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Abstract

Coincidence intensities and uncertainties are extracted at the statistical limits from y—vy coincidence matrices. The
matrices are decomposed into continuum, ridges and peaks. The continuum is successfully modeled by the product of two
vectors which describe the Compton distributions in the coincident detectors or groups of detectors. The ridges are
represented by the corresponding continuum vector scaled according to the intensity and energy of the associated y-ray. The
peaks are fitted as the product of two, one-dimensional Gaussians. This technique has been applied to the analysis of prompt

" 252
gamma-rays from the spontaneous fission of

reaction.

Cf and the high spin states in '“’Lu populated via the '“*Sn(*Sc, 4n)

1. Introduction

Level schemes of excited states of nuclei can be de-
duced from the analysis of gamma-gamma coincidence
spectra. Larger arrays of more efficient, escape-suppressed
HPGe detectors allow the investigation of complex decays
from heavy-ion reactions or prompt fission products, for
example. However, when the average spacing between the
gamma-rays is comparable to the energy resolution, the
traditional digital gate method for extracting coincidence
energies and intensities can be ineffective.

Emelianov et al. [1] developed a method for the direct
decomposition of coincidence spectra that used a priori
information on energies and intensities of vy-rays obtained
from other experiments. This approach did involve a large
number of degrees of freedom as brought up by Vanin and
Alche [2], who proposed a return to one-dimensional fits
with greater emphasis on the propagation of statistical
errors.

We have developed a technique for decomposing the
coincidence matrix into its main features, namely a contin-
uum (from coincidences of Compton distributions), ridges
(from coincidences of full energy events with Compton
distributions) and peaks (coincidences of two full energy
events). We have greatly reduced the number of parame-
ters needed by successfully modeling the continuum and
the ridges. The peaks are located by a two-dimensional
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peak search. The most probable values and the uncertain-
ties of energies and intensities are extracted from a two-di-
mensional fit. The process has been tested with coinci-
dence data acquired in two different experiments. The
heavy-ion reaction '**Sn(**Sc, 4n)'*Lu [3] data was ac-
quired with an array of eight unsuppressed Ge detectors
gated by high gamma-ray multiplicity. The data from the
spontaneous fission of “>°Cf [4] consisting of prompt
coincidences were obtained with seven suppressed Ge
detectors and a small planar detector (LEPS).

2. Method

Our first approach to direct decomposition of a coinci-
dence matrix resulted in a successful simplification of the
continuum function [5). In subsequent developments we
assumed the ridge associated with each peak found in the
projection required its own description and that the y—y
coincidences were defined as the intersections at one of
those peaks in each axis. This brought us back to the
problems faced by the traditional method, due to the poor
correlation between peaks in the projection and individual
gamma rays. However, we noticed that the shape of the
ridges for the most intense gamma-rays had the same
profile as the corresponding continuum vector. This led to
a universal model for all the ridges parallel to a given axis.
Once the continuum and ridges were accounted for, a
two-dimensional peak search gave us the location of the
coincidence peaks and we were able to take full advantage
of the two-dimensional nature of the data.
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Fig. 1. Comparison of models with
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16310 data obtained with unsuppressed Ge detectors. (a) The projection of the modeled continuum

(lower curve) does not reach the baseline for the total projection (upper curve) since the ridges parallel to the axis of projection also
contribute. However, if multiplied by a single factor CSF (middle curve) we get a good agreement. (b) Average value of RSF determined for
some strong gamma-rays which shows that a good approximation for the ridge intensity can be obtained from Eq. (3).

2.1. The continuum

The continuum function is obtained by projecting the
coincidence matrix onto the axes and using all local min-
ima that are at least 2—3 channels wide and that appear to
be peak-free as a trial vector from which to generate the
continuum. The average counts per channel at the intersec-
tion of all those selected regions can be modeled with Eq.

1)
M(i+ Ai, j+Aj)=VI(i) X VI(j), €))

where Ai and Aj are the widths of the regions centered at
i and j. The value of the continuum vectors VI and VIJ for
points in-between the peak-free regions are obtained by
linear interpolation. The continuum has been covered in
more details in Ref. [5].

