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Abstract-The problem of following the mechanical response of a polymer during crystallization is 
studied using a theory developed by Negahban and Wineman [l]. Elastic modulus, shear modulus, 
and Poisson’s ratio are defined in the context of polymer crystallization. For unconstrained 
crystallization and crystallization under constant uniaxial stretching, the values of elastic modulus, 
shear modulus, poisons ratio, and residual stretch are evaluated. The proposed model is fit to data 
available for natural rubber and the predictions of the model are discussed. 

1. INTRODUCTION 

In a recent article Negahban and Wineman [l] introduced a theory for modeling the 
mechanical response during polymer crystallization. The focus of the current article is to use 
this theory to develop example solutions to problems of experimental significance, and to show 
the close correlation of these predictions to experimental results. 

Not all polymers crystallize, but many polymers do. For example, polyethylene, polycarbon- 
ate, polypropylene, and natural rubber all crystallize. Polymers in the amorphous (uncrystall- 
ized) form are considered to be an unorganized array of long-chain molecules. Order is 
introduced into the arrangement of these molecules when a polymer crystallizes. For polymers 
this is a gradual process and, depending on the crystallization conditions, might take up to 
several years to be completed. The mechanical properties of polymers change dramatically with 
crystallization. For example, with crystallization one can get up to five orders of magnitude 
increase in the elastic modulus for some polymers. Crystallization is one of the important 
factors in the strength of drawn polymer fibers. The purpose of this article is to show how a 
model proposed by Negahban and Wineman [l] can capture the changes commonly observed in 
polymers as they crystallize. 

The theory developed by Negahban and Wineman [l] is a microstructurally motivated one. 
This theory produces a full multidimensional constitutive equation for the Cauchy stress. The 
theory incorporates the observation that crystallization in polymers is a gradual and continuous 
process. It is assumed that crystals are continuously being generated and that the response of 
these crystals will change as the conditions of crystallization change. The mechanism for 
including this effect is the assumption that the macroscopic value of the Cauchy stress is the 
mass weighted average of the effective stress in the amorphous (uncrystallized) material and 
the stresses in the different crystals. This results in a constitutive equation for the Cauchy stress 
T at the current time t of the form 

T(f) = b(t)TA(f) + I ’ a(s)TC(t, s) ds, 

93rs 
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where b(t) is the current ratio of amorphous matter to total matter at the particular material 
point, a(s) is the normalized rate of mass transfer from amorphous matter to crystalline matter 
at time s, TA(t) is the current value of the effective stress in the amorphous portion of the 
material, TC(t, s) is the current value of the effective stress in the crystal created at time s, and 
t, is the starting time of crystallization. In this expression time s is used as a marker to 
distinguish between crystals formed at different times, under different conditions, and which 
have different mechanical properties. 

The rate of crystallization a(s) is the rate of mass transfer per unit total mass (amorphous 
plus crystallized mass) at any particular material point. Conservation of mass requires a balance 
between the reduction in amorphous matter and the increase in crystalline matter at any 
material point. This results in the following relation 

b(t)=1- L(s)*. 
I r, 

(2) 

After introducing the kinematical variables in Section 2, the specific model used for this 
article will be developed in Section 3. In Section 4 this model will be used to simulate the 
gradual change in the elastic modulus, shear modulus and Poisson’s ratio for unconstrained 
crystallization. In Section 5 this model will be used to evaluate the stress relaxation and the 
gradual change in the different material moduli for crystallization under a fixed uniaxial strain. 
In Section 6 the limit values at 100% crystallization will be calculated. 

The model will be fit to specific experimental results for natural rubber in Section 7. The 
predictions of this model for the case of natural rubber will be discussed in Section 8. 

2. KINEMATICS 

K,, will denote the reference configuration of the body which will be selected as its initial 
stress-free configuration. K(S) will denote the configuration of the body at time S. The location 
of a particle X in the initial configuration will be denoted by X, and its location in the 
configuration K(S) will be denoted by x(s). The motion of the body will be given by a function 

x so that 

for any current time t. 

x(t) = x(X, t) (3) 

The deformation gradient F at particle X and at time s will be given by 

dx(r, s) F(s)=~ . 
r=X 

(4 

The deformation gradient comparing the current configuration I to the configuration at time 
s, K(S), will be denoted by F,(t) and defined as 

F,(t) = F(t)F-l(s). (5) 

The two left Cauchy strain tensors created by F(t) and F,(t) will be given by 

B(t) = F(t)FT(t), and B,(t) = F,(t)FT(t). (6) 

The volume ratio, the ratio of current volume to initial volume at any material point, will be 
denoted by J(t) and is given by 

J(t) = det(F(t)), (7) 

where det(.) denotes the determinant operation. 
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3. DESCRIPTION OF THE GENERAL MODEL 

Motivated by the assumptions of Gent [3] and others, we will assume: (a) that the material is 
incompressible in either state (i.e. the amorphous matter is incompressible and the crystallized 
matter is incompressible), (b) that the macroscopic volume at each material point is the sum of 
the volume of the amorphous and crystalline parts, (c) that the crystals have the same density 
irrespective of the conditions under which they are created. These assumptions require that any 
change in the macroscopic volume be only a result of transfer of matter from the amorphous to 
crystalline state. Under these assumptions we can write 

