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Abstract 

A parametric study is conducted to determine the effect of normal displacements due to shear tractions on the 
critical speed for frictionally-excited thermoelastic instability. The results show that shear effects can be very 
significant when the materials have comparable thermal properties and their neglect can lead to a non-conservative 
overestimate of critical speed. ft is also found that the common approximation of one material as a non~nductor 
typically underestimates the critical speed by an order of magnitude if the ratio of the two material conductivities 
is greater than 0.005, 

1. Int~uction 

If the nominally uniform contact pressure between 
two sliding bodies is perturbed, non-uniform frictional 
heat will be generated at the interface and a non- 
unifo~ temperature field results. The consequent ther- 
moelastic distortion of the contacting bodies in turn 
modifies the contact pressure distribution. This feedback 
process is generally found to be unstable and is called 
thermoelastic instability (TEI) 11, 21. This leads to the 
development of regions of high local temperature known 
as hot spots with the consequent danger of material 
degradation. Experimental evidence of such high tem- 
peratures has been observed in many practical appli- 
cations such as brakes and seals as well as in the 
laboratory f2-71. 

that, for the case of aluminum sliding against a rigid 
non-conducting plane, the introduction of shear effects 
only changes the predicted critical speed by 1%. How- 
ever, we shall show in this work that substantially larger 
errors may be introduced by neglecting shear effects 
when both materials are thermal conductors. 

2. Formulation 

The stability of thermoelastic sliding of conforming 
solids was examined by Burton and coworkers [8, 91. 
They showed that the contact between two sliding half- 
planes is unstable if and only if the sliding speed exceeds 
a certain critical value, which depends upon the wave- 
length of the perturbation. 

The tangential frictional traction, which gives rise to 
the generation of heat and hence to the instability, will 
also tend to produce an elastic normal displacement 
at the surface which modifies the contact pressure 
distribution. However, this displacement is generally 
small compared with the displacement due to the normal 
tractions and was neglected in Burton’s analysis. This 
simplification is frequently made in thermoelastic cal- 
culations [lo] and some justification for it can be found 
in the results of Heckmann and Burton [ll] who showed 

The analysis is a routine extension of that of Heck- 
mann and Burton [lI] and only the essential steps will 
be given here. We consider the problem of two half- 
planes, y > 0, y < 0 respectively, in sliding contact at the 
interface y = 0 and pressed together by a uniform pres- 
sure p,,. The two half-planes are generally of dissimilar 
materials, appropriate properties being distinguished 
by the sufhx 1 for y > 0 and 2 for y ~0. We assume 
that the bodies have absolute velocities v (i = 1, 2) in 
the x-direction and that a perturbation develops in the 
uniform fields which has absolute velocity c and relative 
velocity cj with respect to body i. It follows that 
c = V, +c, = Y2+c2 and that the sliding velocity, V, can 
be written 

V=V,-V,==C,-C, (1) 

The stability of the system can be examined by finding 
the condition under which a small sinusoidal pertur- 
bation in the temperature and stress fields can grow 
with time. As long as the perturbation is sufficiently 
small, the half-planes will remain in contact throughout 
the interface. The temperature perturbations in each 
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body which satisfy the transient heat conduction equa- 
tion can be written in a frame of reference stationary 
with respect to the perturbation as 

TI = %{TO exp(bt - h,y +jmx)} (2) 

T2 = fJI{TO exp(bt + h,y +jmx)} (3) 

where j= m and T0 is an arbitrary constant 

Ai = 6 +jqi (4) 

6=[; [(d+ ~)+JqpJ]]l~ (5) 

(6) 
and ki is the thermal diffusivity of body i. The ther- 
moelastic stress and displacement fields corresponding 
to the temperature distribution (eqns. (2) and (3)) are 
then determined, the resulting arbitrary constants being 
assigned so as to satisfy the frictional contact boundary 
conditions: 

uy1= $2 y=o (7) 

%I =ffw2 y=o (8) 

UVi = fa,, y = 0 (9) 

where f is the coefficient of friction and eqn. (9) is 
appropriate for the case where V>O. Equations (2) 
and (3) satisfy the requirement of continuity of tem- 
perature at the sliding interface and it remains to satisfy 
the condition that the rate of heat generation at the 
interface due to the frictional tractions is equal to the 
rate of conduction away from the interface, i.e. 

qnet = qy1- qy2 =f VP Y = 0 (10) 
which leads to the complex characteristic equation 

