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Abstract: We describe an integer programming algorithm for determining scheduled start and finish 
times for the activities of a project subject to resource limitations during each period of the schedule 
duration. The objective is to maximize the net present value of the project to the firm. A depth-first 
branch and bound solution procedure searches over the feasible set of finish or completion times for 
each of the activities of the project. Fathoming criteria based upon the concept of a network cut 
originally developed to solve the duration minimization version of this problem are extended in this 
paper to solve the net present value problem. These fathoming decision rules prevent many potentially 
inferior solutions from being explicitly evaluated. Computational experience reported demonstrates the 
efficacy of the approach. 
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1. Introduction 

The application of optimization techniques to 
cost control has lagged far behind those directed 
at optimizing other measures of project perfor- 
mance. A review of the literature reveals that 
previous research has been focused primarily on 
the objective of minimizing project duration 
[1,2,5,9,10,17-20]. This is unfortunate when one 
considers th~it the single inducement leading to 
the involvement in any project is the project's 
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potential of becoming a lucrative venture. Even if 
a manager cannot limit attention to the pecuniary 
aspects of a project alone, these aspects cannot 
be treated in cavalier fashion. 

The procedure described in this paper deter- 
mines activity completion times that maximize the 
net present value (NPV) of the project to the 
firm. Multiple limited-resources influence when 
activities can be performed, as in the resource- 
constrained, duration minimization version of this 
problem. In maximizing NPV, we assume that the 
start of each activity requires an initial capital 
investment that is recovered upon completion of 
the activity. Cash flows (cash payments and cash 
disbursements) occur during the performance of 
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each activity. A value at completion is deter- 
mined for an activity by discounting capital re- 
quirements and associated cash flows to the end 
of the activity. The infrequent application of opti- 
mization techniques to cost control may be due in 
part to the difficulty of stating a suitable objective 
function that incorporates activity cash flow infor- 
mation in this way. 

Russell [14] examines the unconstrained ver- 
sion of this problem by representing each opti- 
mization problem as a series of network flow 
problems. Russell then presents an effective pro- 
cedure for solving the resulting series of network 
flow problems. By adding a project deadline con- 
straint, Grinold [7] transforms Russell's formula- 
tion into an equivalent linear programming prob- 
lem. Grinold's formulation results in a more effi- 
cient solution procedure for obtaining optimal 
solutions to the unconstrained problem. 

Doersch and Patterson [4] present a binary 
linear programming formulation for maximizing 
project net present value. Their formulation con- 
siders capital rationing (availability) constraints, 
where progress payments can be reinvested in the 
project to increase the amount of capital avail- 
able. Standard integer (binary) programming pro- 
cedures solve the resulting formulated NPV prob- 
lem. Smith-Daniels and Smith-Daniels [16] fur- 
ther extend the Doersch and Patterson formula- 
tion into a mixed integer linear programming 
model that includes material acquisition deci- 
sions. Their formulation incorporates the costs of 
material investments as part of the usage of capi- 
tal. Formulations in [4] and [16] provide insights 
into modeling the maximization of NPV problem. 
There are, however, no reported experiments 
which describe computational procedures to solve 
either of these formulated problems. It is with 
this limitation or gap in reported computational 
experience in mind that we propose the special- 
ized algorithm described in this paper. 

Optimal solutions provided by our approach 
can be compared to heuristic procedures which 
have recently appeared in the literature [8,13,15] 
to solve this same problem. Comparison of net 
present value results can be made similar to the 
approach described in [3] for assessing heuristic 
performance in solving the duration minimization 
problem. 

In Section 2 we present a conceptual formula- 
tion of the NPV maximization problem. This for- 

mulation serves as the basis for our enumeration 
scheme. The solution procedure is described in 
Section 3. It is a modification of the procedure 
proposed by Talbot [19] to solve the duration 
minimization problem. In Section 4 we describe 
the fathoming or schedule elimination rules used 
in our procedure. These cost-based rules trim 
many inferior solutions from the search, improv- 
ing significantly the computational efficiency of 
our approach. Section 5 reports on computational 
experience with our procedure. The procedure 
described reliably solves problems in the range of 
20-30 activities per project with due-dates close 
to the minimum resource-constrained duration. 