1 4) (I- b(t)) -=-+ 
&) PA PC ’ 

(8) 

where p(t) is the macroscopic density of the material (total mass divided by total volume), pA 
is the density of the amorphous material (mass of amorphous material divided by volume of 
amorphous material), and pc is the density of the crystalline material (mass of crystals divided 
by volume of crystals). By the above assumptions pA and pc are constant. Denoting by J(t) the 
ratio of the current macroscopic volume to its initial value, and assuming that all the material is 
amorphous at the initial time, one can get the relation 

J(t) b(f) (1 -b(O) -=-+ 
PA PA PC 

Letting m = &-/PA and reorganization gives 

d(t) - 1 
W= m _1 . (10) 

From this relation and equation (2) it follows that 

m W4 u(s) = --- 
m-l d.s 

(9) 

(11) 

In the absence of recrystallization, under these assumptions, the volume ratio J(s) is a 
monotonic function of s. For such situations, we can rewrite the constitutive equation for the 
Cauchy stress as 

d(f) - 1 
W=P~+ m_l TA(O+~jl TC(t, s) d.+), 

JO) 
(12) 

where the integration over time has been replaced by integration over volume ratio and an 
indeterminate constant p is introduced due to incompressibility. The introduction of p is 
required due to the fact that the volume is totally determined from the percent of 
crystallization and not the current value of stress. 

Since the polymers are assumed to start from an amorphous state which is described by an 
unordered distribution of long-chain molecules, it seems reasonable to assume that the material 
is initially isotropic. Negahban and Wineman [l] have produced a general model for an initially 
isotropic material. A modification of this model which accounts for the “incompressibility” is 

given by 

T(t) = pI + b(t)[prB(t) + p2B(t)‘] + 1’ a(s){@(f) + r+B*(t) + w4Bs(t) + wSB:(t) 
r, 

+ w,[B(t)B,(f) + B&)B(t)] + w,[B*(t)B&) + W)B*Wl 

+ w,[B(t)B:(f) + B:(t)B(t)] + w@‘(t)B:(t) + B:WB*(Ol~ h, (13) 

ES 31:1-6 
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where p,, p2 can be scalar functions of the three isotropic invariants of B(t), and where 

wz, f . . 7 w, can be scalar valued functions of the three isotropic invariants of B(t), 

4 = WW)), I2 = i [1: - tr(B’(t))], Z3 = det(B(t)), 

the three isotropic invariants of B,(t), 

I4 = tr B,(t), 1, = i [& - tr(Blf(t))l, & = det(B,(t)), 

(14) 

and the four joint invariants of B(t) and B,(t), 

1, = tr(B(@%(t)), & = tr(B2(W&)), 4 = WW)B%)), I,” = tr(B2(t)Bz(t)). (16) 

For the purpose of illustrating the predictions of this modef and for the purpose of 
reproducing the behavior of natural rubber, we will assume the following special form 

mJ(t) - 1 

I 

1 
T(t) = pl + 

m-l d#W + 5 w(sPs(t) Ws), 
J(f) 

(17) 

where q(t) can be a function of the volume ratio J(t), and w(s) can be a function of the three 
isotropic invariants of B(s). In essence, we are assuming the equation for the effective stress in 
the amorphous part to be given by TA(t) = q(t)B(t) and in the crystals to be given by 
T=(r, S) = w(s)B,(t). 

We will later select the particular form of q(t) = Q1 + Qz(l --J(t)) and W(S) = W, + W,(l - 

J(S)) to fit experimental results for natural rubber. Q,, QZ, W, and W2 are taken to be 
constants. 

4. UNCONSTRAINED CRYSTALLIZATION 

We will consider unconstrained crystallization to be crystallization under the condition of 

equal triaxial extension with zero stress. Let us consider a material which is undergoing 
unconstrained crystallization from time t, to time tl. During the crystallization the deformation 

of the material is given by the deformation gradient 

for s E (f,, t,]. (18) 

At time t, the polymer is extended to facilitate the calculation of the incremental elastic 
modulus. This is similar to the experiments done by Leitner [2] on natural rubber. It will be 
assumed that this extension will not alter the crystal structure. This will be the case if the 
extension is small and if it is done in a time interval much smaller than the time scale for the 
crystallization. To capture this condition mathematically, we assume the rate of crystallization 
to be non-zero up to time t, and zero after this time. 

For the axial extension after time t1 it is assumed that the material undergoes no further 
crystallization. If the extension is along the third coordinate direction, and for the current time 
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c greater than t,, the deformation gradient at time t is given by 

for t > f, , 

97 

(19) 

where A(t) is the stretch ratio along the direction of extension. This results in the expressions 

and 
i 

J(tl) o 

W) 
J(b) B(t) = 0 - w> 

0 0 

0 

0 

0 

i 

for t>t,, 

W) 

0 

0 for t > tl and s E (t,, tJ 

(20) 

(21) 

Assuming that the deformations are homogeneous and the stress is given by 

for t>tl, (22) 

the following two independent equations result from the substitution of this stress into the 
constitutive equation (17). 

mJ(t*) - 1 JW m ’ o=p+ m_l m-- - 
W) +m - 1 J(Z,) I J(b) 

4s) qt)J2qs) cw)J 

T33w =P + 
Nt,> - 1 

4~*)~*t4 + -% I 
1 

4s) 
n”(t) 

m _ 1 

m - 1 J(~,) 

- d/(s). 
Ju3(s) 

(23) 

(24) 

It is noted that the limit of the integral is set from J(tl) to 1 since the rate of crystallization 
(and, therefore, the rate of change of J) will be zero after t,. Elimination of p from these 

equations yields 

(25) 

This equation would represent the one dimensional stress-stretch ratio relation of the polymer 
if it would undergo no further c~st~l~ation. 

