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ABSTRACT 

THE ONSET of interfacial instability in two coherent semi-infinite layers of different properties and the 
corresponding critical wavelength are found by solving a static bifurcation problem in finite plane strain. 
Subsequently, the stability ofperturbations of any wavelength is determined from the appropriate linearized 
equations of motion. For gravitationally stable or unstable density stratifications, the critical stress at 
which the interface is destabilized is shown to depend on the wavelength of a perturbation; it is also 
determined in a complex manner by initial stress gradients perpendicular to the layer interface and by layer 
stiffness, as is illustrated here in detail for the examples of a hyperelastic solid and an elastoplastic solid, 
both resting on an inviscid fluid of different density. The very large wavelength that is predicted for the 
gravitational instability of a semi-infinite elastic solid on a buoyant fluid substratum brings forward the 
essential role of pre-stress and associated stiffness reduction as well as that of a finite layer thickness in 
destabilizing geological and geophysical two-layer systems. 

1. INTRODUCTION 

A VARIETY of problems lead to the question of the precise conditions under which an 

initially plane interface between two layers of different properties may be destabilized 
by layer-parallel stresses, counteracted or aided in their effect by body forces. An 
example that has been of particular interest to geologists and geophysicists is the 
instability of density-stratified two-layer systems in a gravitational field [see e.g. 
RAMBERC (1981)] and the same question has motivated the present investigation. 
Earlier theoretical studies of this problem have mostly been concerned with the 
Rayleigh-Taylor model of two superimposed viscous fluids, in which gravity provides 
the only destabilizing force. In the classical stability analysis of this problem (TAYLOR, 

~~~~;CHANDRASEKHAR, 1955, I~~I;DANES, 1964; SELIG, 1965)theinitialgrowth of 
a small interfacial perturbation is studied. Although all wavelengths are found to 
satisfy the linearized perturbation equations, the presence of viscosity implies the 
existence of a dominant wavelength that possesses the fastest growing amplitude and 
is therefore expected to characterize the evolution of the system. However, an essential 
limitation of fluid dynamical models of interfacial stability has been their inability to 
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account for the effects of layer stiffness and the stabilizing or destabilizing role of 
anisotropic and nonhydrostatic states of stress. An entirely different approach to the 
problem of surface as well as interfacial instability in laterally compressed elastic and 
viscoelastic materials was pioneered by BIOT (1963a, b. c ; 1965), who treated the onset 
of interfacial instability as a bifurcation problem. 

This paper seeks to extend Biot’s analysis by considering the combined effects of 
gravity and nonhomogeneous states of initial stress on interfacial instability; its aim 
is to establish conditions for the existence of a nontrivial solution to the incremental 
equilibrium equations of two solid material half-spaces of differing densities that are 
separated by an initially planar interface normal to the direction of gravity and are 
allowed to undergo finite deformation in plane strain. An analytical condition will be 
given that relates the critical wavelength for a bifurcation to the material properties 
and stress states in each half-space. The modes of interfacial instability that are 
obtained from the following analysis exclude an entire range of wavelengths and-- 
for a fixed load--imply a single admissible critical wavelength. 

A second aim of this paper is to study the stability of the layer interface under the 
assumed general conditions. The stability of interfacial disturbances of arbitrary 
wavelength will be characterized by means of a perturbation analysis of the system’s 
linearized equations of motion. A perturbation is characterized as unstable if its 
amplitude increases with time; periodic perturbations of constant amplitude are to 
be considered stable for reasons explained in Section 2. Finally, perturbations which, 
according to a linear analysis, exhibit neutral stability with time-independent per- 
turbation modes are shown to correspond to the critical wavelength. The connection 
between bifurcation and stability is thereby established in a quantitative way. 

For the case of a gravitationally unstable density stratification and in the absence 
of a gradient in prestress, perturbation modes below the critical wavelength are found 
to be stable while those above the critical wavelength are found to be unstable as 
expected. Indeed, perturbation modes below a certain wavelength require more work 
than can be extracted from the system by lowering its potential energy; these modes 
are therefore inhibited. The critical wavelength is that which balances the two energies 
and allows the incremental equilibrium equations for the corresponding perturbation 
mode to be satisfied. The situation is considerably complicated by a gradient in 
prestress, as a consequence of which the results become more sensitive to the non- 
linearity of the constitutive relation. 

Following the development of the general theory, an application will be made to 
the case where the !ower half-space is occupied by an inviscid fluid and the upper by 
a solid of different density, both materials being taken as incompressible. The effects 
of non-linear constitutive behaviour will be explored by contrasting the stability 
behaviour of a rubber-like solid with that of a rate-independent elastoplastic material 

whose stiffness decreases with deformation. 

2. GOVERNING EQUATIONS 

The instability of a pre-stressed heavy layer resting on a substratum of different 
density will be analysed in the following as a static bifurcation phenomenon. The 
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onset of the bifurcation, i.e. the instance of loss of uniqueness of the trivial principal 
solution for a flat interface, will be studied first. This is a natural question to address, 
for it provides the relation between the characteristic wavelength of the bifurcation 
mode on one hand and the corresponding layer parameters, such as stresses, tangent 
moduli and densities, on the other. A theoretical framework for the analysis of 
bifurcation instabilities has been established for elastic solids by KOITER (1945) and 
for rate independent elastoplastic solids by HILL (1958) and the same subjects have 
