Davenport’s theorem
for all lattices in R"™:

THEOREM 0. Let D be a compact domain in R" such that any line inter-
sects D in a set of points which, if not empty, consists of the union of at most
s intervals. Let A be an n-dimensional lattice in R” and let b,, b,, .., b, be
any basis for A. Then, using the notation above, we have

n--1
[card{D A} —Vol(D)/det(A)|< T s" Y Zeotl((jd))’

m=0 a

where the inner sum is over m-element subsets o of the integers 1 through n.

The result above will most likely be useful when one is working with a
particular lattice and domain which one can study. It proves useful,
however, to have a result in which the error terms are given by more
“generic” properties of the lattice and domain. This is the case, for instance,
if one has a sum over many lattices. Our first goal is to give such a result.
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Let A be an /-dimensional lattice in R” spanning a subspace V. Let 4, <
42 < -+ £/, be the successive minima of 4 with respect to the unit ball
in V. Pick linearly independent points y,e 4 (the choice is not necessarily
unique) satisfying

lyl=4  for i=12 .1

Define

and

Minkowski’s second convex bodies theorem asserts that

!

%det(A YK A Ay A, V(1) <2 det(A),

where V(/) denotes the volume of the unit ball in R’. Since the successive
minima of 4~/ are, by construction, A, <A, < --- </, , for i</, we have
det(A ') is minimal among sublattices of A of dimension /—i.

Given a domain D as above and a subspace V< R”, let D(V) be the
orthogonal projection of D onto V. We will write Vol(D(V)) for the
m-dimensional volume of D(V), where the dimension of V is m>0. Let
Vol({0})=1.

Finally, for 0 <m < n, let

—

V.. (D)=max{Vol(D(V))},
:
where the maximum is over all m-dimensional subspaces V.

THEOREM 4. Let D<= R" be a compact domain such that any line inter-
sects D in a set of points which, if not empty, consists of the union of at most
s intervals. Let A be an n-dimensional lattice in R". Then

|card{D n A} — Vol(D)/det(A)}]

—

! n-m ] n V"'(D)
< Z S (’n((A)) <Iﬂ> det(A - [n m])’

m=0
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where ¢(A) is a constant depending only on A, and one may take

nt 2”7
y < —
c(A) < Vo

Proof. In comparing the error terms in the statements of Theorems 0
and 4, we immediately have

1 < 1 .
det(A4,) det(4 U ™}y

(12)

We will concentrate on the volumes Vol(S,). We do this by comparing
S, to D(V L). Now if the basis chosen for the lattice is orthogonal, then
these two sets (and their volumes) will be equal. But lattices do not have
orthogonal bases, in general. So we need a basis for the lattice which is as
close to being orthogonal as possible, i.c., a basis such that the product of
their lengths is close to the determinant of the lattice.

Let 4, <4,< --- €4, be the successive minima of A with respect to the
unit ball in R". By Cassels [2], there is a basis, b, b,, ..., b,,, of A satisfying

4i< |b| <A,
for all i. By Minkowski’s theorem, we have

n n n! 2’1 n! 2"
1< ] 4 €—— =— oA - Ab|
’E[] bl €n ,-ljl ; V(n)det(/i) Vo b, A by A Ab,|

So we will assume a basis b,, b,, ..., b, 1s given with

i=1

IT7_,Ibi <"! 2"
(b, AbyA -~ Ab,  V(ny

and we let ¢(A) be this ratio.

Suppose xe€ S,, with x +ye D, where ye V.. Together, x and y deter-
mine a plane in R" which intersects the space V1. in a line. There is a
unique x' € V' 5. with

X' +ay=x+yeD

for some ae R. If V=V 1., then x' = x. More generally, we have the map
x't—x of D(VZ) into V_ is a linear transformation of R” taking V%, to
V.. We must obtain a bound for the determinant of this transformation.

Let b;, bs, ... b, be the dual basis, ie.,

B =3

/ i

b,

i
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for all i and j, where 8 is the Kronecker symbol. Then

o~ bAaAb Ab Ao AD,
= b, AbyA -~ Ab,|
and
|b,| [by[---|b,|
b b < LI
R Y N TRt

forall 1 </j<n Let
x=Y ab,
and
x'—x=Y ab,.
i¢a

Then, for ie o, we have

This gives
la,| 1b < x| |b] |B;| < e(4) x|
and
x| < me(A) [x].
We have thus shown
Vol(S,) < (me(A))" Vol(D(V 2)). (13)

This, together with (12} and Theorem 0, gives Theorem 4.

