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Abstract 

We interpret the energy conditions in non-Riemannian spacetimes by applying them to a family of stationary, axially 
symmetric solutions for the gravitational field equations for an Einstein-Cartan theory in a Riemann-Cartan spacetime. 

1. Introduct ion 

Energy conditions are frequently used to motivate the physical reasonableness of  interior solutions to the 
gravitational field equations. In general relativity (GR) ,  there are three conditions in common use [ 1,2]. One 
is the weak energy condition, 

Tijuiu j ~ 0, ( 1 ) 

where T/j is the stress energy tensor and u i is a timelike vector. This condition is normally interpreted as 
requiring the energy density as measured by an observer moving with velocity u i to be positive. The condition 
may also be used to discuss the non-divergence of  null geodesic congruences. A second energy condition is the 
dominant energy condition. Its statement requires the weak energy condition plus the additional statement that 

TijuiTJkuk <~ O, (2)  

i.e., that the local energy vector, Tiju i, be non-spacelike so that the velocity of  matter flow will not exceed the 
speed of light c. The third energy condition, the strong energy condition, is 

(Tij - l g i jZ)uiuJ ~ O. (3) 

This condition is sometimes used as a physical statement on the relative size of  stresses versus energy content. It 
can also be used to discuss the focusing of  timelike geodesic congruences. The interpretation of these conditions 
is the one usually presented for Riemannian geometry. Stress energy tensors that do not satisfy some of  these 
conditions are usually regarded as being unphysical. As sometimes happens, the results of  literally applying 
the energy conditions, in the form of  the mathematical statements given by Eqs. ( 1 ) - ( 3 ) ,  are used in place of  
the actual meaning of  the conditions themselves. There has been a belief that negative energy densities always 
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imply a violation of one or more of the energy conditions. Recently Parker and Wong [3] and Kandrup [4] 
have discussed violations of the strong energy conditions for GR. The question of the validity of the energy 
conditions in non-Riemannian geometry is of interest. 

In this paper we would like to examine the energy conditions directly for an Einstein-Cartan theory in 
RC spacetime. Unfortunately the energy conditions for GR in Riemannian spacetime given by Eqs. ( 1 ) - ( 3 )  
are not valid in their form for T/j developed for an EC theory in RC spacetime, as has been discussed, in a 
similar context, by Baekler and Mielke for the Poincar6 gauge theory since the Hamiltonian structure in RC 
spacetime is different from that in Riemannian spacetime [5]. In Section 2, we will briefly discuss the results 
of an EC Lagrangian-based theory in RC spacetime [6]. Thus one can in principle develop a Hamiltonian for 
the theory which will yield the energy conditions in RC. Alternately we can always write the field equations 
in their "effective" Riemannian form for which Eqs. ( 1 ) - (3 )  would then be valid [7,9] (also referred to 
as "pseudo-Einsteinian" in Ref. [8]) .  We discuss this development in Section 3 and defer the Hamiltonian 
treatment to another work. 

To facilitate our discussion, we have generated a family of stationary, axially symmetric constant curvature 
RC solutions. The solution that we will use in our example has a constant curvature general relativistic limit. 
There are many solutions to the field equations with torsion in the literature. Some of the earliest work has been 
done by Kuchowicz [ 10] and Tafel [ 11 ]. More recently, Krisch and Smalley [ 12], using a spin fluid energy 
content, have extended some general relativistic solutions to spacetimes with torsion. The metric solution that 
we have found, since it describes a constant curvature spacetime, is not new. Such spaces are well discussed 
in the literature [ 13]. However, the matter content of our solution is new and it is that aspect of our solution 
which is necessary to discuss the RC energy conditions. In the next section of the paper we derive the solution 
and apply to the effective-Riemannian form in Section 3. 

2. Rotating cosmology in Riemann-Cartan spacetime 

This family of rotating cosmologies is based upon a Lagrangian-based, self-consistent spinning fluid descrip- 
tion [6] for the Einstein-Cartan theory which is a generalization to RC spacetime of a Weyssenhoff fluid with 
spin density and particle number conservation [ 14,15]. The metric field equation takes the usual form 

Gij - V k (  Sij k -- s j k i  "~- s k i j )  = kTij, (4) 

where the holonomic coordinates are represented by Latin indices, i = 0 . . . . .  3, ~Tk is the covariant derivative 
in RC spacetime, and k = 8~G where G is the gravitational constant. The Einstein tensor is given by 

Gij = Rij  - l g i jR ,  (5) 

where Rij is the Ricci tensor, gij is the metric tensor with signature ( - 1 ,  1, 1, 1), and R = goR 0 is the Riemann 
scalar. The torsion tensor is given by 

Sij k ~- "~[ij] k, (6) 

where the connection 

Fij k = {ij  k } -~ Sij k - s j k i  -~- sk i j  (7) 

and {k} is the Christoffel connection. The self-consistent energy momentum tensor for a spinning fluid is 