been reviewed comprehensively by BUDIANSKY (1974) and HUTCHINSON (1974). 

For a general formulation of the type of problem considered here, the governing 
equations will be stated first in a full Lagrangian form. Accordingly, the material 
points of a body of volume V and bounding surface dV in the undeformed con- 
figuration are identified by their initial Cartesian coordinates _I’,, while the components 
of the displacement vector are denoted by u,. A superimposed dot-such as on ti,- 
designates the derivative of a field variable with respect to some monotonically 
increasing time-like parameter that traces the evolution of stress and deforma- 
tion states during a loading process. The comma notation u,,, is used to denote 
partial differentiation with respect to X,. Einstein’s summation convention over 
repeated indices is adopted throughout this work, with Latin indices ranging from 
1 to 2 in plane strain problems and from 1 to 3 in more general three-dimensional 
formulations. 

The prebifurcation state of the body or material region that will be considered is 
characterized by a planar interface between the two layers and a horizontally uniform 
stress state. This fundamental solution can be completely specified as a function of a 
monotonically increasing scalar quantity A, the loadparameter. At every stage of the 
deformation process one may seek the incremental response of the solid layer-in 
terms of the rates 7-&j and I_.& of the first Piola-Kirchhoff stress 7~,~ and displacement 
vector u, in the interior of the layer--for a given I\ that specifies a boundary traction 
increment i; or boundary displacement increment ti,. 

The equation of equilibrium for the solid, written in its variational (or weak) form, 
is 

where F,, denote the components of the deformation gradient tensor, p the density of 
the solid per unit reference volume and bj the components of the acceleration of 
gravity. Assuming that p and b, are time-independent constants for each layer, the 
condition of continuing equilibrium, i.e. the rate-form of eqn (I), becomes 

Suppose now that at some value of A a bifurcation in the deformational response 
of the solid becomes posssible, so that for a given increment n there exist two different 
solutions tiyi, zi: and ti(:, I$. Let A(.) = (*)” - (*)” denote the difference between two 
such solutions for any field quantity (*). At every boundary point either Api = 0, if 
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tractions are prescribed, or Sti, = 0, if displacements are prescribed. The difference 
between any two incremental equilibrium solutions x and /I to eqn (2) must therefore 
satisfy 

s Ati,i SF,, d V = 
s 

Ai; 6u, dA = 0. 
I i c 

(3) 

An integration by parts now furnishes both the pointwise incremental equilibrium 
or Euler-Lagrange equation, as well as the corresponding boundary and interface 
conditions. The latter are fully determined only by an additional adherence condition, 
which will be assumed to hold for the material on either side of the overburden/ 
substratum boundary. One obtains 

(A%,),, = 0 (at interior points of V), 

[Ati,,N,] = 0, [Ati)] = 0 (at the interface). (4) 

where IV, are the components of the unit normal to the material interface and the 
customary bracket notation i.. .I) is employed to denote a jump in a field quantity 
across that boundary. The second jump condition expresses the assumption of perfect 
bonding of the two materials. To complete the formulation, further conditions must 
be imposed on Ati, and Ap!, at infinite distances from the interface; these will be 
considered later in the context of specific applications. 

The rate-independent materials that are to be considered will be assumed to obey 
the following constitutive equations : 

%,, = L,,dh (compressible solid). 

r-t/, = &&/’ -P(S,, + u,.,) ’ _1 det (6,, + Q) = 1 (incompressible solid), (5) 

where the second equation involves the pressure increment @. The components Llih, 
of the incremental modulus tensor generally depend on the current stress state as well 
as on the stress path from the reference to the current state. Having selected one or 
the other form of (5), one may now seek a solution to the incremental boundary value 
problem, such that 7i,, and ti, are found in the interior of Vfor a given increment A or 
corresponding increments in i; and ti, along a V. 

Equations (4) and (5) provide a basic set of equations for studying the bifurcation 
problem that is associated with the stability of the overburden/substratum interface. 
They are written in terms of a fixed reference configuration, corresponding to a full 
Lagrangian formulation. For problems, such as the present one, that are characterized 
by simple prebifurcation states, it is often convenient to select the current configuration 
as the reference configuration and accordingly, to take U, = 0, F,, = S,,, but ti, # 0, 
6, # 0. This updated Lagrangian formulation will be used in this paper, its advantage 
lying in the use of Cauchy stress and in the fact that the mode shapes are measured 
in the current configuration at the onset of the bifurcation. 

Next, in considering the stability of an initially flat interface, it will suffice to 
investigate the behaviour of the system when subjected at time t = 0 to a perturbation 
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of small amplitude E but arbitrary wavelength about the equilibrium state of interest. 
This is achieved by studying the solution of the linearized dynamical equations for 
the system. The starting point for this analysis is the weak form of the system’s 
equations of motion 

s nl, 6F,, d V = s &-ii,) &,dV+ 
s 

T,&,dA, uj,&givenat t = 0. (6) 
1' I' iY 

All field quantities for the perturbed system can be written as a sum of their cor- 
responding fundamental (unperturbed) values, which are denoted by a superscript 
(‘), plus a term that depends on the amplitude t: of the initial disturbance. By expanding 
these field quantities with respect to the initial disturbance amplitude, one has for the 
first Piola-Kirchhoff stress, the displacement and pressure fields 

7-r,j = 71,:+&E,j+O(&2), 24; = uI~+Flli+O(&2), $7 =p0+&@+o(&2). (7) 

It is worth mentioning at this point that all O(1) field quantities associated with the 
fundamental solution are functions of A and are independent of time, unlike all the 
O(C) (p >, 1) dependent terms in the perturbation which do depend on time. 

A straightforward linearization of the equations of motion obtained by introducing 
(7) into (6) and by keeping only the terms of O(E) gives the linearized equations of 
motion 

(72i/).r = PG, (at interior points of V), 