2. Mathematical formulation 

The value of an activity upon completion is 
given by 

a, 
Oj = E Fj, e~(dJ -`) + Cr[1 - e~'(dJ ~] 

t--I 

where: 
Dj = Terminal value of cash flows in activity j at 

its completion. 
Fjt = Cash flows for activity j in period t, t = 

1, 2 , . . . , d  r. 
a = Discount rate. 
dj = Duration of activity j. 
Cj = Capital investment required by activity j. 

Given a value upon completion for each activ- 
ity, we can now provide a conceptual formulation 
of the NPV maximization, resource-constrained 
problem. 

N 

Maximize ~ qf Dj + qfNBIN (1) 
j - 1  

Subject to 

max{ f , ,  n = all predecessors of j} + d r _< fr, 

j = l  . . . . .  N, 

 rrk * <--Rkt, 
St 

f /v< DD, 

k = l , . . . , K ,  

(2) 

t =  1 . . . . .  DD, 

(3) 

(4) 
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where: 
Dy = Terminal  value of cash flows in activity j at 

its completion. 
D D =  Deadline period for the last activity ( N )  of  

the project. 
dy = Durat ion of activity j. 
qt = Factor for discounting over t time periods 

to time 0. 
B t = Bonus for completion of project at time t. 

(B t < 0 implies that B t is a penalty.) 
fy = An integer variable representing the finish 

time of activity j. 
rjk = Amount  of resource k required when activ- 

ity j is active. 
R~t = Total amount  of  resource k available at 

t ime t. 
S t = The set of activities active at time t. 
N = Number  of activities in project. N is also 

the number  of the unique ending activity in 
the project. 

K = Number  of resource classes. 
The objective is to maximize the project net 

present  value (1). The first constraint set (2) 
maintains the precedence relationships among 
activities. All activities that technologically suc- 
ceed other  activities are constrained to begin 
after the immediate  predecessor activities are 
completed. The second constraint set (3) limits 
the usage of renewable resources in each period 
of the schedule duration. Resources are classified 
as either renewable or non-renewable [11] in our 
approach. Renewable resources (which include 
equipment  and manpower)  are available in lim- 
ited quantities each period. Through a suitable 
definition of ry k and Rk*, the second constraint 
set (3) insures that the use of renewable re- 
sources does not exceed the amount  available in 
each period. The final constraint (4) limits project 
completion to a negotiated project deadline, DD. 

Each activity must be completed within its 
specified duration in the above formulation. Inte- 
ger requirements,  in addition to the constraint set 
(2), prevent activities from being interrupted or 
split once begun. 

3. Solution procedure 

At the start of the enumerat ion process, activi- 
ties that are in an immediate precedence rela- 
tionship are labeled (numbered)  such that if activ- 

ity rn precedes activity n, then rn < n. By always 
selecting for assignment the lowest numbered ac- 
tivity j that has not been assigned a feasible 
completion time, we insure that an activity is 
considered for resource and time assignment only 
if all of its predecessor activities have first been 
scheduled. 

Once the due-date for the project (DD) is 
specified 1 we determine the latest possible finish 
time for each activity, uj. This is accomplished as 
follows. The critical path late finish time (LFj) for 
each activity j is determined using standard criti- 
cal path procedures. The upper  bound on the 
completion time for each activity uj is then set 
equal to uj = LFj + (DD - LFN). 

Resource restrictions are maintained in our 
procedure using two compact arrays, a resource 
requirement  array containing rjk and a resource 
remaining array containing Rkr  We initialize Rkt 
to Rk*,, the amount of resource k available in 
period t. When we assign an activity a resource 
and precedence feasible completion time t*,  fj  is 
set equal to t*,  and Rkt is reduced by rjk for 
k = l  . . . .  , K ,  and t = t * - d j + l , . . . , t * .  

The following eight-step procedure describes 
the algorithm. 

Step 1. Initialize the incumbent objective func- 
tion value and incumbent activity completion 
times Fi= 1 ..... N to 0. Assign the first activity to its 
earliest completion time, f l  = d l ,  and reduce Rkt 
by rlk for k = 1 , . . . ,  K,  and t = 1 , . . . ,  d 1. Set the 
objective function value equal to the terminal 
value of activity 1, discounted dl periods. Set 
j = 2 .  

