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Abstract
An analytic model for the performance of cone beam microtomography is described. The maximum power of a

microfocus X-ray source is assumed to be approximately proportional to the focal spot size . Radiation flux penetrating the
specimen is predicted by a semi-empirical relation which is valid for X-ray energies less than 20 keV. Good signal to noise
ratio is predicted for bone specimens of 0.1 to 10 mm when scanned at the optimal energy . A flux of about 1 X 10 1°
photons/mm 2/s is identified for 0.2 mm specimens. Cone beam volumetric microtomography is found to compare
favorably with synchrotron based methods.

1 . Introduction
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Tomographic evaluation of biologic and geologic speci-
mens, small industrial parts, and small animals can be
accomplished with X-rays. Three collaborating laboratories
have developed methods for volumetric microscopic com-
puted tomography (mCT) with a resolution down to about
12 wm to study the three dimensional (3D) properties of
bone material [1-3] . The method used employs a cone
beam geometry with projections recorded in high magnifi-
cation using an X-ray tube having a very small focal spot
[3] . A similar approach has been used in England [4] and
by investigators using modified electron microscopes [5] .

In general, X-ray mCT performance is limited by avail-
able X-ray flux . This has led to an interest in utilizing soft
X-ray synchrotron radiation. Using the Brookhaven syn-
chrotron, Flannery has obtained resolutions approaching 1
Irm [6]. Similar results have been achieved at Stanford and
in Hamburg [7,8].

For single slice, narrow beam computed tomography
(CT) done at optimal energy, Grodzins [9] has shown that
the total number of X-rays penetrating a specimen is
constant if both the signal to noise ratio (SNR), ul ow of
the CT result and the ratio of the specimen diameter to the
size of the elements in the CT image, D/S, are constant.
In this paper, we analytically describe the It/Q,,, achieved
with volumetric cone beam CT using electron impact
X-ray sources and different bone specimen sizes. The
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2. Methods
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X-ray tube focal spot size, f, along with the target power
is assumed to vary with specimen size . The optimal X-ray
energy is identified for conditions in which the X-ray tube
power is maintained as a constant, rather than assuming a
constant source flux as was done by Grodzins . The radia-
tion flux from microfocus X-ray sources is then compared
to the flux available with synchrotrons .

Cone beam X-ray microtomograms are typically pro-
duced from a series of radiation transmission measure-
ments obtained as a specimen is rotated through several
hundred positions. The transmitted X-ray photons are de-
tected by a two dimensional (2D) detector as an ortho-
graphic projection . This data is reconstructed using a cone
beam algorithm [10] to produce a 31) estimate of the X-ray
attenuation coefficients in the specimen .

In this section, we use a simplified model to estimate
the SNR observed in projections and the propagation of
this noise in CT reconstructions . In a well-designed sys-
tem, measurement noise is dominated by statistical fluctua-
tions associated with the number of radiation quanta de-
tected in each detector element. The SNR for detectors
recording a beam of radiation photons is then :

where S is the signal in one detector element, Qs is the
signal noise, A is the area of a detector element, (~ is the



radiation flux in photons/cm2/s, t is the exposure time in
s, and Ed is the detector efficiency .

The radiation flux distribution incident to the detector
may be written as :

0(0, u, v) = 95o(0, u, v) e- f`'w(r,E)dI

where l is the position within the object along a straight
ray, in cm, l,(l, E) is the linear attenuation coefficient in
cm - ' at l for energy E, 0, is the flux produced by the
X-ray source in the absence of the imaged object in
photons/cm2/s, L is the thickness of the object, in cm,
and (6, u, v) defines the path through the specimen at
position (u, v) in the detector and angle 0.

The recorded signal in units of energy per detector
element is simply S =(A(PtEd)E, where E is the energy
per photon. It is common to define the projection as the
line integral of the linear attenuation coefficient and esti-
mate the projection values as a part of the data acquisition
process :

S'( 0, u, v )
P(B, u, v)= f 1.(l, E) dl= In

0

	

~ S(e, u, U))

	

(3)

The noise for the projection measurement can thus be
written as :

o,P = trs/S = 1/(AOtEd)1
/.