[CijN,] = 0, [L&J = 0 (at the material interface). (8) 

Moreover, the same linearization procedure applied to the constitutive equation (5) 
yields 

; 
7111 = 4&.h (compressible solid), 

Zii = L,,ii,ii,,k -$,,, G ,,, = 1 (incompressible solid). (9) 

The above two sets of equations (8) and (9), complemented by the initial conditions 
in Wi and di which are given at t = 0 completely specify the O(E) term in the expansion 
of the perturbed system. 

Following the standard assumption adopted in linearized stability analysis, it is 
assumed that the omitted O(c2) terms are negligible over the time interval of interest 
and that the first order terms adequately characterize the motion of the system. Since 
the coefficients in the system of linearized equations of motion do not depend on time, 
the solution to (8) and (9), subject to the aforementioned initial conditions of given 
displacement and velocity, takes the form 

d(x,rx2,x3,t) 

1 i 
B(X,,XZ,XJ) 

22,(x,, x2, x3, t) = e@ 22,(xl ,x2, x3) . 

ftj(xl, x2, x3~ t, 72tj(xI,x2,X3) 

(10) 

Upon introducing this in (8) one arrives at the following eigenvalue problem 
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jl,;., +pptij = 0 (at interior points of Y), 

[6,iN,] = 0, [ti,] = 0 (at the interface), 

where the relation between 7tii, 6, and 6 can be easily found following a substitution 
of (IO) into (9) 

n/i = L,&.n (compressible solid), 

711’ = L,,xG&,I; -$,I, c,., = 1 (incompressible solid). (12) 

Notice that 2’ is the linear eigenvalue of the above system of equations (1 I), (12). 
A more recognizable form of the eigenvalue problem, which is the weak formulation 
of the above equations, is obtained by introducing (12) into (1 I), multiplying the 
resulting equation by 6u, and subsequently integrating over the volume V of the solid 

s L,,,kziA,,6u,,,dV= tz 
‘ 

When the incremental moduli possess the symmetry property L,,,k = L,k,, as will be 
in the case of applications considered here, all eigenvalues 5’ are real. Consequently 
if the minimum eigenvalue [,zZ > 0, it follows that the solution (10) must remain 
bounded in time so that the interface is stable (recall that no dissipation mechanism 
is included in the system; the presence of dissipation-inevitable in reality--will 
result in the decay of the solution’s amplitude). For <,f, < 0 (10) will permit solutions 
that increase without bound, implying that the system is unstable. It is also seen that 

if TZ = 0 for a certain perturbation, then eqns (1 I), (12) and (4), (5) coincide and the 
eigenmode ti; becomes the bifurcation eigenmode (z& = A&). 

3 _ . MODEL FORMULATION. BIFURCATION CRITERION AND LINEARIZED STABILITY 

In the interest of analytical simplicity, only the plane strain bifurcation and stability 

problem for the interface between two solid half-spaces will be analysed here. The 
constitutive description will be kept as simple as possible in terms of a rate and 
pressure insensitive, incompressible and orthotropic solid that has one axis of ortho- 
tropy oriented parallel to the interface. As was shown by BIOT (1965), the constitutive 
equation of such a solid may then be stated as follows : 

V * 
O,, = 2nti,,, --@. 

V 
03 = 2&L> -6, &z = $2, = /I(ti,,?-t?i,,) (14) 

in terms of the objective Jaumann rate 8, of the Cauchy stress, the hydrostatic pressure 
p and the two incremental moduli ,U and $ that characterize the material. ‘The relation 
between the rate of the first Piola-Kirchhoff stress and the Jaumann rate of the 
Cauchy stress for an incompressible material is [see HILL and HUTCHINSON (1975)] 

ti,, = x,,- ;a,&.&, - C,,k) - :(& + &,,)~A,. (15) 

Equations (14) and (15) therefore give 
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(16) 

b-r deriving (16) from (14) and (I 5), the fact has been used that the prebifurcation 
stress state and the material are orthotropic with respect to the same axes, so that 
u,~ = 0 [see BKIT (1965) for further details]. Moreover, the condition of incom- 
pressibility det (F;,) = 1, when expressed in the updated Lagrangian formulation, 

requires that 

ti,,, +z& = 0. (17) 

One can easily verify that the incremental constitutive equation (16) is of the general 
form (5)?, in agreement with the assumption made in the previous section. 

A tacit assumption underlying the subsequent use of (14) is that it is applicable to 
the initial constitutive response on the bifurcated equilibrium branch as well (i.e. 
the unloading that might occur in the postbifurcation solution is not considered in 
formulating the bifurcation problem). Indeed, as was shown by HILL (1958), providing 
the principal solution satisfies the condition of plastic loading everywhere (as is true 
for the present problem), the tangent moduli p and 131 of the plastic loading response 
can be safely employed in the bifurcation analysis, since the resulting critical load is 
less than or equal to the actual bifurcation load. Working on the postbifurcation 
response of elastoplastic solids, HUTCHINSON (1974) has further shown that the use 
of the tangent moduli p and ; of the plastic loading response gives the correct 
bifurcation load, provided that the prebifurcation solution satisfies plastic loading 
everywhere. Consideration of unloading is required for the calculation of the post- 
bifurcated solution. 

Consider now two incompressible orthotropic half-spaces of densities p” and ph, 
respectively, perfectly bonded along the interface x1 = 0 as shown in Fig. 1. The axes 
of orthotropy of each half-space are aligned with the coordinate axes x,, I? and their 
constitutive response is given by (14). The prebifurcation stress state is also orthotropic 
with respect to the same axes. Gravity acts in the negative x2 direction so that h, = 0, 
h2 = -g in (1). Although the incremental moduli p and G depend on the history of 
deformation, for pressure insensitive materials and assuming that proportional load- 
ing is a reasonable approximation of the loading history, these moduli depend on 
(~~~-cr,,( only, so that 

In = /J(r), ;; = Z(r); z = (cJ2*-cJI,)/2, o- = (CT,, +fJJ/2. (18) 

Henceforth omission of the subscript identifying a layer in an equation will imply that 
the relevant quantities are either defined for both layers or else are to be associated 
with one particular layer that will be recognized from the context. 
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FIG. I. Coherent interface x2 = 0 between two semi-infinite media in a gravitational field g 

In order to keep the subsequent analysis as simple as possible, the following 
prebifurcation stress state is assumed 

The constant k as well as the stresses G, and g2 at the interface will in general take on 