The incremental elastic modulus E will be defined as 

E _ dljdt) --= I mJ(h) - 1 
dn(t) m - 1 (I(G) +2 (26) 

That is, E is the ratio of the change in stress to change in stretch ratio at any particular stretch 
ratio. 
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The elastic modulus at zero stress will be denoted by E*. The stretch ratio at zero stress will 
be denoted by Lo, and in this case is given by a0 = J’“(t,). Therefore, E’ is given by 

Eo _ dT33(4 1 

-- I [ = m-W - 1 
W) n(t)=~ 

m_l 4w+- J- w(s) dJ(s)][3P3(r,)]. 
m - 1 ,&2/3(S) 

(27) 

There is the relation 

d&(t) 1 

dl(t)=X# 

where s(t) is strain measured using change in length per unit current length. Using this 
relation, one can define a incremental elastic modulus k? which is the change in stress per unit 
change of s(t). This would result relation 

B _ G,(f) --=I(t)E= [ mJ(f,) - 1 

W) 
m_l m+~ 

For this definition of elastic modulus one obtains the relation 

,$(I = J1’3(t,)E0. (30) 

In most cases there will be little difference between J!?” and E* since J(ti) is very close to unity. 

4.2. Poisson’s ratio 

One can define a Poisson’s ratio as the ratio of the change in the transverse stretch ratio to 
change in the axial stretch ratio in a simple extension process. After the c~stal~~ation has 

stopped at time ti, a Poisson’s ratio can be defined as 

d&(t) -- 
’ = d&(t)’ (31) 

where A,(t) is the transverse stretch ratio and J.,(t) is the axial stretch ratio. Using the relation 

$(t)&(t) = J(t,), one can get 

1 J(tJ rf2 

y=z n:(t) * H 
(32) 

It is noted that this Poisson’s ratio is not equal to $ in general. The Poisson’s ratio at zero stress 
can be obtained by replacing &(t) by its value at zero stress given by Lo = J1’3(t1). This gives the 
Poisson’s ratio at zero stress, v*, as 

An alternate definition 
strains measured relative 
following relations 

of 
to 

1 vo=-. 
2 

(33) 

Poisson’s ratio can be given in terms of the axial and transverse 
the current lengths, I, and s,(t), respectively. There are the 

ds&) 1 -=- 
d&(r) L(t) ’ 

and d&,(t) 1 
dh,o=A,(t)* 

(34) 

We denote the Poisson’s ratio relative to this measure of strain as 0 and it is given by 

(35) 

The value of this Poisson’s ratio at zero stress will be given by the substitution Alf(t) = A:(t) = 
J1’3(t1). This yields 
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4.3. Shear modulus 

Consider subjecting the material to a triaxial extension and shear after the completion of 

crystallization at time tl. For a shear in the l-2 plane and of the magnitude y(t), the 

deformation gradient can be written as 

( 

k,(t) Y(~)~~(~) 0 
F(r)= 0 W) 0 

1 

for t>f,, (37) 
0 0 A3W 

where J,,(t), &2(t), and n,(t) are stretch ratios in the three coordinate directions. This results in 
the relative deformation gradient F,(t) for this case to be 

for t > t, and s E (t,, t,]. (39 

This results in the expressions 

n?(t) + Y2(0W 
B(t) = Y(t)~~(t) 

0 

and 

Y Wf (0 0 
w 0 1 for t>t,, 

0 G(t) 

w-3 

Assuming a homogeneous stress field of the form 

T,,(t) 1;2(0 0 
T(t) = T,*(t) T,2w 0 for t>tl, (41) 

0 0 T33(4 

and substituting into the constitutive equation (17) yields the expression for shear stress T,,(t) 

as 

7i2(0 = [ 
mJ(tJ - 1 

m _ 1 sol) + 5 I,:.,,~d16)]Y(f)~~(f). 

The incremental shear modulus G will be given by 

(42) 

(43) 

It is noted that, even though this shear modulus is independent of the magnitude of y(t), the 
shear modulus is a function of the stretch ratio A,(t). The shear modulus in the stress-free 
configuration will be denoted by Go and is obtained from G by the substitution of no = J1’3(tl) 
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for n,(t). This operation yields 

co = mJ(t1) - 1 
[ m_l dtd+$q I 

1 

,(1,) $g W4]JU3(tl). 
This yields the relation 

&F_ 

(44) 

(45) 

5. CRYSTALLIZATION UNDER A FIXED UNIAXIAL STRAIN 

Consider a process in which a polymer is held with constant strain along the third material 
axis and allowed to crystallize. During the crystallization process the deformation gradient is 

given by 

(46) 

where s denotes any time during the crystallization process and i denotes the constant stretch 
ratio. As can be seen, even though the stretch is constant along one direction, it will vary along 
the other two directions due to the change in volume of the material during crystallization. 