2.2. The ridges
We assume that the ridges arise from coincidences of

peaks and Compton distributions. To the extent that the
Compton distributions of the y-rays in coincidence with a
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Fig. 2. Comparison of models with **

given +y-ray are typical of the decays being studied, the
ridge should have the same profile as the continuum
vector. (In effect, we have tested the adequacy of this
assumption.) The intensity of a ridge should be given by
the product of the intensity of the associated vy-ray and the
parallel continuum vector. However, we do not know the
intensity of the vy-rays. A reasonable approximation can be
obtained from the projection, but we go back to the
original problem of unresolved multiplets. Our approach is
to use the information from the projection without having
to decompose the peaks into their components. We first
find the continuum scaie factor, CSF, for each axis such
that the projected modeled continuum times CSF equals
the matrix projection at the peak-free regions:

N N
CSEVI(i + Ai) ), VI(j) = ¥ M(i +Ai,j), (2)
=1 j=1
where N is the number of channels and Ai is the width of
the peak-free regions in the projection onto the i-axis, in
this case. Figs. 1a, 2a and 3a show that Eq. (2) holds well
for different cases. For all the other channels in the
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Cf data involving the LEPS detector and Ge suppressed detectors. (a) There is good agreement

between model and data except at low energies (around X-rays) where it is difficult to find suitable peak-free regions for the continuum
function determination. (b) Average value of RSF for some strong gamma-rays and X-rays. The model function does not seem to be affected

by the different detectors involved.
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Cf data involving only the suppressed Ge detectors. (a) There is good agreement between model and

data. (b) The ridge model (Eq. (3)) still holds and does not seem to be influenced by the suppressed detectors.

projection, the difference, DP(i), between the two terms on
opposite sides of the equality in Eq. (2) is proportional to
the intensity of the gamma-ray and therefore the associated
ridge. The intensity of a ridge is then obtained from

RHI(:, j) = DP(i)VJ(j)RSFj, 3)
where RSF is a scale factor that determines how the
intensity in the projection is distributed to the channels in
the two-dimensional matrix. Figs. 1b, 2b and 3b show that

RSF is basically independent of vy-ray energy and inten-
sity.

2.3. The peaks

The peaks are located by a peak search algorithm that
calculates the statistical significance, SS(i, j), for each
matrix element using Eq. (4) adapted from the one-dimen-
sional method described in SAMPOSO0 [6]:

SS.. p=dd, /sd s (4)
where dd(i, j) and sd(i, j) are given by

m n
dd, ,= Y CM(i+k, j)+ Y CM(i, j+1),

k=—m I=—n
(5)
sd, py=| X CiM(i+k, j)
k= —m
" 1/2
+ 2 CfM(i,jH)] - Q)
I=—n

If SS(:, 1) is greater than about 2.5 and is a local maxi-
mum, then (i, j) is near the center of a peak.

The peaks are fitted as two-dimensional Gaussians
superimposed on the continuum and the intersection of the
two ridges associated with the gamma-rays:

—(1—ip)’* —G =)

207 20'!2

P(i, jy=H exp(

+(VI(i)VI(j)) + RHI(;, j) + RHI(i, j).
@)

The height of a peak, H, is first estimated from a linear fit
using a Singular Value Decomposition algorithm [7] where
the position from the peak search is used. The actual
height and position with the associated uncertainties are
obtained from a non-linear fit using a Levenberg—
Marquardt fitting routine [7].

3. Conclusions

We have developed a method for decomposing com-
plex coincidence matrices that does not require an unusu-
ally large number of degrees of freedom. We are able to
model the continuum and the ridges with a relatively small
number of parameters, about 20 for the continuum and 2
for the ridges (per axis).

This two-dimensional peak search and fitting approach
allows us many potential advantages. From each coinci-
dence peak we can get independent energies and intensities
and their statistical uncertainties. We can find weak coinci-
dences that are not part of a long cascade and would not
stand-out in the projection. Additionally, because of the
greater number of channels available in the fitting region
when comparing with one-dimensional fits, we get a nar-
rower x 2 distribution that gives us better sensitivity in our
goodness-of-fit parameters.
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