(&A, +K2A,)(I -if@ = 
( \ 

x a,(l+4 + cf2uz(l+v2) 

Al +m h,+m (11) 

where K, a, p, v are thermal conductivity, heat expansion 
coefficient, modulus of rigidity, Poisson’s ratio respec- 
tively and 

p= 1 

1 

P2Lz(l-2~*)-P1(1-2~2) 

2 I.cz(l-5)+P*(1-~2) I 

(12) 

is Dundurs’ constant [12]. In elastic contact problems, 
p can be interpreted as a dimensionless measure of 

the coupling between the normal and tangential loading 
problems (see Chapter 12 of ref. 13). 

The characteristic eqn. (11) serves to determine the 
exponential growth rate, b, for a disturbance of given 
spatial frequency, m, and sliding speed, V. We note 
that the coupling between normal and tangential trac- 
tions, which forms the subject of the present paper, is 
proportional to Dundurs’ constant and enters the char- 
acteristic equation through the term f@. The charac- 
teristic eqn. (11) can be restated in the dimensionless 
form 

(A: +K*h,*)(l -jfP) =fV*Z& &y +a* & (13) 
1 2 

where 

AT= A’; c~- kc; 
m (15) 

1 

v*=c;-c; (16) 

HI= &(I + c)k, 

Kl 
1 - V, 1 - V2 
-+- 

CL1 P2 

(17) 

Notice that the dimensionless parameter, Hl, differs 
from the thermomechanical material parameter, H, 
introduced by Hills and Barber [14] in that a composite 
elastic compliance appears in the denominator. How- 
ever, if material 2 were rigid (A -+ m ), HI would reduce 
to the value of H for material 1. Hills and Barber 
showed that H is close to unity for a wide range of 
practical materials. 

2.1. The stability boundary 
Perturbations will generally only be possible for cer- 

tain eigenvalues of the exponential growth rate, b. 
Stability will be maintained if the growth rates of all 
such perturbations are negative since all initial per- 
turbations will then decay with time. Thus we can find 
the stability boundary by setting the growth rate to 
zero and hence obtain the critical sliding speed which 
depends upon the wavelength of the perturbation. When 
b =O, the dimensionless forms of eqns. (4-6) reduce 
to 

(19) 
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3.1. One steak con-conducing 

5;=[; [ 1+Jrrqq]~ 

$=[; [-l+$L-@]fa 
which imply the relations 

~:“-?IT’=l; 52*2-.$2=1 

(20) 

(21) 

(22) 

(23) 

This question can be answered with some generality 
for the case where one material is a non-conductor, 
since eqns. (26) contain only two independent dimen- 
sionless parameters fH1 and f/3. Furthermore, fH, and 
V* only occur in the combination fH,v* and hence a 
unique relationship can be found between this com- 
bination and fp. In view of eqn. (27), fH,V*/2 = V*/ 
Vz, is the ratio between the critical speed and that 
which would be obtained if j3 were set to zero (i.e. if 
shear effects were neglected). This ratio is shown as 
a unction of jj3 in Fig. 1. 

239 

After substituting eqn. (18) into eqn. (13) and sep- 
arating the real and imaginary parts, we obtain two 
real equations, which, using eqn. (23) can be written 

(5; +Ky,*) +fp(T/: +lc*?g) = fy ( ) f + $ (24) 
I 

These equations and relation (16) can be used to 
eliminate c:, cz and hence determine the dimensionless 
critical speed V*. 

2.2. Solutions when one body is a non-conductor 
The limiting case where one of the bodies is a non- 

conductor was treated by Heckmann and Burton [ll). 
The equations for this case can be obtained by a similar 
process from first principles or alternatively from the 
more general solution by a limiting process. Taking the 
non-inducting body to be body 2, we obtain 

When p=O, these equations have the simple solution 

v,*= f$ (27) 

3. Results 

The determination of the critical speed is clearly 
considerably simplified if shear effects are neglected 
- i.e. if /3 is set to equal to zero - and hence the 
principal motivation for the present work is to determine 
in what ranges of the parameters this simplif?cation 
gives a reasonable approximation to the exact result 
and, more generally, what percentage error is to be 
anticipated from its use. 