5.1. Stress relaxation 

The decrease in stress as a sample crystallizes can be evaluated from (17). The stress field is 
taken to be homogeneous and given by 

. (47) 

Noting that the deformation gradient at time t is similar to that given in (46), the expression for 
B(t) will be given as 

and the expression for B,(t) will be given by 

(48) 

(49) 
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Substitution of these expressions into the constitutive expression for the stress given in (17), 

yields the two independent equations 

o=p+ 
m./(t) - 1 JW 

qo)~+~ I 

1 JO) 
m-1 J(t) 

4s) Jo Ws), 

&3(f) = P + 
d(t) - 1 

m _ 1 w(s) d-J(s)* 

(50) 

(51) 

Elimination of p yields the equation for the stress relaxation as 

Gdt) = “,“‘; ’ q(t)[ i2 - ‘*]+2 [I,;., w(s) u(s) - JWl:tj z W)]. (52) 

5.2. Change in the axial incremental elastic modulus 

Consider an experiment in which a sample is stretched and held along the third material axis 
at a stretch ratio i from time ts to time t,. In this time interval the polymer is assumed to 
crystallize by some amount. At time t, the sample is slightly extended further and the change in 
stress divided by the change in stretch ratio is defined as the axial incremental elastic modulus. 
This is similar to tests done by Stevenson [4] on natural rubber. It is assumed that this small 
extension does not alter the crystal structure or the crystallization process. It is also assumed 
that the time it takes to do this measurement is much smaller than the time scale of 
crystallization and, therefore, no substantial further crystallization occurs when doing these 

measurements. 
To reproduce this experiment mathematically, we assume that the crystallization in the time 

taken to do the second extension is insignificant, and, therefore, the rate of crystallization can 
be put at zero in this interval. The deformation gradient in this second extension will be given 

as 

for t>t,, (53) 

where A(t) is a stretch ratio along the same direction as the initial extension. This results in the 

expressions 

and 

B,(t) = 

J(tl) o o 
W) 

i I B(t) = 0 - J(h) o 
w 

for t > t,, 

0 0 n’(t) 

0 

J(t& 
wv(~) 

0 
i 

for t > t, and s E (t,, tl]. 

(54) 
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Assuming a homogeneous stress distribution of the form 

, 

and substitution into (17) yields the two equations 

mJ(h) - 1 J(h) m 1 o=p+ m_l 4(h)- - w + fn - 1 .I@,) I w(s) A(t)J(s) 
Jon (jJ(s), 

T33(f) = P + 
mJ(h) - 1 

m _ 1 ~(h)W)’ + 5 
I 

1 
W) 

J(t)) 
w(s) F U(s). 

(56) 

(57) 

(58) 

Elimination of p yields 

This equation is the post crystallization axial stress-stretch ratio relation for a material which 
has stopped crystallizing at time tr. 

The axial incremental elastic modulus E, will be given by 

E _ @33(f) _ mJ(h) - 1 

’ dA(r) m-l 1 
w(s) U(s) + - (@J) 

The value of E, at k(t) = i will be denoted by I!?~ and is given by 

B = mJ(h) - 1 
a 

m-l &)[21+ ‘+)I + ,(,“_ 1) [2b:,,, w(s) u(s) + J(r~)j-:.,~ $ dJ(s)]. (61) 

Even though equation (61) yields the incremental elastic modulus as defined by Stevenson 
[4], it is sometimes more informative to work in terms of a strain defined in terms of change in 
length divided by current length, I. Using the relation given in (28), one can obtain 

g = dW) 
a - = A(t)E,, 

de(t) 
(62) 

and 

i = dT,&) 
Cl 

de(t) e(t)=0 
= XE*. (63) 

5.3. Residual strain after crystallization 

After crystallization the residual strain in the sample can be evaluated by unloading it to zero 
stress. Mathematically this can be done by setting T,,(t) = 0 in equation (59) and solving for the 
stretch ratio corresponding to this stress. Denoting the axial stretch ratio at zero stress by AZ, it 
will, therefore, be the solution of 

o = mJ(h) - 1 
m _ 1 401) 42 - [ Oz ~]+~[~~~~,)w(s,~(s,-J~~~~,)~dJ(s)l. (W 
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This gives the relation 

Using the definitions 

we can write 

The transverse stretch ratio at zero stress, A:, is simply given by 

(65) 

(W 

(67) 

(W 

(69) 

5.4. Change in the mod&i at zero stress 
5.4.1. Elastic moduli. The axial elastic modulus at zero stress can be obtained by 

substitution 
of the axial stretch ratio, Alf given in (68), into the incremental modulus expression given in 
(60). Denoting the axial elastic modulus at zero stress by Eff, one can get 

c = 3(K,KgJ(t,))‘“, (70) 

where K1 and K2 are given in (66) and (67), respectively. 
The transverse elastic modulus at zero stress can be obtained by extending the polymer along 

any transverse direction. For such a defo~ation, the current value of the deformation gradient 
is given by 

F(t) = 

This results in 

B(t) = 

iE:(t)i; 

J(s) 

n:(t) 0 0 

0 n;(t) 0 

0 0 m 

0 0 \ 

for t>t,, 

for t>t, and s E (t,, t,]. 