different values in each half-space, except for the condition LT’; = 0’; that is demanded 
by equilibrium across the interface. The parameter k plays an important role in 
that it determines the gradient in the stress deviator within each layer according to 
ds/ds, = kpg, as may be seen from (18) and (19). Since t governs the constitutive 
response of the material, its gradient must have a controlling influence on any bifur- 
cation instability. Hence, if k = 0, there will be no stress gradient effect on the 
bifurcation behaviour. As discussed in the previous section, an updated Lagrangian 

formulation of the field equations will be used for which the reference configuration 
coincides with the current configuration at the onset of bifurcation when U, = 0 while 
tij # 0. The condition of incompressibility (17) ensures the existence of a potential 
function $, satisfying 

Ati, = G.2, Ati2 = -$.,. (20) 

When (14) and (20) are introduced into the incremental equilibrium equations (4),, 
one obtains 

K2k,)k,2--~1,, +[(~+-)~.22-(~--~~,1,1.2 = 0, 

[(2~-~,,)~.,,+~~1,2+[(iu-5)11/.,, -t/J--M,221.1 = 0. (21) 
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The corresponding jump conditions across the interface x2 = 0, with unit normal 

~1, = di2, are 

The first two of these relations are a consequence of the continuity requirement (4)3 
for the displacement rate, while the last two express the traction rate continuity (4)2. 
In addition to (21) and (22) one requires conditions at infinity for I//. The validity of 
the present double-half-space model as an approximation for the more realistic problem 
of the instability of a finite-thickness layer resting on a half-space depends upon an 
insensitivity of the interfacial response to the exact free-surface boundary conditions. 
Accordingly only those eigenmodes AZ.& that decay away from the interface will be 
studied ; from (20) the required condition is that (GI,,, $,2 -+ 0 as (xz( + co. 

Next, one eliminates the pressure from the governing equations (21) and (22) to 
obtain 

and the interface conditions 

The coefficients in eqn (23) and the boundary conditions (24) are independent of 
x, (the aforementioned boundary value problem being translationally invariant with 
respect to x,). This suggests the use of the Fourier transform $ = Y[$(x,, x2), x, -+ 
w] for obtaining an ordinary differential equation in x2. Also, the new variable 

y = --wxz will henceforth be used. Consequently, and in view of equations (18) and 
(19), the governing equation (23) assumes the form 

;;; + (1 + Z//L) $ = o. (25) 
i 

The corresponding interface conditions at y = 0 are 
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= 0. 

Equations (25) and (26) are complemented by the condition $- 0 as 1,~) -+ CU. 
The amplitude of the eigenmode is expected to decay exponentially away from the 
interface. It will be assumed that the coefficients appearing in (25) and (26) do 
not vary significantly within the decay distance of the eigenmode so that they may 
be approximated by their values at y = 0. The solution to (25) of interest is then 
given by 

$(w,J:) = A,((r))e’I?‘+.4,(w)e’2’, 
Re(z,) <: 0, ify > 0, (half-space h), 

Re (z,) > 0, if t’ < 0, (half-space u), (27) 

taking cu > 0. Here z,, z2 (z, # z2) are roots of the fourth order polynomial 

Since the admissible modes are required to decay to zero away from the interface, it 
is the range of parameters for which the above equation has two roots with a positive 
(negative) real part in half-space u(h) that is of interest, for eqn (23) will be elliptic in 
this case. Notice also, that substitution of z = i(n,/nz) in (20) yields the characteristic 
equation of (23), (n,,n2) being the unit normal to the characteristic lines. Equa- 
tion (23) is elliptic in character, if it possesses no real characteristics. The loss of 
ellipticity of (23)--for certain values of its coefficients--entails the possibility of 
discontinuous solutions, that is strain discontinuities in the solid in the form of shear 
bands. However, as discussed by HILL and HUTCHINSON (1975), YOUNG (1976) and 
RICE (1976), such discontinuities will always appear at higher stress levels than a 
bifurcation with eigenmodes that are varying smoothly in space. The bifurcation is 
thus expected to occur. when at the interface the material parameters lie in the 
elliptic range. 

introducing (27) into the boundary conditions (26), one has 
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= 0. (29) 

The continuity of A, + A2 and z, A, + z,A, across the interface enables one to make 
use of the following convenient notation 

Aq+A”, = Ab;+A\ z C,, z:Aq +&A; = zb,A; +z$A; 3 X2. (30) 

Moreover, one has the identities 

z:A, +z:A, = (z, +z$:,-z,z,C, 

z:A, f&4, = (z:+z,z~+z;&-z,zz(z, +zJC,, (31) 

in terms of which (29) can be written 

with 

c,* = 

c,, = 

c22 = 

C,J2+C,,~, =o, C2*C,+C:!,~, =o, (32) 

UP(l +rlW1 +z*)& 

[P(l +rIP)(l -z&], 

(4;ill-l+tllL)-(1+5/~)(Z:+Z,z~+z:)+k~ 
po,(dr > ’ 2 11’ 

*+1 (2 +z ) 

11 . 

One trivial solution of the above system is Z:, = C2 = 0 which, on account of (27), 
implies that I,& = $ = 0, thus excluding bifurcation. A bifurcation becomes possible 

only when a non-zero solution for $ can be found, that is if 

c,2c,,-c,,c22 = 0. (33) 

In this bifurcation condition the matrix coefficients C, are given by (32) while the zY are 
appropriate roots of the fourth order polynomial in (28). Condition (33) can be con- 
sidered as an implicit equation in o, since the C, and zg are functions of o. The critical 
wavenumber 0,. that will permit the first appearance of a bifurcation at the interface 
of the two half-spaces can thus be found as a function of the densities, the stresses 
and the incremental moduli as well as their derivatives, all evaluated at the interface. 
Needless to say that, in general, 0,. will only be obtainable by solving (33) numerically. 

Attention is now focused on determining the stability of an initially flat interface, 
based on the sign criterion for the minimum eigenvalue of (1 l), (12) as discussed in 
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the previous section. The perturbation fi, in the displacement field again satisfies the 
condition of incompressibility C ,, , + z?>,> = 0 which is satisfied identically by a stream 
function $ such that til = $,> and ii1 = - tj, , Upon making use of this representation 
in (9), , while substituting for ti,, a constitutive relation of the form (15), one arrives at 

K2;-mkl?-/% +[(~++2)~.22-(~--)~,111.2+P~2~,2 = 0. 

[(2~-~22)~.12+d1,3+[(~--Z)~.,, -(P--M,221.1 -k2$,, = 0 (34) 

and, after elimination of b, 