Step 2. Assign activity j to its earliest feasible 
completion time. This is accomplished as follows. 
First, determine t* ,  the latest finish time for all 

If there is no limit on the latest project completion time or 
due-date, one can set DD equal to the sum of the activity 
durations, dj, for all activities, 1, 2 ..... N. Setting the due 
date equal to the sum of the activity durations is likely, 
however, to increase significantly the amount of computa- 
tion time required to solve a problem (see discussion in 
Section 5). One is better off in those instances in which a 
project deadline is not given to estimate a project deadline 
DD than to use the sum of the activity durations for the 
schedule horizon. In those instances in which the solution 
obtained is equal to DD, the deadline can be further 
increased and the problem resolved with this new bound. 
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immediate predecessors of activity j. t * = max{fn, 
all n which immediately precede activity j}. 

Step 3. Search the resource remaining array 
from period t* + 1 to u r for the earliest interval 
dj periods long where R k t  >__ rrk , for k = 1 . . . . .  K. 
Suppose this interval is from t + -  dj + 1 to t +. 
Then fr is set equal to t ÷, and rrk is subtracted 
from R k t  for k = 1 . . . . .  K, and t = t ÷ -  dj + 
1 . . . . .  t ÷. Update the objective function by adding 
the terminal value of activity j discounted by the 
present value discount factor, q,, where t equals 
fr" Otherwise, go to Step 5 if a feasible interval dj 
periods long is not found within the interval 
t* + 1 to Uj. 

Step 4. A feasible completion time has just 
been assigned to activity j. If j = N, go to Step 7. 
Otherwise, set j = j  + 1 and go to Step 2. 

Step 5. A resource feasible completion time 
less than or equal to uj cannot be assigned to 
activity j. Backtrack. If j -- 1, go to Step 8. Other- 
wise, at tempt to reassign activity j - 1 to its earli- 
est feasible completion time greater than fj-1. 
Set j = j -  1. 

Step 6. Update the resources available in the 
resource remaining array by adding rrk to Rkt for 
k = l , . . . , K ,  and t = f r - d r  +1 . . . . .  fj. Update 
the objective function by subtracting the terminal 
value of activity j discounted by the present value 
discount factor, q,, where t equals ft. Set t* =f j  
- d  r + 1. Go to Step 3. 

Step Z Activity N has just been assigned a 
feasible completion time, fN" Add the appropri- 
ate bonus (or penalty) Bt, discounted to time 
t = 0 to the objective function value. Compare the 
current objective function value to the incum- 
bent. If the current objective function value is 
greater than the incumbent, replace the incum- 
bent objective function value and incumbent ac- 
tivity completion times F i= 1 ..... N with those given 
by the current solution. 

Because of potential positive effects on the 
objective function, further attempts to right-shift 
activity N to a feasible completion time greater 
than fu  is required 2. Subtract the current bonus 
(or penalty) from the objective function value. Go 
to Step 6. 

2 This is a characteristic of the NPV problem that is not 
found when we attempt to minimize project duration. This 
is one of the characteristics which accounts for the NPV 
problem being inherently more difficult to solve. 

Step 8. Optimality is achieved when we at- 
tempt to backtrack past activity one. (In 0-1 
integer programming terminology, this is equiva- 
lent to failing to complete a partial solution in 
which the left-most variable has been comple- 
mented and underlined [6].) The incumbent solu- 
tion is optimal. 

One significant difference between a depth- 
first search algorithm for the NPV problem and 
those used in minimizing project duration con- 
cerns the updating of activity latest finish times. 
In solving the project duration minimization 
problem, we update (reduce) the latest finish 
time uy of each activity j whenever we discover 
an improved schedule (shorter project duration). 
This reduces the remaining solution space in 
which a shorter project duration schedule poten- 
tially resides. When solving the net present value 
maximization problem, the optimal net present 
value can potentially occur at any of the original 
activity completion times from EFj to u r. Unfor- 
tunately, then, we cannot update the latest finish 
time u r of each activity when a shorter project 
duration is found. Because of the inability to 
tighten the upper bounds or latest finish times 
dynamically when a shorter project duration is 
found, effective fathoming rules assume an even 
more significant role than they do then the upper 
bounds can be updated as in the duration mini- 
mization version of this problem. We describe 
next fathoming rules used to solve the NPV maxi- 
mization problem. 