(72) 

(73) 



104 M. NEGAHBAN er al. 

Assuming extension along the second axis with a homogeneous stress distribution given by 

> (74) 

by substitution into (17) one obtains the three equations 

Mb) - 1 1 

0 = P + m _ 1 q(~l)w + 2 
I 

w(s) 
J(~I) 

$f dJ(s), (75) 

Tnw =P + 
mJ(td - 1 ngt>x 

M _ 1 w(s) - 
J(s) Wh (76) 

mJ(td - 1 
O=p+ m-l 

1 

I 
w 

J(~I) 
w(s) F W). (77) 

Using the condition n,(t)&(t)&(t) = J(tl) and by elimination of p from (75) and (77), one gets 

I; = (2)‘“%, n:(t) = @l/2%, and p = -(KlK~)112 ‘$, (78) 

where Ki and K2 are the same as given in (66) and (67), respectively. Substitution of p into 
(76) yields the expression for the stress q2(t) as 

G2(f) = K&(t) - (KlKz)1’2$$ (79) 
2 

The transverse incremental elastic modulus E, can be evaluated from this relation by 

E = dMf) J(b) - = 2K,IZ,(t) + (K, K2)1’2 - 
’ dW) W) * (80) 

Substituting the value of the stress-free stretch ratio ny from (69) for L,(t) yields the expression 
for the transverse elastic modulus at zero stress as 

E: = 3[K:K2J2(t1)]“! (81) 

Comparison of the zero stress axial and transverse elastic moduli given in equations (70) and 

(81), respectively, yields the relation 

(82) 

One can define different elastic moduli in terms of strain E(I) which measures the change in 
length per current length. The relation between this measure of strain and the stretch ratio is 
given in equation (34). i$ and l?, will denote the axial and transverse incremental elastic 
moduli, respectively. They will have the value 

& = dT,3(t) 
- = ~,(OE,, a Wt) 

and 

(83) 

(84) 

where T33(f) is given in (59) and T,,(t) is given in (79). The corresponding values of the moduli 
at zero stress will be obtained as 

g: = A:E: = 3(KfK2J2(t1))“3, (85) 
and 

fi’: = A:‘E; = 3(K;K2J2(tl))1’3. (86) 

It is noted that for this definition of elastic modulus l?t = fi’:. 
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5.4.2. Poisson 's ratio. Consider an experiment in which one holds the polymer at a constant 

stretch ratio 1 along the axial direction (the third material axis) for a period of crystallization 
from time t, to tl. After the crystallization, the sample is deformed along the same axial 
direction and the ratio of change of the transverse stretch ratio to the axial stretch ratio is 
studied. We will define a Poisson’s ratio for this situation as 

Vta = Y13 = Y23 = 
dW -- 

WO ’ 
(87) 

where vii denotes the Poisson’s ratio obtained from stretching along the j direction and 
evaluating the ratio of the contraction in the i direction to the change in extension in the j 

direction. Using the relation A,(t)A:(t) = J(tJ one can get 

To evaluate this Poisson’s ratio at zero stress, Y:, one can substitute for &(t) from (68) to get 

(89) 

As can be seen, for this definition of Poisson’s ratio, even though the material is incompressible 
after crystallization, the Poisson’s ratio is not 4. 

At least two other Poisson’s ratios can be defined. Consider the same crystallization process, 
but after the crystallization extend the sample along one of the transverse directions (first or 
second material axis). If one extends the material along the second material axis, one can 
define the Poisson’s ratios for this process as 

dMt) 
y32= --_= 

dM) 
dn2(t) v31 and v12 = -- = 

dA,(t) “‘* 
Using the relations given in (78), which are derived for similar boundary conditions, one 
obtains 

(91) 

To get these Poisson’s ratios at the stress-free configuration, one can substitute nf for A,(t) 

from (69). This yields the Poisson’s ratios at zero stress as 

v& = =-=- 

and 

(92) 

where Ei and Ey are the axial and transverse elastic moduli at zero stress as given in (70) and 
(81), respectively. 

One can define different Poisson’s ratios in terms of strain E(t) which measures the change in 
length per unit current length. We define Qij as 

(94) 

in a problem where we extend a sample along direction j and allow the free contraction of the 
other dimensions. The relation between &i(t) and the stretch ratio is given in equation (34). 
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Using this relation one obtains 

+., _ 5(f) dni(r) -_-----_ 
11 

h(t) dAj(t) 

-Soy 

A,(t) ‘I’ 
(95) 

It can be shown that 

5.4.3. Shear moduli. At least two shear moduli can be defined, one for shear in the plane 
perpendicular to the initial axis of extension and one for shear in the plane containing the 
initial axis of extension. We define Yij to be the shear strain in a process which takes the unit 
square in the i-j plane to a parallelogram where the line along the i direction remains along the 
i direction and the line along the j direction rotates an angle equal to the inverse tangent of Yij. 
The shear modulus Gij will be defined in a similar way. 