~~~---z)~,~1-~~--~~,221.,1+~~~~~-~~~,~21.~2+~~cl+~>~.22-~~-~>~.,~1,22 

+P5’(Ic1.l I +$.22) = 0. (35) 

The relations pertaining to the interface are obtained through steps that parallel the 
derivation of (24), resulting in 

[*,I] = 0, 

[ti,?] = 0, 

~(P+w.22-$J = 0, 

pK$+tM,,21.1 +~~~+~.)~~.22-~,,1~1,2+~22.2~,11 +P5’$,2] = 0. 

A Fourier transformation applied to (34) and (35) yields 

(36) 

in complete correspondence with (25), recalling that y = -~cc)x2. The corresponding 
interface conditions at J’ = 0 are 

[G] = 0, 

d6 
d’g 

dy - (I+ T/P) dy3 

+k;~($+l)($++~$]J=o. (38) 
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Since the amplitude of the perturbation is expected to decay exponentially away from 

the interface, it will be assumed that $ -+ 0 as 1 y( --t 00 and that the coefficients 
appearing in (37) and (38) may be approximated by their values at y = 0. The solution 
to (37) of interest is therefore again of the form (27), z, and z2 being the roots with 
positive (negative) real part in halfspace a(b) of the fourth order polynomial 

-2kg ‘$+I z~+(~+T/&~ = 0. (39) 
( > 

Introducing (27) into the interface conditions (38), with z,,zz extracted from (39), 
one obtains 

[h+A2]=0, 

[%4, +Z24] = 0, 

[PU +~IPL)(Z:A, +&,+A, +A211 = 0, 

These conditions may once again be cast in the form (32) upon making use of (30) 

and (31), the coefficients C, ,, C,2, CzI remaining the same, but C2* becoming 

c22 = P 
i K 

4&l+r/ii-5 -(I+r/~)(2:+z,z2+z:) 
1 

+kE (“:: + l)(z, +zz)]]. (41) 

Equation (33) may now be solved numerically for the minimum value trS, with 
coefficients C,, and roots zY being determined by (32) and (41), respectively. For given 
material properties and a given state of stress it is thus possible to say whether or 
not an interfacial perturbation with wavenumber o will be unstable (5’ < 0). The 
bifurcation wavenumber o, corresponds to ;“i = 0, as is evident from the above 
relations. Therefore, a graph of the relationship between the critical wavenumber (or 
wavelength) and the prestress at the interface will separate regions of stability and 
instability in the wavenumber-prestress plane, as will be seen in the following. 

4. SPECIAL CASES 

Although the bifurcation and stability criteria that have been derived allow the 
critical wavenumber W, and the minimum eigenvalue ei to be determined from the 
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solution of a highly complicated implicit equation, it is possible to give explicit analytic 
results for certain special cases of interest, two of which will now be discussed. In each 
case an elastoplastic half-space is considered to rest on a fluid. The stiffness of the 
lower half-space is thus ignored, i.e. ph = ;” = 0 and one can put ,u = ,LL”, $ = 2. 

The case k = 0. This corresponds to the situation in which the principal stress 
difference in each half-space remains constant and independent of x2. Equation (28) 
then becomes a biquadratic equation in z, with roots 

if 4$(p-c) 3 r’. (42) 

The above results apply to the half-space a, where Re (z,) > 0 according to (27). If 
the lower half-space is of interest and is modelled as a solid, one simply reverses the 
signs of the roots in (42). 

The roots (42) do in fact allow an explicit determination of the critical wavenumber 
Q,.. Thus, after computation of the matrix coefficients C, ,, Clz, C?,. Cz2 in (32), the 
bifurcation criterion (33) yields 

(43) 

where the z,,~ are given by (42) and Ap = pii-ph. Here p as well as $ are of course 

taken to be functions of z. Also, the superscript u has been deleted, it being understood 
that--with the exception of Apg/o,.--in (43) and subsequent expressions all index- 
free variables and functions are defined on the side of the interface belonging to half- 
space a. 

Since for the bifurcation of interest the half-space a has to be in the elliptic regime, 
as explained in the discussion following (28), the denominator S in (43) is always 
strictly positive; moreover, for r = 0 the term within brackets becomes constant and 
equal to 2. These observations imply that for a denser upper half-space (Ap > 0) 
a bifurcation is always possible, while for a denser lower half-space (Ap < 0) a 
hydrostatically stressed overburden cannot bifurcate. For large enough values of (~1 
the right-hand side of (43) can vanish. The vanishing of the numerator in (43) yields 
BIOT'S (1965) condition for the surface bifurcation of an (orthotropic) half-space that 
is subjected to a lateral stress (-6,) and it confirms Biot’s prediction that the 
corresponding critical wavelength is zero. 

For r = 0, G(O) = ~(0) =-G, where G is the linear elastic shear modulus, (43) 
yields the interesting result 

Apg ~= 1. 
2P(O)U,. 

(44) 
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This shows that when a hydrostatically stressed elastic half-space overlies a less dense, 

incompressible fluid, the critical wavelength for a bifurcation is likely to be very large. 
Thus, if the quantity (- az)/Pg is taken as a measure of overburden thickness in a 
geological setting, then the ratio critical wavelength/overburden thickness will be of 
the order of 2~/( - g2) or between lo2 and 104, when k is an elastic shear modulus. 

As was established in the general analysis of the previous section, the graph of the 
critical wavelength (43) contains all neutral equilibrium points (5: = 0) in the 
(Apg/2pto) - (z/p) space. This “critical-wavelength curve” therefore separates a 

region of stable perturbation wavelengths from a region of unstable perturbation wave- 
lengths, which in the following will be referred to as “stable” and “unstable” regions, 

respectively. 
When k = 0, a simple way of discriminating between the stable and unstable side 

of the critical-wavelength curve is by calculating pc2/yw2 for points on the ALpg/2po 
axis in the neighbourhood of the point (z/p = 0, Apg/2p(O)o = 1). Since c(O)/p(O) = 1 
by assumption, the roots of interest of (39) are 

z, = 1, 22 = (I-/I)“2, /1 = p52//LLo2. (45) 

Using these in (32) and (33) and recalling that C22 must be determined from (41) for 
the stability analysis, one arrives at the following equation for /? at points with z/p = 0, 

Apg/2p(O)o = 1 +E, where 1.~1 << 1 : 

( > 1-i; fl+l+&--(l-/I) ~:++$+ (46) 

An asymptotic solution for /II is of the form 

fl = -j&+0(&2), (47) 

indicating that for E > 0 (Apg/2p(O)w > 1) the interface is unstable. This result does 
not come as a surprise since the gravitational potential energy released by perturbation 
wavelength beyond the critical exceeds the concomitant elastic energy stored in the 
solid layer. Along with this determination of fl one must of course ensure that all 
other eigenvalues-found by solving (32), (39), (41) numerically-are in fact larger. 

The case jkpg/pw( << 1. This short-wavelength limit has the following significance. 
From (IS), (19) and the constitutive relation (14) it is easily seen that the gradient of 

the normal strain E, , in the (vertical) x2 direction is given by da1 ,/dx2 = -kpg/2$(z). 
The condition may therefore be expressed as \2j?(da, ,/dx2)/pw( << 1. Moreover, since 
2$~ = O(1) for most applications, this is equivalent to ((da, ,/dx2)LJ << 1, where 
L = 271/o is the wavelength of the mode in the x1 direction. Hence, with 

(48) 

the asymptotic analysis for /I-I << 1 applies when strain gradients in the x2 direction 
are much smaller than the inverse of the eigenmode’s wavelength in the x, direction. 