	

(4)

The convolution back-projection algorithm commonly
used to reconstruct the value of the linear attenuation
coefficient function within the object, A(x, y), from a set
of projections, P(9, u, v), can be written in discrete form
as :

iu(x, Y) = - E P* (9, u, v),

	

(5)
V k=1

where v is the number of projection views, P*(B, u, v) is
the projection at (9, u, v) convolved with a reconstruction
filter, and (x, y) is the position within a specimen .

We use at this point equations applicable to 2D recon-
struction from parallel beam projection measurements .
However, if all positions are corrected for magnification to
effective positions within the specimen, the results we
obtain are equivalent to those obtained for cone beam
solutions. In a manner similar to the derivation of Chester
[11], the noise in the reconstructed value for N, can be
derived from Eq. (5) as :

1 a-s 1

	

1
aw 23/2Sv 1/2 S

	

23/25V1/2 ( AYbtEd) 1/,

where S is the spacing of 3D data in the reconstruction
array. This result is specific to the center of relatively
uniform objects, where 0=¢(9, 0, 0) and assumes a
sin(a) T)/w, functional shape to the filter used in perform-
ing the convolution .
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A relationship between electrical current and 0, is
needed so that power may be maintained as an indepen-
dent variable in this analysis. For target elements below a
Z of about 50, a large fraction of the emitted radiation is at
the characteristic energy [12] and the bremsstrahlung radia-
tion can be removed by thin metal filters . Using Michette's
interpretation of an empirical relationship first reported by
Green [13,12] along with the classical relationship between
characteristic energy and atomic number of Eca (Z - 1)2
[14,15] and an approximation for atomic number of A= 2Z
we have derived the following approximate formulation :

E 1 13

K~(EJ = 9.23 X 10-4
E~2 +

o

72.1 fa,

31 3

where E. is the characteristic energy, K,(-) is the source
emission strength in photons/electron/sr, and fa is a
correction for self absorption of radiation in the target .
This equation assumes that the electron accelerating volt-
age to be employed is three times the characteristic energy .
In this simple model we have assumed a constant self-ab-
sorption correction term of fa = 0.5 for all targets .

The specimen has been modeled as a cylinder contain-
ing either regions of dense bone ( Pb = 2.18 g/cm 3) or
methacrylate (pm= 1 .18 g/cm3). The attenuation coeffi-
cients used for each material were computed from the
equation hb = 2.082 X 104pbEc2 795 for bone and 1vm =
2.695 X 103 pmEC

295 for methacrylate . These relation-
ships were based on published values of the attenuation
coefficients for the elements [16] in conjunction with our
composition data on cortical bone and methacrylate resin.
They are valid for energies below about 20 keV and thus
for X-ray targets with a Z less than about 45 .

Bone specimen sizes ranging from 0.1 to 20 mm and
bone volume (BV) fractions ranging from 0.1 to 1.0 have
been considered. The ratio D/S has been assumed con-
stant and equal to 256. The total scan time, v t, has been
fixed at 40 min. The distance of the specimen from the
focal spot, df, has been set such that D/df= 2 tan 5° (i .e .
df varied from 7 to 11 mm) which assures that errors
associated with cone beam reconstruction are minimal [17] .

The focal spot size, f, needed for each specimen size,
D, dictates the maximum X-ray tube power. We assume
that a high magnification geometry is employed with f= S
and thus f varies from 0.4 to 78 [Lm. For small focal spot
sizes, heat dissipation is predominantly radial for a station-
ary target and approximately proportional to f [18] . Based
on operational data from a Feinfocus model 160 in our
laboratory, we have assumed that the maximum power in
W is 1 .4f088 for f in p,m. This is appropriate for a variety
of target metals such as Mo, Y, Ge, Cu, Cr, and Ti which
have Ka characteristic emissions at 17 .5, 15, 10, 8, 5.4,
and 4.5 keV respectively .

For this study, we have first determined the tube cur-
rent in mA from the target power in W. The X-ray tube
output was then computed from Eq. (7), the attenuation of
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Fig . 1 . SNR vs . E. for a 1 mm diameter specimen.

the X-ray beam by the specimen computed from Eq . (2),
and the SNR computed by dividing lc b by the noise
determined from Eq . (7) .