When fp=O, the perturbation can be shown to be 
stationary with respect to the conducting body 1, (i.e. 
c: =O), whereas for non-zero fp, it moves over body 
1 at a dimensionless speed c: which is generally small 
compared with the sliding speed, V*. This velocity is 
also shown in Fig. 1. The sign of fp determines the 
direction of the motion, positive fp corresponding to 
negative cf and vice versa, but in other respects, the 
solutions obtained for equal positive and negative fp 
are similar. It is therefore sufficient to present results 
for f/3 > 0 in Fig. 1. 

The parameter space of interest is restricted by the 
fact that - 0.5 < fi <OS for materials with positive Pois- 
son’s ratio and the coefficient of friction, f, is unlikely 
to exceed unity in most practical situations. If fp is 
small, it follows that the dimensionless velocity of the 
disturbance CT will also be small and an asymptotic 
approximation can be found to eqns. (23) and (26) 
which is 

(29) 

In view of the above considerations, It”pj is unlikely 
to exceed 0.5, at which V*lc=1.28, indicating that 

1.3 * I 0.0 

Fig. 1. The ratio between the critical speed and that obtained 
by neglecting shear effects (-) and c: (- - -) when one material 
is a non-conductor. 
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the neglect of shear effects would lead to an under- 
estimate of the ‘critical speed by 28%. More realistic 
parameter values give much smaller errors - for ex- 
ample, with p= 0.25 and f= 0.5, we obtain an error of 
only 2%. Also, s&e neglecting shear effects gives a 
lower prediction for critical speed, the approximation 
is a conservative one. 

If more accurate results are desired, the asymptotic 
approximation of eqn. (28) gives an accuracy better 
than +0.5% in V* in the range IfpI< 0.5. 

3.2. One material a poor conductor 
Of course, there are no non-conducting materials, 

but we might expect the above analysis to give a 
reasonable description for the case of a good conductor 
sliding on a poor conductor, i.e. for the case K* -=K 1. 
However, the question arises as to how small K* must 
be in order that this approximation should be acceptable, 
with or without the inclusion of shear effects. 

For this purpose, we must use the more general 
analysis leading to eqns. (16), (24) and (25) and the 
results depend on the five dimensionless parameters 

fHlt fP, K*, k*, a*. 
Properties of some common engineering materials 

are given in Table 1. Notice that they show considerably 
more variability in K and k than in their ratio K/k = pcP 
where p, c, are respectively the density and the specific 
heat. We therefore replace the parameter pair K*, k* 
by K*, (PC,)* where (&*=K*/k*. 

Figure 2 shows the relation between V* and fp for 
an interface between a friction material (7 in Table 
1) and cast iron, for which K* =0.05, (pcP)* =0.62, 
CY* = 0.83, H, =0.033 and /3= -0.28. An appropriate 
value of coefficient of friction, f, for this combination 
is 0.3 (see for example ref. 15) and the value fH, = 0.0098 
was used. Also included in this figure are curves cor- 
responding to different values of the ratio of conduc- 
tivities, K*, the other parameters remaining the same. 
The limiting case K* =0 from the analysis of Section 
2.2 is also included. It is clear that even the relatively 
small conductivity ratio K* =0.05 results in an order 

TABLE 1. Representative properties of some materials 

of magnitude increase in critical speed over the case 
K* =0 and there is also significant shear traction de- 
pendence, indicated by the slope of the curve. Notice 
that V* is plotted on a logarithmic scale, so a given 
deviation along this axis corresponds to the same per- 
centage variation in critical speed. For a coefficient of 
friction of 0.3, fp = - 0.0849 and the shear effect in- 
creases the critical speed by an additional factor of 
1.82 represented by the difference between the points 
A, B in Fig. 2. 

Similar results for aluminum sliding on glass are 
presented in Fig. 3, for which the appropriate dimen- 
sionless parameters are K* = 0.004, (PC,)* = 0.74, 
(Y* =0.32, p= -0.016 and H, =0.33. An appropriate 
value of coefficient of friction, f, for this combination 
is 0.1 (see for example ref. 16) and the value fH, = 0.033 
was used. This time, since K* is lower, the error involved 
in using the non-conducting approximation is smaller 
and the shear traction effect is negligible (particularly 
bearing in mind the small value of /3). 

We conclude from these examples that the non- 
conducting approximation only gives a reasonable es- 
timate of the critical speed if K* is exceedingly small. 
For example, non-conducting approximation typically 
underestimates the critical speed by an order of mag- 
nitude if K* > 0.005. We also note that significant errors 
will be introduced by neglecting the effect of shear 
tractions if K* > 0.02 unless fp is very small. In particular, 
the effect of shear tractions should be taken into account 
in the prediction of critical speed for the important 
case of friction material sliding on cast iron. 