The roots zl,z2 of (28) that are required for evaluating (32) and the bifur- 
cation condition (33), are found, in the case )I\ <c 1, with the aid of a straightforward 
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asymptotic expansion of (28) with respect to iL 

(49) 

where the zT are given by (42). Upon entering these into (32) and evaluating (33) by 
collecting terms of like order in i, one obtains, after lengthy but straightforward 
algebraic manipulations and use of (42), the following expression for the critical 
wavenumber w,, correct to the first order in 1. : 

A w I( 1 - dP)l(l + T/P)1 ‘, ‘(2h + 4PL) -T/P 
2pt0, = ~~l-[k~(l-p”/p”)][2d;/dt-d~/d~+(d~/dz+1)(2+[(I-r/~)~(l+r~~)]’~’)J)~ 

where S is defined as in (43). It should be kept in mind, however, that for large 
prebifurcation strains t/p cannot be neglected and the correction terms,d,$dz and 
d/l/dz can also become important. 

5. DISCUSSION OF RESULTS FOR Two PARTICULAR MATERIALS 

The above expressions for the critical wavenumber o,.--eqns (28), (32) and (33) 
for the general case as well as (43) and (50) for the two special cases- are valid for 
any incompressible, pressure insensitive, orthotropic material that obeys a constitutive 
relation of the general form of equation (14). It is nevertheless clear that numerical 
values for the critical wavenumber will strongly depend on the particular form of the 
functions p(t) and ;(r) in (1X). Of the many different possibilities, two relatively 
simple models will be explored. 

The first material to be studied is a Mooney-Rivlin hyperelastic material, which, 
under plane strain conditions satisfies the stress-strain relation 

r/G = sinh (cz2-c:, ,). (51) 

Here G is the material’s initial shear modulus and E, ,, ,zz2 are the logarithmic strains 

in the X, and x2 directions, respectively. The pure shear stress-strain curve for the 
Mooney-Rivlin material is depicted in Fig. 2. 

The plane strain incremental moduli p(z) and 1*;(z) defined by (14) are given by 

p(z) = Z(T) = G[l + (z/G)‘] “’ (52) 

for this material. 
The second material to be considered is a hypoelastic St&-en-Rice material [see 

ST~REN and RICE (1975)], the stress--strain relation of which is given by the dis- 
continuous power law 
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FIG. 2. Stress-strain relation for Mooney-Rivlin material. 

(53) 

Here m denotes a hardening modulus (m > l), while ?J is the yield stress in pure shear. 
This type of stress-strain relation is shown in Fig. 3. 

The corresponding expressions for the incremental moduli are given by 

The fundamental difference in the behaviour of the two materials is that the functions 

FIG. 3. Stress-strain relation for Stiiren-Rice material. 
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p(z) and G(r) increase with t for the Mooney-Rivlin material (52), but decrease with 
z for the St&en-Rice power law material (54). 

Taking either (52) or (54) as material law, the critical wavenumber w, may now be 
calculated from (33) or-in the limit Ii/ << I--from (50) upon substitution for p(t) 

and E(T) from either (52) or (54). For a given gradient dz/dx, = kpg of the stress 
deviator and a given density ratio #/pa, eqn (33) is solved numerically with the aid 
of a straightforward bisection method. The exact results obtained in this manner are 
presented together with the asymptotic results in Fig. 4, for the MooneyyRivlin 
material, and Figs 5 and 6 for a StiirenRice material with the hardening exponents 
n? = 2 and m = 4, respectively. In all figures a dimensionless critical wavelength has 
been plotted against a dimensionless stress deviator for various values of the parameter 
k. assuming the fixed density ratio p”/p” = 0.8. Thus, k = 0, -0.03, 0.03 in Figs 4aa 
c, while k = 0, -0.015, 0.015 in Figs 5aPc (m = 2) and Figs 6a-c (m = 4). For the 
MooneyyRivlin material the dimensionless wavelength and stress deviator are defined 

as Apg/2Gw,. and z/G, respectively, while for the StiirenRice material the cor- 
responding quantities are defined as Apg/2t,w, and s/z,., respectively. In all cal- 
culations performed for the StiirenRice material the value t,/G = 10 ’ was assumed 
for the yield strain in simple shear. 

Some general remarks on the results shown in Figs 46 are now in order. First, the 
determination of the character of the equilibrium states adjacent to the critical- 
wavelength curves, i.e. the delineation of regions of stability and instability, is based 
on the sign criterion for the minimum eigenvalue ti of the linearized perturbation 
problem; these results were computed numerically for a number of interior points in 
each region. Thus, for a given state of stress in the unperturbed half-spaces, per- 
turbations with wavelengths that lie on one side of the critical curve are stable, that 
is will not grow with time, but decay in the presence of the slightest amount of viscous 
dissipation, while perturbations with wavelengths on the other side of the critical 
curve are unstable and will tend to grow, although there remains the possibility of the 
perturbed system evolving towards a new, postbifurcation equilibrium state that will 
be characterized by a finite-amplitude disturbance of the layer interface. The existence 
of such equilibrium states in the postbifurcation regime may be expected for solid/fluid 
two-layer systems from the fact that the solid possesses an elastic range and finite 
strength. Such states are of considerable interest, for example in geological or geo- 
technical studies of saltdoming instabilities, but the conditions for their existence 
as well as their exact nature have been studied only little. 

Secondly, we recall that negative values of Apg/2Go, or Apg/2z,.(ti,. correspond to 
a gravitationally stable density stratification (Ap z p”-pph < 0). For this case and 
under the additional restriction of a vanishing stress gradient ds/dxz = 0 (k = 0) WC 

shall recover certain earlier results by BITT (1963b, 1965). 
Finally, it will be clear that an unstably stratified two-layer system of irzfinite lateral 

extent can indeed be destabilized by any prevailing stress state. Nevertheless, the 
results of this study can be meaningfully applied to overburden/substratum interfaces 
of finite extent that delimit the range of critical wavelengths by their width. Thus, for 
finite systems, the quantities of interest will be the critical load required for activating 
the maximum available wavelength or, alternatively, the critical wavelength associated 

with a given state of stress. 
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Consider now the behaviour of a half-space composed of a Mooney-Rivlin 
material. Figure 4a gives the dimensionless critical wavelength as a function of the 
dimensionless stress deviator at the interface when the latter remains uniform through- 
out the half-space (k = 0). The stable states lie below and the unstable states above 
the curve. The zero-wavelength intercept on the stress axis determines the stress 
level required for inducing a pure surface bifurcation mode. This surface bifurcation 
was discussed by BITT (1963b, 1965) in his study of a gravitationally stable half- 
space; his results fork = 0 and AQ d 0 are reproduced by the corresponding segment 
of the critical curve in Fig. 4a. For Ap > 0, the zero-stress intercept of the critical 
curve determines the critical wavelength that will be destabilized by gravity alone, all 
shorter wavelengths requiring some compression for their appearance. 