—

The major drawback of Theorem 4 is that the volumes V,,(D) may be
difficult to work with. Of course, for particular types of domains, much
more can be said. In particular, for certain domains one may use the
V,.(DYs appearing in Davenport’s result. In this section we concentrate on
a particular type of star-convex domain, which we call a coordinate
domain.

DEFINITION. A coordinate domain, D < R”, is a compact domain such
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that if (x,, x,,.., x,) is a point in D, then (y,, y,, .., ¥,) € D, provided
|yl <|x;] foralli=1,2,..,n

THEOREM 5. Let D < R” be a coordinate domain such that any line inter-
sects D in a set of points which, if not empty, consists of the union of at most
s intervals. Let A be an n-dimensional lattice in R". Then

n—1 R Vm(D)
lcard{D n A} — Vol(D)/det(A Z 5" )2"7™) FRTYECEDN

where c¢(A) and the V,(DYs are as above.

Proof. We use Theorem 0 and (13) above. We actually show something
stronger than what is needed for Theorem 5. We show, for V' any
m-dimensional subspace of R”,

Z Vol(D(V L)) <27~V (D), (14)

where V! (D) is the sum of the m-dimensional volumes of the orthogonal
projections onto V of D intersected with the various m-dimensional
subspaces of R” obtained by equating n —m coordinates to zero. Note
that V, (D)< V,.(D).

Let V be an arbitrary m-dimensional subspace of R” and let x e D with

Xyy=Xyp= - =X%X»n=0 and  x,,#0fori>y,

where 0 <7<n—m and 7 is some permutation of the numbers 1 through
n (if 1 =0, none of the x;'s equal zero). We claim that there is a ye V* such
that, for z=x +y, we have

Iy =Zey = = Iy =2y =0
for some r> ¢, and such that

zelD.

To prove this claim, suppose first that ¥* is not orthogonal to any
coordinate axis. Then any point ye V'* is completely determined by any
n—m components. For example, V'~ is given by equations of the form

Yo = Z Ay Ve (n—m<i<n).
Jj=1
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More generally, we have

n—m-—1

yr(i)_aijyr(j)e{ Z CrYoun €€ R}

=1
for all n—m <, j<n, where the a;’s are non-zero real numbers satisfying
the two conditions

a;=(a; - a;=a,lay, (15)
for all i, j, and [/ greater than or equal to n —m.
Define a;j; to be |a;| and b to be |x,,/x,,| for all n —m < i, j<n. Then
the a;’s and the b,’s satisfy the two conditions in (15) above. Let

ioJo _ dy
b, b,
0Jo iy
for all i and j. Then we have
L
’ —_— - —_—
a4y, =< b = biio
Qi jo ip jo
forn—m<i<n
Let ye V'* be given by
0 if i<n—m,
y iH = . . .
! — X1(i0) if =iy,
so that y = —a,, X, for i>n—m. Then z=x +Yy satisfies
Zany =2y = = Zan = Zeti = 05

and moreover,

|zr(i)| = Ixr(i)—aiioxr(io)| < |xr(i)| + a:‘[ot xr(io)| <2 .’sz|

for i > n—m, since

|xr(i0)' a;i()

X, b

ity =

iip

This gives ze 2D, proving the claim in this case. The general case follows
as above, ignoring the components of points in ¥* which are orthogonal
to coordinate axes, unless V= is in fact orthogonal to m coordinate axes.
But this case is trivial: we simply choose ye V' * with all components but
one equal to zero and the t(iy)th component equal to x,,, where iz> 1t
(This is possible since t <n—m=dimg(V*).)



250 JEFFREY LIN THUNDER

So suppose that x € D. By n—m applications of the claim above, there
is a ye V' such that

Xx+ye2" "D

and n—m of the coordinates are zero. This proves (14), which, together
with (12), (13), and Theorem O, gives Theorem 5.

As a final remark, suppose that the domain D we are dealing with is
translated by some vector we R". Then for Theorem 4, we certainly have

—

Vol(D)= Vol(D +w) and V(D)= V(D + w) for any m. Thus, Theorem 4
remains valid for any translation of the domain as well. Similarly, the
volumes in (13) above remain unchanged, so that the statement of
Theorem 5 remains true for any translation of a coordinate domain.
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