3.3. Materials with comparable conductivities 
When the two sliding materials have conductivities 

of the same order of magnitude, significantly higher 
critical speeds are obtained and in some cases the 
system is stable for all speeds. 

For the special case of similar materials, 
K* =k* = (Y* = 1, p = 0, the critical speed depends only 
on fH,. Equations (16), (24) and (25) can then be 
solved in closed form with the result 

No. Material E ” K k 
(N m-*x 109) Pm ) 

-1 “C-I (m* s-’ X 10e6) 

Aluminum 68 0.32 227 83 17 

tipper 120 0.33 381 101.9 17 
Beryllium copper 131 0.29 100 28.5 16.7 
Gray cast iron 103 0.26 50 12.86 12 
Carbon steel 207 0.3 47 13.27 12 
Glass” 80 0.25 0.9 0.446 5.4 
Friction material’ 8.5 0.25 2.5 1.04 10 
Carbon graphite” 10 0.25 12 8 5 

“There is much more variation in properties of these types of solid than metals, variations occurring with production methods. 
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Fig. 2. The critical speed as a function of fp for a friction 
material/cast iron interface. Results are presented for different 
values of K*. 
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Fig. 3. The critical speed as a function of fp for an aluminum/ 
glass interface. Results are presented for different values of K*. 

‘* = 
SfH, 

4f ZH: _ 1 (30) 

In particular, we note that there is no critical speed 
- i.e. the system is stable for all speeds - if fHl <OS. 
(Negative solutions of eqn. (30) are not physically 
meaningful, since the boundary condition (9) is based 
on the convention that V>O.) Since H, is generally 
less than unity, this implies that most cases involving 
similar materials will be unconditionally stable. 

To examine the behavior of sliding pairs which differ 
only slightly in material properties, we consider the 
case where (PC,)* = a* =K* = 1 and fHl takes various 
values. The corresponding curves are shown in Fig. 4. 
Notice in particular that for fH, < 0.5, the curves are 
all asymptotic to the line f/?=O and hence the system 
is unconditionally stable only for the value fp = 0. Thus, 
in this case, the neglect of shear traction leads to a 

10000j 

Fig. 4. The critical speed as a function of f/3 for material pairs 
with (PC,)* =CY* =K*= 1. Results are presented for different 
values of fH,. 
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Fig. 5. The critical speed as a function of fp for material pairs 
with (PC,)* =(r* = 1, K* =0.6. Results are presented for different 
values of fH,. 

totally erroneous (and non-conservative) prediction of 
the system behavior. 

Figure 5 shows a similar set of results for the case 
where K* =0.6, the other parameters remaining un- 
changed. We again find a critical value, fHl = 0.5314 
at which the system can be unconditionally stable, but 
in this case, the lack of symmetry in thermal conductivity 
displaces the asymptote to the value fp = - 0.2516. We 
also find that for fH, < 0.5314, the asymptotes for the 
two branches of the curve are different, both being 
closer to f/3 = 0 than the asymptote for the critical value. 
The two branches of the curve therefore cross at a 
finite value of V* and the system is therefore uncon- 
ditionally stable only at the isolated point fH, = 0.5314, 
f/I = - 0.2516. 



242 K. Lee, J. R. Barber I The effect of shear tractions on themoelastic instabiliv 

4. Conclusions 

The above results demonstrate that there are ranges 
of parameter values in which significant error will be 
introduced if the shear effect is neglected in predicting 
critical speeds for thermoelastic instability. The effect 
is particularly significant when the two materials have 
thermal properties - particularly thermal conductivity 
- of the same order of magnitude. In the special case 
where the thermal properties are identical, uncondi- 
tionally stable behavior is predicted when the shear 
effect is neglected, for typical coefficients of friction 
and material properties. By contrast, inclusion of the 
deformation due to shear tractions, leads to bounded 
values of critical speed, showing that the simpler solution 
is non-conservative. 

When the thermal conductivities of the two materials 
are very different, it is traditional to adopt a simpler 
analysis in which the less good conductor is replaced 
by an insulator. Results are presented showing that 
this simplification typically underestimates the critical 
speed by at least an order of magnitude, if the ratio 
of conductivities K* is greater than 0.005. 
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