T0 F s =r,~ +r~, (8) 

with perfect fluid part 

T/~ = [p(1 + e )  +p]uiuj +Pgij (9) 
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and spin density part 

Ti s = 2pu(isj)k(t  k + ~k(pU( iS j )  k) --  p(Ok(iSj)  k,  (10) 

where u i is the four-velocity, p is the matter pressure, p is the matter energy density, e is the internal energy, and 
the four-acceleration, tik = unXTnu k, is the covariant directional derivative along world lines. The spin density is 
given by 

Si j .w. p s i j  , (11) 

where [ 14] 

Sij  = k(  x )  ( a l i a 2 j  - -  a l j a 2 i )  , (12) 

and k ( x )  is a covariantly constant scalar function, and a~i is a set of tetrads that satisfy 

aUia~,j = gij (13) 

and 

atLka~ k = r//~/3, (14) 

where a 4i = u i, and r/u~,/z = 1 . . . . .  4 are the anholonomic (Minkowski) metric and coordinates, respectively. 
The tetrad angular velocity is given by 

o)ij -~ gl~ ialzj. (15) 

The torsion f ie ld  equation is given by [6,15] 

Si j  k = I K S i j u k .  (16) 

Note that the relative simplicity of the field equations, Eqs. (4) and (16), is due to the particular constraint 
imposed by particle number conservation which forces the torsion vector to vanish. 

The form of our stationary metric in spherical coordinates is given by 

ds 2 = - f  dt 2 - 2k dt d~b + g d~b 2 + e u dr 2 + e b dO E (17) 

in terms of the unknown functions f ,  k, g,/z, and b. In  the axially symmetric solution given here, we have 
further imposed the constraint that both the vorticity vector, Ok, and the spin density vector, Sk, be polarized 
along the axis of rotation given by 0 = 0, where 

12k = gke(- -g)  --1/2~'gmiJumf2ij ,  (18) 

e emij is the totally antisymmetric symbol in four dimensions, and the vorticity tensor is given by (see, e.g., Ref. 
[16]) 

$'~ij = - V [jUil - -  (lt iUjl . (19) 

The vector Sk is defined similarly to Eq. (18) in terms of the spin density given by Eq. (11). 
Consistent with the above constraints, we have used the tetrads 

0 e -u /2 /x /2  e -~/2/x,/2 0 

aU i = - k / D v / -  ~ 0 0 v / - f  / D  (20) 
0 - e  - u / 2 / v 5  e - ~ / 2 / v ~  0 ' 

1/V/"f 0 0 0 
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where D 2 = f g  + k 2, columns are given by the holonomic coordinate l = (0, r, 0, q~), and rows are given by the 
anholonomic coordinate v = (1 ,2 ,  3, 4) .  In terms of  the tetrads given in Eq. (20) ,  the non-zero components of  
the spin density are Sr~ and So~. Note that for polarization of the spin along the z-axis, a non-zero component  
Srocan not occur. 

We make the following choices for the metric potentials, 

f = raF(O) ,  k = r~G(O),  e ~' = r m, 

e b = rbe  ~(°), D = rSD(O) ,  g = (D  2 - k 2 ) / f ,  (21) 

where a , /3 ,  s, m, and y are constants. 
We look for solutions to the RC field equations in which the spin and the vorticity are polarized along the 

axis of  rotation and which satisfy the relation 

f k r  - k f r  f ko  - k f o  
Sr~ = f3/2 ' SO~ - f3/2 (22) 

Note that for polarization of  the spin along the 0 = 0 axis (z-axis) ,  the spin component Sro is not allowed. 
We find a variety of  solutions to accommodate this spin-vorticity condition. The solution that we describe 

here is one which has a positive pressure but a negative energy density, since it is this kind of  solution which 
we want to use to discuss the energy conditions. The other solutions will be reported elsewhere. 

The solution we wish to examine has the parameters 

m = - 2 ,  b = 0 ,  D ( 8 )  = F n ( 8 ) ,  H =  a -  s 
a - 2s 

For these parameters, the equations that need to he satisfied are 

F' F'  fl '  f F '  ~ 2 a e~ 

F 2F  = ~,-F')  = ( 2 H -  1) 2 

and 

H ~  ! ( 2 3 )  2" 

For this solution the pressure and energy density are given by 

- p  = p = lo~2 d- s 2 - so~. 