4. Use of fathoming rules 

In the absence of  any fathoming criteria, the 
solution procedure described above amounts to a 
full or an explicit enumeration of all possible job 
finish times from EF r to uj for each job. Two 
fathoming rules are suggested here that eliminate 
from explicit consideration solutions that are 
known to be inferior. Such inferior solutions are 
implicitly enumerated in our approach. The two 
fathoming rules are based upon the concept of a 
network cut suggested by Talbot [19], and are 
implemented in the framework suggested by Ge- 
offrion and Marsten [6] (see especially the 
flowchart on page 470 of their paper). 
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4.1. Review of  network cuts for minimizing project 
duration 

A brief review of the role of network cuts in 
solving the duration minimization version of this 
problem strengthens and motivates our discussion 
of the fathoming rules used in solving the NPV 
maximization problem. Figure 1 shows a hypo- 
thetical problem with different partial solutions 
obtained at successive stages of enumeration. We 
will focus our discussion on the three activities 
shown, plus the partition the cut provides for two 
remaining activity sets - those activities that pre- 
cede the cut, and those that follow it. Fathoming 
is achieved for the duration minimization prob- 
lem by considering the solution space of re- 
sources remaining after the cut as we attempt to 
right shift activities in the cut set. 3 

We initially identify all potential cuts in the 
network. Each cut corresponds to an integer time 
period c, and identifies when in the solution 
process schedule elimination or fathoming rules 
are applied. The term cut is used because it 
identifies how the time period c partitions or cuts 
activities on a Gantt  chart. An integer time pe- 
riod c qualifies as a cut if the following two 
conditions hold: 
Condition 1: There exists a job j*  with ESj .  = c 
+ 1 .  
Condition 2." There  does not exist a job j > j *  
such that ES i < ESj. .  

In the hypothetical problem shown in Figure 1, 
the cut occurs at integer time period c = 20. 
Activities 5, 6, and 7 have been cut by the time 
period c. These three activities make up the cut 
set at time period c = 20. From Conditions 1 and 
2 above, preceding activities 1 to 4 (not shown) 
have latest activity finish times uj either equal to 
or earlier than period c. Activities 8 to N, those 
activities that must follow those in the cut set, 
have earliest activity start times later than period 
c. Several other such cuts at time periods c ~ 20 
potentially exist in a network. Here  we illustrate 
just one. The same type of partitioning and fath- 
oming arguments provided below apply to each 
cut in the problem. 

3 In an analogous fashion, we consider the NPV contribution 
of activities before, in, and after the cut in solving the NPV 
maximization version of this problem. 

The network cut shown in Figure 1 assists in 
identifying partial solutions that are inferior to 
previously enumerated results. This occurs as fol- 
lows. For any current partial solution PS (that is, 
a specification of finish times for a subset of the 
jobs 1, 2 , . . . ) ,  whenever the last activity of the cut 
set is assigned a feasible completion time, the 
resources remaining for scheduling the remaining 
activities (those which occur after the cut) are 
evaluated. This evaluation requires only an exam- 
ination of the total resources used in each period 
after period c by activities in the cut set. 4 We 
wish to identify which current partial solutions 
are dominated by previous partial solutions, and 
which are not. 

A partial solution is said to be dominated 
when it has the same or lesser resources remain- 
ing in each period after the cut period than does 
a previously enumerated partial solution. When 
the objective is to minimize project duration, a 
partial solution with a smaller remaining solution 
space cannot lead to a shorter project completion 
time than one given by the saved partial 
schedule. 5 The dominated partial solution is 
consequently fathomed, and backtracking occurs. 

To better illustrate the use of network cuts in 
fathoming a partial solution, we continue with the 
example shown in Figure 1. We assume that chart 
(i) is the initial partial solution. This partial solu- 
tion is obtained during the start of the enumera- 
tion process. The completion times of activities 5, 
6, and 7 in chart (i), {fs, f6, f7} = {17, 23, 21}, are 
saved as the first saved partial solution, PS20(1), 
at cut period c = 20. 

Charts labelled (ii), (iii), and (iv) in Figure 1 
show partial solutions as job 7 (the last job in the 
cut set) is successively right-shifted to later com- 

4 Each network cut partitions the activities of a project into 
three mutually exclusive sets: 

(i) Activities which precede the cut set. These activities 
have latest finish times either equal to or earlier than 
period c. Hence, these activities do not require the use of 
resources after period c. 

(ii) Activities in the cut set. These are the only activities 
that compete with activities in (iii) for resources after period 
C. 

(iii) Activities which follow the cut set. These activities 
have earliest start times later than time period c. These 
activities do not require the use of resources at or before 
period c. 