The detector elements are assumed to be scaled down
in size in proportion to the magnification of the object
such that the detector element area, A, is equal to 82 . In
effect, this scales the response of the detector so that it is
at the center of rotation of the specimen and makes the
detector element size equivalent to the spacing of points in
the reconstruction . A constant detector efficiency of 0 .5
was assumed . Eqs . (2) and (6) can be rewritten for conve-
nience, using normalized variables, as :

~ Qr~

ILb )2-23 (

J~

Î
Z1D

	

dNT~

5 ) 4

e
where NT = vtO,D 2 is the total number of X-rays passing
into an object presenting an area of D2 during a mCT
scan .

3 . Results

The sensitive effect of energy on the SNR, li, b/Q'A , is
illustrated in Fig. 1 for a 1 mm diameter object having
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Fig 2 . Energy at which the maximum SNR occurs vs . diameter .
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Fig . 3 . Flux at the position of the specimen vs . diameter

different BV fractions . This result was obtained for a
constant target power of 4.6 W and for S and f equal to
3.9 [tin . Fig . 2 illustrates the energy value which produces
maximal SNR (i .e . the optimal energy). The specimen
transmission, e-/,Al is between 0.08 and 0.14 at this
energy .

The SNR value and the radiation flux at the center of
the object in the absence of the object as a function of the
specimen diameter for scans performed with the optimal
energy are illustrated in Figs . 3 and 4 . For these results,
the power of the X-ray source varies with object diameter .
The SNR at optimal energy is seen to increase with
specimen diameter . This is due to the combined effects of
higher source strength at higher optimal energy and higher
flux at the increased power allowed with tubes having a
larger focal spot size. The decrease in flux at the larger
source to object distances used for larger objects is other-
wise compensated for by the larger voxel size used with
larger objects .

Our analysis predicts a flux at the specimen position of
about 1 X 1010 photons/mm2/s for specimens of 0 .1 to
0 .3 mm diameter. In comparison, investigators doing mCT
at synchrotron laboratories have reported using a flux in
the range from 0 .3 to 30 X 1010 photons/mm2/s [19,7,201 .
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Fig . 4. SNR obtained with an optimum energy vs . diameter.



Moreover, the SNR predicted for the method modeled is
equal to or much greater than that needed for the evalua-
tion of bone.

4. Discussion

The magnification geometry assumed in this study
makes efficient use of the X-ray source . The alternative is
a contact geometry with a large f for which detail is
observed with small detector elements . f can then be
increased in proportion to df however, the flux at the
specimen decreases with d2 while the power, and thus the
flux, increases only in proportion to f" where n = 1, 3/2,
or 2 for a microfocus, rotating anode [21], or large station-
ary targets . As a result, the available flux through small
specimens is better for a microfocus source and a large
detector in a magnification geometry than for large source
and a small detector in a contact geometry .

An important advantage of high magnification, cone
beam geometry is the ability to use large detectors which
can absorb a large fraction of the X-ray beam. With the
cone beam geometry, a single detector with large, thick
elements can be used to image specimens of various size .
For example, a detector with element thickness and width
of 50 wm has an Ed of about 0.90. Because of the parallel
X-ray beam emerging from synchrotron radiation sources,
thin high resolution detectors have been necessary despite
their poor efficiency [7] . A 1 l.Lm thick detector with a 1
wm resolution may be needed for small detail synchrotron
mCT and such detectors will have an Ed of about 0.05 .
Furthermore, a detector in a parallel beam system cannot
be simply adjusted for the examination of specimens which
have significantly different diameter .

Noting that small specimens require a higher incident
radiation flux in order to obtain the same total amount of
radiation penetrating the specimen, Grodzins concluded
that only synchrotron sources would have sufficient flux to
perform mCT on small objects [9] . Subsequently, many
authors have reaffirmed the notion that synchrotron X-ray
sources are greatly superior to X-ray impact sources for
mCT [6-8,20] . In general, we believe that these authors
have not fully acknowledged the increase in flux that is
achieved when small specimens are placed close to a
microfocus source, the advantage of radial heat transfer in
microfocus X-ray sources relative to line-focus sources,
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and the value of using detectors with high efficiency which
is made possible by high magnification in a cone beam
geometry . We account for these factors in the analysis
presented here and conclude that cone beam, volumetric
mCT is a practical method for examining small specimens
and compares favorably with synchrotron based methods.
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