The stress deviator s/G affects the critical wavelength in a twofold manner. First, 
if 7 is positive (negative), through the progressive destabilization (stabilization) of the 
system with increasing (decreasing) T/G or increased (decreased) lateral compression 
of the layer. This is a purely geometric effect that is responsible for the instability of 
solids under compression, with examples ranging from Euler columns and plate 
buckling in structures to surface instabilities on half-spaces arising from surface-parallel 
compression in finitely strained solids (BIOT, 196313, 1965). The second effect is the 
progressive stiffening of the material, i.e. the increase of its incremental moduli, with 
increasing IzJ/G. The two effects cooperate when 7 is negative, but counteract each 
other for positive z when indeed the destabilizing influence of lateral compression 
becomes dominant at z > z,, where 5,_ is Biot’s critical stress for the appearance of 
a surface instability on a weightless half-space. For the Mooney-Rivlin material, the 
asymmetric geometric effect of stabilizing lateral tension and destabilizing lateral 
compression dominates the symmetric constitutive stiffening effect ; the resulting graph 
of critical wavelength versus stress deviator is therefore skew symmetric with respect 
to the zero stress axis. For the further interpretation of Fig. 4 it is therefore best to 
think about the critical curve in terms of the critical compressive stress required to 
destabilize a given wavelength, if z > 0 and in terms of the critical tensile stress 

required to stabilize a given wavelength, if z < 0. 
The effect of a negative stress deviator gradient (k = -0.03) on the stability of a 

half-space of Mooney-Rivlin material is apparent from Fig. 4b. Three regions of the 
critical wavelength versus stress deviator graph can be distinguished, according to the 
prevailing stabilization or destabilization mechanism. For Ap > 0 and T < T* < 0. 
where T* is defined by w, (z* ; k = - 0.03) = o, (z , *. 0), the material stiffness increases 
away from the interface due to the increase in 1~1. The increase in the interface-parallel 
tensile stress provides a geometric stabilization. Due to these stabilization mechanisms, 
the critical wavelength for a given value of z is higher than its counterpart for k = 0. 
The interfacial stability is thus increased in this region by a negative stress gradient 
li. For Ap > 0 and z = 0, the decrease in r (or increase in lateral tension) away from 
the interface stiffens the material and reduces the critical mode’s decay length. This 
in turn reduces the critical wavelengths in the region 5* < z < rI around z = 0 relative 
to the wavelengths for k = 0. If A/, < 0 and when T exceeds T,*. , it decreases away from 
the interface and the associated geometric stabilization requires more compression for 
destabilizing a given wavelength than is needed fork = 0. Again, therefore, the interface 
is stabilized by a negative k. It will further be noted that there is good agreement 
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between the exact numerical solution of (32) and (33) and the asymptotic results 
derived from (50), due to the fact that the value of Ii\ = (kpg/p(z)w,l remains 
sufficiently small over a wide range of z-values. 

Figure 4c illustrates the effect of a positive stress deviator gradient (k = 0.03). 
Three regions may again be distinguished. For Ap > 0 and z < T* < 0, where 
W,.(T*, k = 0.03) = oC(z*, 0), the material becomes softer with increasing distance from 

the interface, since Iz\ decreases. The lateral tension required for stabilizing a given 
wavelength is higher than that for k = 0. Equivalently, the critical wavelength for a 
given value of z is lower than the corresponding wavelength for k = 0. The interfacial 
stability is thus decreased in this region by a positive stress gradient k. In the small 
region r* < 5 < z, around the point z = 0, the increase of T away from the interface 
increases the critical mode’s decay length and has a stabilizing effect on the system 
leading to higher critical wavelengths. Eventually the destabilizing effect of the increas- 
ing lateral compressive stress dominates and the critical wavelength vanishes at 7,. 

For Ap < 0 and z > z,, T increases away from the interface and the associated 
geometric effect of increased axial compression of the half-space permits a smaller 
positive z to destabilize a given wavelength, than would be required for k = 0. The 
asymptotic results obtained for this case from (50) are in good agreement with the 
results obtained from (32) and (33) near zg, where the critical wavelength is small, 
and at large absolute value of z where the incremental moduli acquire large values, 
resulting in small values of (A/ = jkpg/p(z)w,( in these cases. 

Apart from the solution branch that passes through z, and is expected from the 
results for k = 0, -0.03, a second branch appears near z = 0, if the density strati- 
fication of the system is stable (Ap < 0). The reason for this instability is the following. 
The increase in lateral compression away from the interface destabilizes the system 

and there exists a mode with an adequately large decay length that releases more 
energy than the potential energy required to lift the stably stratified interface. Any 
wavelength that is larger than this critical wavelength will thus be unstable, as is 
verified by a linearized stability analysis. This second branch of the critical curve has 
a vertical asymptote at some positive value of z close to z = 0, which reflects the 
stabilizing influence of material stiffening; the branch ends at some value z < 0 that 
marks the emergence of solutions with infinite decay length. 

Figures 5 and 6 give the dimensionless critical wavelength Apg/2z,o, as a function 
of the dimensionless stress deviator z/z, for the case of two variations of the Stbren- 
Rice hypoelastic material, one with a higher hardening (m = 2 in Fig. 5) and the other 
with lower hardening (m = 4 in Fig. 6) in their uniaxial stress-strain response. In all 
the graphs presented here the results are given ou:side the elastic zone (T/T,./ < 1. Due 
to the discontinuity of the incremental modulus p(s) at ITJT~~ = 1 and the subsequent 
rapid decline of both the incremental moduli p(z) and p(t) [see (54)] for ]T/T,.\ > 1 
there is a difference of the order of G/T,, between the critical wavelength values inside 
and outside the elastic zone. Indeed, for \z/zYl d 1 the wavelengths agree essentially 
with the corresponding wavelengths for the Mooney-Rivlin material in the neigh- 
bourhood of T = 0, and for stresses of the order of z,/G the effect of the difference in 

constitutive response is negligible. The calculations are terminated at values of Z/Z, 
such that the governing equations become hyperbolic [cf. the discussion of eqns (23) 

and (28)]. This loss of ellipticity represents an additional feature of a StGren-Rice 
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material which not only is destabilized in both tension and compression, but also 

admits shear band modes of localized deformation at appropriate levels of stress, as 
was discussed by ST~REN and RICE (1975). By contrast, it can easily be seen that for 
a Mooney-Rivhn material (23) will remain elliptic at all stress levels. 