5 Proofs of these assertions are found in Talbot and Patterson 
[2ol. 
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Figure 1. Gantt chart depicting use of network cuts 

pletion times. In charts (ii) and (iii), activities 5 
and 6 are assigned the same completion times as 
those in the first partial solution. The assignment 
of activity 7 to later completion times in these 
two cases uses more resources after period c 
without releasing resources during any period 
after period c. Since lesser resources are avail- 
able for assigning the remaining activities (8 to 
N), partial solutions depicted in charts (ii) and 
(iii) are dominated by the saved partial solution 
PS20(1). Intuitively, the partial solutions depicted 
in these two charts are inferior since they do not 
provide any additional resources after the cut 
period for activities that can only begin after the 
cut. These partial solutions are thus dominated 
and we need not consider them further. 

Further right-shifting of activity 7 leads to chart 
(iv). Chart (iv) is a potentially good partial solu- 
tion because this assignment of job 7 frees re- 
sources in period 21 after the cut. The freed 
resources can potentially be used by activities 8 
to N. The partial solution shown in chart (iv) is, 
therefore, not dominated by the saved partial 
schedule PS20(1). Augmentation proceeds to con- 
sider the assignment of finish times to activities 

8 . . . . .  The solution depicted in chart (iv), PS20(2) 
= {17, 23, 25}, is saved as the second partial 
solution at cut period c = 20. 

Assume now that enumeration has proceeded 
to activity N. A feasible solution has consequently 
been found. As we continue with the enumera- 
tion, we finally backtrack to job or activity 7 
again. At f7 = 25, activity 7 cannot be right-shifted 
any further because it has been assigned a finish 
time equal to its upper bound latest finish time, 
u 7 = 25. Hence, we backtrack and consider activ- 
ity 6. Activity 6 is right-shifted to its latest com- 
pletion time of u 6 = 25. (This could allow job 7 to 
be completed in period 19.) With this assignment 
for activities 6 and 7, the partial solution shown 
in chart (v) results. This partial solution is com- 
pared to the saved partial solutions PS20(1) and 
PS20(2) depicted in charts (i) and (iv). 

Comparing the start and finish times of activi- 
ties 5, 6 and 7 in chart (v) with those of the two 
saved partial solutions shows that this is poten- 
tially a good partial solution. Activity 7 in chart 
(v) does not require any resources after period 
20, while the same activity in the saved partial 
solutions (i) and (iv) requires resources after pe- 
riod 20. This current partial solution cannot yet 
be fathomed, and is saved as a third partial 
solution at cut c = 20. Augmentation continues 
once again to consider activities 8 . . . . .  N. 

Further discussion of the development of cuts 
(along with proofs that only potentially inferior 
solutions are eliminated) can be found in [20]. It 
has been our objective here to review how net- 
work cuts are used as fathoming rules to elimi- 
nate inferior solutions from consideration. Our 
arguments are based on the usage of resources by 
activities in the cut set after the cut period. 

We now turn our attention to the NPV maxi- 
mization problem and the extension of network 
cuts to solve this problem. 

4.2. Extensions of network cuts for the maximiza- 
tion of project NPV 

We will continue to use Figure 1 in illustrating 
the use of network cuts in fathoming partial solu- 
tions when maximizing the project net present 
value. Chart (i) in this figure continues to repre- 
sent a current partial solution that is saved as the 
first partial solution obtained during enumera- 
tion. The contribution to the project NPV of 
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activities 1, 2 . . . .  ,7  o f  this saved partial schedule 
is s tored as NPVtl_7) a. We cont inue with the 
assignment o f  activities 8 to N until an incum- 
bent,  feasible assignment  for all activities is ob- 
tained. An  enumera t ion  of  all possible comple-  
tions o f  this saved partial solution is finished once 
we a t tempt  to backtrack past  activity 7. With the 
enumera t ion  o f  all possible complet ions  of  the 
saved part ial  solution in chart  (i) completed,  the 
best  N P V  complet ion o f  the remaining activities 
for this saved partial solution is known. This 
maximum N P V  contr ibut ion of  the remaining ac- 
tivities is s tored as NPVt8_ma. 

Backtracking to activity 7 leads to char t  (ii). 
Char t  (ii) is obta ined  when activity 7 is right- 
shifted to a later feasible complet ion time. The  
fa thoming rules for  the N P V  maximization prob- 
lem are used whenever  the last activity in a cut  
set is assigned a feasible complet ion time. The  
fa thoming rules are described below. 