For calculating the shear modulus due to shearing in a plane perpendicular to the axis of 
extension, after the crystallization has stopped at time t, we subject the sample to the 

deformation given by 

W) Yl20)~20) 0 
Mf) 0 

0 n3w 

for t > I,, (97) 

where A,(t), A,(t), and A,(t) are stretch ratios in the three coordinate directions and ylz(t) is the 
shear strain in the l-2 plane. This results in the relative deformation gradient F,(t) for this case 

to be 

F,(t) = for t > tl and s E (t,, t,]. (98) 

\, 
0 0 

This, therefore, results in the expressions 

X(0 + Y:*(0%) 
B(t) = Y**(t)%(t) 

0 

2. I 
Yl2Wf(O 0 

w 0 ) for t>t,, 

0 W) 

and 

W)~ + Y:*(ww Y,2(ow~ 

TV J(s) J(s) 
o 

J(s) 

B,(t) = 
Yl2(Wf(O~ A;(t)X 

J(s) J(s) 
0 

0 0 
W) 
-2 a 

Assuming a homogeneous stress field of the form 

/T,,(t) 7i2w 0 \ 

(9% 

for t > Cl and s E (t,, tl]. WV 

(101) T(t) = 

\ 
G2W T,(t) 0 fort >t,, 

0 0 G,(t) 
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and substituting into the constitutive equation (17) yields the expression for shear stress Tlz(t) 

as 

where K1 is the same as given in (66). The incremental shear modulus Glz will be given by 

G2 
w2w = - = K&(t). 
aY120) 

(103) 

It is noted that, even though this shear modulus is independent of the magnitude of y12(t), the 
shear modulus is a function of the stretch ratio n,(t). The shear modulus in the stress-free 
configuration will be denoted by Gy2 and is obtained from Cl2 by the substitution of Ly from 
(69) for L,(t). This operation yields 

Gy, = (K:K2J2(t1))1’3 = G;,. (lO+ 

Another shear modulus can be defined by shearing in the l-3 plane where the material 
surfaces move parallel to the l-2 plane. In this case, the deformation is given by 

This results in the expressions 

for t >t,. ww 

w + Yf3W3W 0 Y*3(wf(0 
B(t) = 0 %O) 0 for t>ll, 

YtdtMt) 0 AZ(t) 

v-w 

and 

B,(t)= rlr % y’3r] fort>& and se(t,,t,]. (107) 

We assume a homogeneous stress field of the form 

( 

T,1(4 0 7-l&) 
T(t) = 0 T,(f) 0 for t >tl. 

&3(t) 0 G(t) 

Substitution into (17) yields the expression for the shear stress l&(t) as 

(108) 

where K2 is the same as given in (67). The incremental shear modulus G,, will be given by 

ai3w G,, =-_= 

aY13w 
K2A3(t) = Cu. W) 

The shear modulus in the stress-free configuration will be denoted by Gy3 and is obtained from 
Gr3 by the substitution of A,” from (68) for n,(t). This operation yields 

Ge = (K~K2J2(t,))“3 = G& (111) 
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It is seen that Gyz = Gy,. It can be shown that 

G” = G& = G;, = G;, = G:, = G& = G&. (112) 

5.4.4. Comment of material symmetry. As can be seen from the results presented above, 
when one defines the different moduli with respect to strain relative to the current shape, one 
will see that the material is isotropic after crystallization. It is simple to show that for the 
particular model selected, the material will always be isotropic after crystallization. This will 
not be the case for other choices of the crystallization models proposed for Negahban and 

Wineman [ 11. 

6. PROPERTIES AT 100% CRYSTALLIZATION 

Even though most polymers stop crystallizing long before 100% crystallization is achieved 
(due to entanglement and other barriers to the motion of the chains), it is informative to see 
what the predictions of this model are for 100% crystallization. 

At 100% crystallization b(t) (the ratio of amorphous matter) is zero and equation (9) yields 

JA- 
m’ (113) 

6.1. Unconstrained crystallization 

For unconstrained crystallization equation (27) gives the elastic modulus at zero stress as 

The shear modulus at zero stress in this case can be obtained from equation (44) as 

(114) 

(115) 

6.2. Crystallization at fixed stretch 

For the case of crystallization under a fixed stretch ratio along the third coordinate axis, as 
given above, one will observe the following. 

The stress after 100% crystallization is obtained from equation (52) as 

1 ’ 
T33 = - 

I 
w(s) 

mJ(s) - 1 

m-1 11~ J(s) 
dJ(s). (116) 

This states that T33 will always be positive since m, the ratio of the crystal’s density to the 
density of amorphous material, is greater than unity, w(s), the effective modulus of the crystal 
created at time s, is positive, and mJ(s) is greater than unity for all s. Since w(s) can depend on 
the stretch ratio during crystallization, 1, the stress can be dependent on this value. 