In Fig. 5a a plot of the critical wavelength versus the stress deviator is shown for a 
Storen-Rice material with hardening exponent m = 2 for the case of a vanishing 
gradient of z in the x2 direction (k = 0). As discussed previously, an increase in T will 
destabilize the layer, while a decrease will have the opposite effect. This asymmetric 
effect is independent of the constitutive law and controlled by the sign of T. The 
constitutive response of the layer is symmetric in Z, since it depends upon jz( only and 
the rapid decrease in stiffness of a Storen-Rice material with increasing 1~1 has a 
destabilizing effect that increases with the hardening exponent m. The behaviour of 
the critical wavelength as a function of the stress deviator as shown in Fig. 5a is 
clearly dominated by the symmetric constitutive response. As a consequence, a zero- 
wavelength surface instability appears both under compressive as well as tensile lateral 
stress at 7: > 0 and t,; < 0, respectively. The asymmetric effect of z or g, (assuming 
cr? remains fixed) expresses itself in the steeper decline of the positive branch of the 
critical curve, resulting in It?+] < IT; 1 for the surface instability. The graph of the 
dimensionless critical wavelength remains continuous across the elastic range 
- 1 < z/T,. c 1, where Apg/2z,.o,. % G/z?. = 103. 

The effect of a negative gradient in T on the stability of the half-space is shown in 
Fig. 5b. The graph of the critical wavelength has lost its symmetry, despite the 
persistence of zero-wavelength surface instabilities in tension and compression at the 
previous critical loads z;/z,. and T~/T), respectively. Thus, in the case of gravitationally 
unstable density stratification (Ap > 0) there exists a finite critical wavelength for all 
zC;, < z < -z,., but only within a certain interval z, 6 z < z:. For Ap < 0 the z 3 T, 
branch reaches some maximum value of r outside the range of the figure, the complex 
behaviour of the critical curve in this quadrant depending sensitively upon the value 
of m as a comparison with Fig. 6b will show. It is of interest to note that the two 
branches of the asymptotic solution shown in Fig. 5b for positive z are separated by 
a vertical asymptote (not shown here). The behaviour of the critical curve near the 
origin may be understood in terms of a hypothetical material defined by a smooth 
continuation of the power-law relation in (54) to zero stress, where such a material 
will become infinitely stiff. As the asymptotic result (50) shows, the conditions dp/dz, 
d:/dt --f x, as z + 0 implying a vanishing critical wavelength. Associated with this 
hypothetical material will be a smooth continuation of the critical curve across the 
yield stress + zY and through the coordinate origin of Figs 5b, c and 6b, c. This shows 
that the sharp discontinuity exhibited by the actual critical curve at the yield stress 
originates from the discontinuity in the tangent modulus of the Stiiren--Rice material. 

The behaviour of the critical curve in Fig. 5b can be explained in terms of the 
combined effects of the interface-parallel stress (for a fixed normal stress) and the rate 

of decrease k of the normal stress difference 5 away from the interface. When T is 
negative and small in absolute value, the latter will increase away from the interface 
and add a further stabilizing influence, due to the stabilizing effect of a tensile lateral 
stress; this leads to critical wavelengths that increase with /tl within some range of 
negative T values. However, beyond a certain absolute value of z the destabilizing 
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stiffness reduction associated with high values of Iz( again dominates the stabilizing 
effects of interface-parallel tension and increasing stiffness away from the interface, 
leading eventually to a surface bifurcation instability mode in tension at 7:) which is 
unaffected by k and coincides with the critical tensile stress for k = 0 of Fig. 5a. 
At positive values of z the destabilizing effect of interface-parallel compression is 
counteracted by the decrease in \z( away from the interface (k < 0). As a consequence, 
for z >, z~, the critical wavelength for a gravitationally unstable stratification Ap > 0 
is much larger than its counterpart value for -T (outside the scale of the graph), 
except for values of z close enough to the critical load ~2 where the influence of k 

ceases to be felt. Notice also that for z 2 7Y any sufficiently large wavelength per- 
turbation of a gravitationally stable interface (Ap < 0) will be unstable as a conse- 
quence of increasing layer-parallel compression away from the interface. 

Figure 5c illustrates the effects on interfacial stability of a decrease in the stress 
deviator away froin the interface. As expected, the graph represents roughly a mirror 
image of Fig. 5b. 

Analogous results for the more rapidly softening St&en-Rice material (m = 4) are 
shown in Fig. 6. 

6. CONCLUSIONS 

The instability of a solid/solid or solid/fluid interface is determined by a complex 
interplay of the effects of initial or pre-stress and gravity and is distinguished from 
the classical Rayleigh-Taylor instability in stratified fluids by the existence of a finite 
critical wavelength. Equivalently, there exists a critical stress at which an interfacial 
perturbation of a given wavelength will become unstable. 

For an unstressed elastic half-space with a shear modulus G and a density exceeding 
that of a fluid substratum by some positive Ap, the critical (unstable) wavelength is 

given by 4nG/Apy. For typical values of G z 109/10” MPa, Ap z 500 kg rn~ ‘, g = 
10 m s- 2 one finds L z 106/108 m. The fact that these values are far in excess of any 
relevant wavelength even for geological systems illustrates the importance of the 
destabilizing effects of pre-stress and material softening, both of which are found to 
be capable of reducing critical wavelengths drastically. In addition, there is the effect 
of a finite layer thickness, which will have to be taken into account whenever critical 
wavelengths reach comparable magnitudes. 

The instability of the interface between an elastoplastic layer and a buoyant fluid 
substratum will be promoted both by lateral compression and extension, if the layer 
stiffness is thereby reduced. 

The post-bifurcation behaviour of a destabilized, evolving interface in a two-layer 
solid/fluid or solid/solid system remains to be studied. A particularly important 
question concerns the nature of stable finite-amplitude disturbances and the conditions 
under which they will exist in layers of finite stiffness. 
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