Fathoming Rule 1 (F1). The  N P V  contr ibut ion o f  
activities 1, 2 . . . . .  7 o f  the partial solution shown 
in char t  (ii), NPV(I_7)b  , is first compared  to the 
net  present  value o f  the first saved partial solu- 
tion, NPV<I_7) a. I f  NeV(l_7) b is less than NPV(I_7) a 
(i.e. the N P V  contr ibut ion of  activities 1 to 7 of  
the cur rent  partial solution is less than that  of  the 
saved partial solution), the solution space o f  the 
current  partial schedule available for the assign- 

ment  of  the remaining activities is compared  to 
that  o f  the saved partial schedule. Backtracking 
occurs if the remaining solution space of  the 
current  partial solution is a p roper  subset of  the 
saved partial solution. Otherwise,  we save the 
current  partial solution as a potentially good par- 
tial solution. Or,  we invoke the second fa thoming 
rule, F2. 

In invoking F1, we recognize that  the potential  
contr ibut ion of  the remaining activities to the net  
present  value o f  a current  partial solution is al- 
ways less than that  of  a saved partial solution 
when the solution space of  the current  partial 
schedule for the assignment of  the remaining 
activities is conta ined entirely within that  of  the 
saved partial schedule.  The  first fa thoming rule 
thus works by eliminating any partial solution 
that  is inferior to a saved partial solution, based 
on the fact that  the N P V  contr ibut ion of  the 
current  partial solution (activities 1 to 7) and the 
potent ial  N P V  contr ibut ion of  its remaining activ- 
ities are both less than that of  the saved partial 
schedule.  

Fathoming Rule 2 (F2). If  NPVo_7) b is greater 

than NPV(I_7)a, and the remaining solution space 
o f  the current  partial schedule is a subset of  the 
remaining solution space of  the saved partial 
schedule,  an upper  bound  on the current  partial 

Table i 
Effect of Fathoming Rules Fl and F2 on computation times a 

Problem b No. Problems with all positive 
of activity cash flows 
tasks 

Problems with positive and 
negative activity cash flows 

F1 F2 FI&F2 No. F c F1 F2 FI&F2 No. F ¢ 
J 

B, M & S 13 1.69 0.28 0.32 22.10 21.88 1.61 1.62 22.10 
Davis 6 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.02 
Davis 12 0.66 0.70 0.71 1.60 0.83 0.73 0.75 1.60 
Davis 21 0.15 0.15 0.15 0.31 0.20 0.19 0.18 0.30 
Davis 21 0.56 0.57 0.55 5.62 1.74 0.86 0.85 5.61 
Davis 21 3.13 3.25 3.21 110.80 25.12 8.72 8.61 110.60 
M&M 8 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 
M&M 8 0.11 0.11 0.12 0.13 0.11 0.11 0.10 0.12 
S, R & M 7 0.04 0.04 0.04 0.06 0.04 0.04 0.04 0.05 
S, R & M 7 0.17 0.18 0.18 0.39 0.21 0.17 0.18 0.40 

Average: 0.66 0.53 0.53 14.11 5.02 1.25 1.24 14.08 

a IBM 4381 CPU time in seconds using FORT2VS compiler with optimization level 3. 
b Problems modified with cash flow information from problem monograph by Patterson. Subsequent versions of the Davis 

21-element, Moodie and Mandeville 8-element, and Shaffer, Ritter and Meyer 7-element problems have tighter resource limits 
with corresponding changes to cash flow amounts. 

c Differences in CPU times without cuts are due to variability introduced through unequal loading of the CPU. 
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solution can be defined as the sum of NPV(t_7) b 
and NPV(s_N) a. If this upper bound is less than 
the incumbent solution, the partial solution is 
fathomed and backtracking occurs. Otherwise we 
save the current partial schedule as a potentially 
good solution. 

5. Computational experience 

The enumeration scheme described in Section 
3 has been implemented in four different solution 
modes: without any fathoming rules, with the first 
fathoming rule alone, with the second fathoming 
rule alone, and with both fathoming rules F1 and 
F2. When fathoming rules are invoked, several 
good partial solutions potentially have to be saved. 
Following the experience reported in [20], a maxi- 
mum of the ten most recent good partial solu- 
tions are saved at each cut. 