The axial incremental elastic modulus evaluated at 1 can be obtained from equation (61) as 

1 ’ 
E” = X(m - 1) I w(s) 

2&(s) + 1 

I,m J(s) 
dJ(sh 

and from equation (63) 

2ml(s) + 1 

J(s) 
dJ(s)- 

(117) 

(118) 

One notes that for a material which has a w(s) which iseonly a function of J(s), at 100% 
crystallization & decreases with the increase of x and that E, is independent of x. 
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For 100% crystallization the expression for K, and K2 in (66) and (67) will become 

mK 
K,=- 

m-l 
(119) 

Using this relation, the axial stretch ratio at zero stress, AZ, and the transverse stretch ratio at 

zero stress, A:, will be given by 

and 

I ’ w(s) 

( 1 
113 

,,,7jp) 
n:=i , 

I 

> 

m 4s) de) 
l/m 

(121) 

(122) 

Since l/m I.!(S) 5 1 for all s, and assuming w(s) is positive, it follows that AZ< i and 
A: > (I/&)‘” at 100% crystallization. 

7. FITTING OF THE MODEL TO EXPERIMENTAL RESULTS FOR NATURAL 
RUBBER 

To study the response of this model, we will select the particular forms 

q(t) = Q, + Q2(1 -J(t)) 

for the effective modulus of the amorphous portion, and 

(123) 

w(s) = w, + W,( 1 - J(s)) (124) 

for the effective modulus of the crystal created at time s. The coefficients Qr , Q2, WI, and W2 
are constants. Q, is the modulus of the amorphous material before crystallization. Q2 should be 
negative and represent the diminishing importance of the amorphous portion as more crystals 
get generated (the quantity [l - J(t)] monotonically increases with the increase in crystallinity). 
Both W, and W2 should be positive, WI is the effective modulus of the first crystal generated 
and W, is the rate (relative to J) of increase of the effective modulus as crystals are generated. 
It is worth mentioning that at 100% crystallization the effective modulus of the last crystal 
created is 

w +(m-1)W2 1 
m ’ 

This quantity might represent the value of the modulus of a crystal as evaluated from a 
microscopic analysis of the crystal’s elastic modulus. 

The values 

Q, = 0.327 MPa, Q2 = -31.88 MPa, W, = 5.19 MPa, 

W2 = 11889.7 MPa, and m = 1.099 

were used to fit the experimental results of Leitner [2] and Gent [3]. 
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8. SIMULATIONS OF THE RESPONSE OF NATURAL RUBBER 

All the theoretical curves use the special form given by (123) and (124), and the material 
constants given in (125). In these results, the change in crystallization is represented by the 

percent change in density, 

For the typically observed 

A, which can be given as 

1 -J(t) 
A(t) = 100 J(t) . (126) 

values of J(t) (0.97 5 J(t) 5 1 for natural rubber), there is a close to 

linear relation between A and change in volume ratio. For natural rubber the percent of 
crystallization is typically ten times A. This can be observed from the fact that m = 1.099 and 
the relation for the percent of crystallization is given as 

lOO(1 - b(t)) = 100 ~(1 -J(O) = mJWW) 
m- l m-l ’ 

(127) 

obtained from equation (10). 

8.1. Unconstrained crystallization 

Figure 1 shows both the theoretical fit and the experimental results of Leitner [2] for the 
change in elastic modulus as a function of change in density for unconstrained natural rubber at 
0°C. Leitner did these experiments by leaving the rubber at 0°C and slightly extending the 
samples at different points in the crystallization process. The theoretical curve is evaluated 
using equation (27). One can see the ability of the model to capture quantitatively the change 
in the elastic modulus. Figure 2 shows the theoretical prediction for the change in the shear 
modulus for the same crystallization conditions, as given by equation (44). 

8.2. Crystallization at a constant stretch 

The theoretical assumptions force the sample into compression after about 10% crystal- 
lization. Since actual samples buckle rather than go into compression, most comparisons after 

about 1% density change should not give quantitative agreement for most experimental setups. 
Figure 3 shows the stress relaxation for crystallization under different fixed stretch ratios i, 

as given by equation (52). Point A on this graph represents approximately 1% volume change. 
The material constants given in (125) were selected so the stress relaxation plots pass through 
point A, as suggested by the results of Gent [3]. Otherwise, the curves are purely predicted by 
the theory. The fact that these curves show a close to linear relation between the volume 
change and stress relaxation has been observed experimentally by Gent [3] for similar 
conditions of crystallization, but at -26°C. 

loo I- 25 - 

7 
ax)- 
z 
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Y 
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0 0.5 1 .o 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 

Increase in density (%) , A Increase in density (%) , A 
FiJ. 1. Change in the elastic modulus at zero stress, Fig. 2. Theoretical evaluation of the change in shear 
E , for unconstrained crystallization of natural rub- modulus, G, for unconstrained crystallization of 
ber; theoretical fit (-); Leitner sample A (*) and natural rubber. 

sample B (Cl). 
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15 

r 

-0 0.5 1.0 1.5 2.0 

Increase in density (%) , A 

Fig. 3. Theoretical evaluation of stress relaxation for 
samples of natural rubber crystallizing at different 
constant stretch ratios, L. Material constants are fit to 
require total stress relaxation at approximately 1% 
volume change as suggested by results of Gent. This 
makes all stress relaxation curves pass through 

point A. 

0 0.5 1.0 1.5 2.0 2.5 3.0 

Increase in density (%) , A 

Fig. 4. Theoretical evaluation of the-increase in the 
axial incremental elastic modulus, E,,, for crystal- 
lization of natural rubber at different constant stretch 
ratios, 1. These moduli are evaluated at the same 

stretch ratio 1 as the crystallization condition. 

Figure 4 shows the increase in axial elastic modulus evaluated at a stretch ratio of i when the 
rubber is crystallizing at the same stretch ratio 1 (i.e. ,??,J. The curves are obtained from 
equation (61). This elastic modulus is similar to that experimentally obtained by Stevenson [4], 
where samples of natural rubber were stretched and held at different stretch ratios. In 
Stevenson’s experiments, at different points in the crystallization process, the samples were 
slightly extended and the ratio of the change in stress to change in stretch was recorded as the 
incremental elastic modulus. It is noted that for the same change in density the modulus is 
smaller for samples held at higher stretch ratios, for this special version of the model. Since 
Stevenson observed the long term elastic modulus to be independent of the stretch ratio at 
crystallization, this suggests that samples held at higher stretch firatios undergo more 
crystallization as predicted by the model. Figure 5 shows the change in E, as given by equation 
(63). One notes that this measure of elastic modulus is much less dependent on stretch ratio i. 

Figure 6 shows the change in the axial “residual stretch ratios,” AZ, and the transverse 
“resudal stretch ratio,” A:, for samples crystallizing at several different stretch ratios A. These 
curves are obtained from equations (68) and (69), respectively. 
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‘Iw 60 
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x 40 
E 
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0 0.5 1.0 1.5 2.0 2.5 3.0 

Increase in density (%) , A 

Fig. 5. Theoretical evaluation of the jncrease in the 
axial incremental elastic modulus, E,, for crystal- 
lization pf natural rubber at different constant stretch 
ratios, A. This modulus is evaluated with respect to 
strains measured relative to the current shape of 
samples. These moduli are evaluated at the same 

stretch ratio I as the crystallization condition. 

ES 31:1-H 

I 
0 0.5 1.0 1.5 2.0 2.5 3.0 

Increase in density (96) , A 

Fig. 6. Theoretical evaluation of the axial stretch 
ratio at zero stress, AZ, and the transverse stretch 
ratio at zero stress, A:, for the crystallization of 
natural rubber at several different stretch ratios i. 
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Increase in density (xl , d 

Fig. 7. ~~re~~ ev~u~~~ of the iucrease in the 
axial incremental elastic modulus at zero stress, ,!C$ 
for crystallization of natural rubber at different con- 

stant stretch ratios i. 

increase in density (a) , A 

Fig. 8. ~eoret~i evaluation of the increase in the 
transverse incremental elastic modulus at zero stress, 
E:“, for crystallization of natural rubber at different 

constant stretch ratios i. 

350 

3 r 

0 5.2 0.4 0.6 0.8 7.0 $2 1.4 

tncrease in density (“!) , A 

Fig. 9. Theoretical evaluation of the increase in the 
incremental elastic modulus at zero stress .Q = &:, for 
crystallization of natural rubber at different constant 

stretch ratios x. 

0.5 1 .o 1.5 2.5 2.5 

Increase in density (74) I A 

Fig. 10. Theoretical evaluation of the 
change in Poisson’s ratio at zero stress 
for crystallization of natural rubber at 

different constant stretch ratios A. 

J __ 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 1 2 3 4 5 

Increase in density (%) , A Stretch ratio 

Fig. 11. poetical eva~~ti~ of the increase in the 
incrementat shear modulus at zero stress, GO, for 

Fig. 12, TheoreticaI pktts of the ax&I stress-stretch 
ratio relation after c~tall~at~~ under a fixed stretch 

crystatlization of natural rubber _at different constant ratio A = 3 for different values of final percent change 
stretch ratios A. in density A. 
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Fig. 13. 

0 1 2 3 4 

Stretch ratio 

Theoretical plots of _the transverse stress-stretch ratio relation after crystallization under a 
fixed stretch ratio I = 3 for different values of final percent change in density A. 

Figures 7 and 8 show the gradual change in the axial and transverse elastic moduli at zero 
stress for samples held at different stretch ratios x. These curves are obtained from equations 
(70) and (81), respectively. Figure 9 shows the change in e = I?: as given by equation (86). 

Figure 10 shows the gradual change in Poisson’s ratios evaluated in the stress-free 
configuration for samples crystallizing under different stretch ratios i. These curves are 

obtained using equations (89) and (92). The values of Poisson’s ratio larger than 12 are a result 
of assuming incompressibility and the large mismatch between the axial and transverse stretch. 
It is noted that the values of all the Poisson’s ratios are 4 if one selects to measure strain 
relative to the current shape. 

Figure 11 shows the gradual change in the shear modulus in the stress-free configuration for 
samples ~~st~lizing under different stretch ratios 2. All curves pass through the same point at 
approximately 1% change in volume, where the stress goes to zero. This observation can be 

shown mathematically. 
Figure 12 shows the post crystallization axial stress-stretch ratio curves for a sample 

crystallized at a stretch ratio R? = 3. The different curves are for samples having different 
amounts of crystallization, represented by different percent change in the density A. These 
curves are obtained from equation (59). Figure 13 shows the post crystallization transverse 
stress-stretch ratio curves for crystallization under similar conditions. These curves were 
obtained from equation (79). 
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