A set of ten problems (Table 1) has been 
solved using the four different solution modes for 
each problem. Each of the test problems is fur- 
ther solved as two separate instances - one in 
which each of the activities has a positive termi- 
nal activity value, and one in which each of the 
activities is associated with either a positive o r  a 

negative terminal activity value. In either in- 
stance, the net present value for the project is 
always positive. For each of these projects, the 

project due-date has been set equal to one period 
greater than the minimum resource-constrained 
duration. Since the algorithm without any fath- 
oming rules consists of a complete (explicit) enu- 
meration, the solution times in solving the two 
separate instances of the same test problem with- 
out the use of any fathoming rules are identical 
within the accuracy of the CPU timer used and 
the machine loading. 

The ability of the fathoming rules to eliminate 
inferior partial solutions is clearly demonstrated 
by the large reduction in computation times shown 
in Table 1. When implemented alone, the first 
fathoming rule does not perform as well when 
both positive and negative terminal activity values 
exist for the activities. The reason for the lack of 
performance of the first fathoming rule in solving 
this instance of problems is predictable. Since the 
basic enumeration scheme proceeds by assigning 
activities to later and later completion times, the 
assignment of activities associated with negative 
terminal activity values to later completion times 
increases the net present value contribution of 
the activities before a cut, and hence disables the 
possible use of network cuts in fathoming poten- 
tial inferior partial solutions. 

The second fathoming rule implemented by 
itself performs extremely well in these experi- 
ments. For problems with both positive and nega- 
tive terminal activity values, it clearly outper- 

Table 2 
Effect of varying horizon above resource-constrained duration (both Fathoming Rules employed) a 

Problem h No. Problems with all Problems with positive 
of positive activity cash flows and negative activity cash flows 

tasks Minimum resource- Minimum resource- 
constrained duration constrained duration 

+1 + 2  + 3  +1 + 2  +3  

B, M & S 13 0.38 1.75 6.21 1.61 15.23 59.09 
Davis 6 0.02 0.04 0.08 0.03 0.04 0.09 
Davis 12 0.70 3.28 11.80 0.75 3.47 13.14 
Davis 21 0.15 2.90 34.73 0.18 3.87 52.27 
Davis 21 0.56 6.34 411.73 0.88 14.62 543.49 
Davis 21 3.22 230.97 1913.05 8.68 729.72 1911.00 
M&M 8 0.05 0.19 0.52 0.05 0.18 0.52 
M&M 8 0.10 0.26 0.66 0.09 0.26 0.65 
S, R & M 7 0.02 0.02 0.02 0.02 0.04 0.04 
S~ R & M 7 0.03 0.04 0.05 0.03 0.03 0.04 

Average: 0.58 27.04 261.67 1.36 84.42 283.84 

a IBM 4381 CPU time (in seconds) using FORT2VS compiler with optimization level 3. 
" Problems modified with cash flow information from problem monograph by Patterson. See also Table 1. 
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forms the use of the first fathoming rule alone. 
While a great deal of care  must be exercised in 
interpreting the averages given in Table 1, the 
trend is rather clear. The second fathoming rule 
is extremely effective in eliminating major por- 
tions of the search from explicit consideration. 

When implemented independently, the second 
fathoming rule F2 eliminates many more solu- 
tions from explicit consideration than does the 
first fathoming rule, F1. Table 1 also shows, how- 
ever, that when both fathoming rules are imple- 
mented together, they perform extremely well in 
eliminating inferior solutions from consideration. 
Since the amount of overhead required to imple- 
ment both fathoming rules together is low, both 
rules are retained in our procedure. 

In Table 2 we show the effect of varying the 
due-date beyond the one day extension to the 
minimum resource-constrained duration reported 
in Table 1. The increase in computation time 
required to solve a problem is significant when 
the potential schedule duration increases well 
beyond the minimum resource-constrained dura- 
tion. This is because there are many more periods 
in which activities can be scheduled, and hence 
more potential solutions have to be both explic- 
itly and implicitly evaluated. Also, as resources 
become more limiting, the effects of an increase 
in potential schedule duration are even more 
pronounced. 

It is hence possible to identify before solution 
begins which problems are potentially very diffi- 
cult to solve with our approach. Difficult prob- 
lems are characterized by 

(1) having resources that are quite limited, and 
(2) having a due-date for project completion 

that is far removed from the minimum resource- 
constrained duration. 

Fortunately, it is possible to determine in ad- 
vance the gap between the project due-date and 
the minimum resource-constrained duration us- 
ing one of several optimization approaches avail- 
able for determining the minimum duration 
schedule. This results in an easy identification of 
problems which are potentially very difficult to 
solve. 

In Table 3 we show the effect of varying the 
horizon in the absence of any fathoming rules at 
all. 6 A comparison of the results in Tables 2 and 
3 shows the savings in computation time achieved 
using fathoming rules based upon network cut 

Table 3 
Effect of varying horizon above resource-constrained duration 
problems with positive and negative cash flows per activity (no 
fathoming rules employed) 

Problem b Solution times a.c 

No. Minimum resource- 
of constrained duration 
tasks + 1 + 2 + 3 

B, M & S 13 22.09 211.63 1296.36 
Davis 6 0.03 0.04 0.11 
Davis 12 1.60 10.26 53.08 
Davis 21 0.31 12.10 283.03 
Davis 21 5.62 175.21 3157.71 
Davis 21 110.79 712.35 28503.67 
M&M 8 0.03 0.15 0.64 
M&M 8 0.13 0.49 13.49 
S, R & M 7 0.05 0.14 0.35 
S, R & M 7 0.39 0.70 1.24 

Average: 14.16 115.01 3357.14 

a IBM 4381 CPU time (in seconds) using FORT2VS compiler 
with optimization level 3. 

b Problems modified with cash flow information from prob- 
lem monograph by Patterson. See also Table 1 

c Because fathoming rules F1 and F2 are not employed, the 
only differences in timing results between problems with all 
positive and with positive and negative cash flows are at- 
tributable to unequal loading of the CPU. 

information. One would realistically never at- 
tempt to solve a problem with our approach 
without using the fathoming rules described. 

Finally, in Table 4 we show changes in the net 
present value obtained by allowing for an exten- 
sion of the schedule horizon (project deadline, 
DD) for two of the problems given in Table 1. 
These two problems were selected since each has 
activities near the end of the network with net 
cash outflows (or with negative capital inflows). 
The results are predictable. It is in a project 
manager's or contractor's best interest to delay 
the completion of these two projects as permitted 
by the project deadline. Hence, the timing and 
incidence of cash flows becomes a significant 
element of project negotiation and design. Stipu- 
lation of a net positive cash inflow in the last 
activity of a project (such as, for example, in 
painting the divider lines on a highway after 
other major portions of the highway are com- 
pleted) can reduce the possibility of delaying the 

6 Since this amounts to a full enumeration of all possible 
schedules, it is not necessary that we solve both instances of 
each problem. 
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Table 4 
Representative changes in net present value as a function of 
schedule horizon 

Problem a No. Minimum resource- 
of constrained duration 
tasks +1 +2 +3 

B, M & S 13 146.91 147.01 147.11 
M & M 8 235.93 242.61 243.54 

a Problems modified with cash flow information from prob- 
lem monograph by Patterson. See also Table 1. 

completion of a project to achieve greater finan- 
cial rewards. Such elements of project design 
should be considered at the time a project or a 
contract is awarded. The models described in this 
paper assist in identifying potential reasons for 
late project completion due to financial consider- 
ations. 

6. Conclusion 

We have described a procedure for solving the 
limited-resource project scheduling problem with 
the objective of maximizing project net present 
value. Computational experience with the proce- 
dure indicates significant reductions in the 
amount of computation time required to solve a 
problem using the fathoming rules described. The 
amount of computation time required for prob- 
lem solution is in general lower the closer the 
due-date is to the minimum resource-constrained 
duration and the less limiting are the resources 
made available during each period of the sched- 
ule duration. 

It is now possible to create a data set of 
optimal net present value schedules for projects 
involving as many as 20-30 activities per project. 
Such problems serve as benchmarks for compar- 
ing heuristic performance when solving the NPV 
maximization problem. 

Extensions to our procedure that incorporate 
additional fathoming rules are certainly possible, 
opening up the possibility of solving larger prob- 
lems than those reported here. The incorporation 
of additional fathoming rules is rather straightfor- 
ward using the enumeration procedure described. 

Finally, aspects of project design such as the 
incidence of cashflows in project activities can 
have serious implications in determining the 'op- 

timal' time for project completion. Such design 
aspects are best considered in advance of project 
initiation. 
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