A particular solution to these equations is H = 0, a = s , p  = - p  = ½a 2, 

ds 2 = - A r  a cosa(0)  dt 2 - 2Br2a-rcosr (O)  ddp dt + dr2/r  2 d- tan2(0) d02 q- g d~b 2, 

with 

(24) 

(25) 

(26) 

(27) 

g = ( C 2 / A ) r a c o s  -a (O)  - (B2/A)r3a-2" /cos%'-a(O) ,  (28) 

in terms of  the arbitrary parameters A, B, C, and y. The case H = ½ yields a similar solution. 
The solution of  the field equations given by Eqs. (27) ,  (28) self-consistently gives the magnitude of  the 

spin density 

KS = -21/2rI( B / C )  ( ~ - y ) r  a-~' cos3'(0), (29) 
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where r /=  ~0123, with pressure 

Kp = ½a 2, (30) 

and the energy density 

K~ = _½,~2 (31) 

where ~ = p(1 + e). This solution requires that the magnitude of the vorticity, given by Eq. (19), in RC 
spacetime vanishes, but that the magnitude of the Riemannian vorticity (using the Christoffel connection) takes 
the value 

O {} = --½KS. (32) 

In our solution, the overall angular momentum vanishes, but both the orbital angular momentum density and the 
spin density are finite. This should be contrasted with a purely rotating cosmology such as the Grdel universe 
[ 17] or a Grdel universe with non-zero Reimann-Cartan vorticity [ 18]. The metric equation (27) has some 
interesting properties. It is a space of constant curvature for all a and y, 

R = - 2 a  2. (33) 

The space time is an Einstein space with 

Rij = - lo t2g i j .  (34) 

Because it is an Einstein space of constant curvature, it is also recurrent symmetric and Ricci recurrent [ 19]. 
The metric can be cast into an exponential form with the coordinate transformation 

{ x + y )  cos(0) = bexp ( y _ . ~ ) ,  (35) r = a e x p \  v'~ J '  

with a, b constant. With these tranformations the metric becomes 

ds z = - a l  exp(otxv~) { dt+Bl exp[ v ' ~ y ( a - y )  ] d~b} 2 + (dx)  z +Cl  exp(ayv/'2) (d~b) 2 + (dy )  2, (36) 

with AI, BI, C1 constants. In this form, it is clear that the GR limit of this metric ( a  = y) in addition to being 
a constant curvature, static Einstein space, is also decomposable. 

3. Energy conditions as effective Riemannian conditions 

We have already indicated earlier that the results of applying the energy conditions is not the same as the 
conditions themselves. The correct interpretation of the above energy conditions in an RC spacetime as opposed 
to their meaning in Riemannian spacetime is not clear. We propose that in an RC spacetime, an effective stress 
energy tensor should be used in interpreting the energy conditions. 

To this end we reexpress the RC field equations into an effective GR form with a corresponding effective 
energy momentum tensor. The left-hand side of the field (Eq. (4))  can be rewritten as 

Gij - V k (  Sij k -- s jki  "~ ski j )  = G{} ij q- spin terms, (37) 

where the curly bracket in the superscript of G represents the Riemannian Einstein tensor. Using this decom- 
position, we can write Eq. (4) in the effective Riemannian form 

1 ^ : t ' , x  ¢,  &a KT{}jk = G{}jk = xTRCjk--  (2S(jlxlmSk)m x - t -2S j xmSkxm-  SmXjSmxk) -t- i•jkl, O emOx +2sexmsxme) ,  ( 3 8 )  
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where now TRCjk is the Riemann-Cartan energy momentum tensor given by Eqs. (8 ) - (10)  and the curly bracket 
in the superscript of the energy momentum tensor represents the effective Riemannian energy momentum tensor. 
The effective weak energy condition now becomes 

KT{}jkUJu k = - - l t e  2 W 3(KS)  2, (39) 

which is satisfied ( i.e. /> 0) for KS ~> (2)1/2tr" Note that this is a model dependent condition, i.e. the metric 
must satisfy certain boundary conditions. 

Since the weak energy condition can be satisfied, it is only necessary to determine whether the vector 
Vk = xT{}#u  j can be chosen to be timelike so that the effective dominant energy condition is satisfied. After a 
short calculation, we find that 

V 2 = ~(ct - 27)2(KS) 2 + l ( a  - 2) , ) (a  - T')--1 (KS)4 _.[_ I ( K S ) 6 ( t ~  _ ,)t)--2 

- -  [ I_~(KS)4  _ 3 ~ 2 ( K S ) 4  _~_ I ~ 4 ] .  (40) 

Now the weak energy condition is satisfied for KS/> (~)l /2a,  we can then attempt to find a model (i.e., adjust 

boundary conditions) for which V 2 ~< 0. Such an example occurs for 3/= 0.7or and KS = (2)1/2a for which 

V 2 = - 0 . 0 1 a  4. (41) 

This implies that the dominant energy condition can be satisfied as well. 
The effective strong energy condition is easier to satisfy. We find 

K(T{}jt  -- l xT{})uJuk  = --½a 2 + (KS) 2, (42) 

which is positive providing that KS >>. a/x /~.  

4. Conclusions 

Although the negative energy density given by Eq. (31) is surprising, there may yet be cosmological 
consequences for this solution since the effective strong energy conditions can be satisfied for certain choices 
of the parameters in the family of solutions given by Eqs. (27), (28). It is interesting to speculate that the 
negative energy density in the solution presented here might suggest applications to wormholes [20]. 

As another approach for spinning fluids which is not simply related to the study of energy conditions applied 
to non-Riemannian spacetimes is to study instead a complementary problem which considers these energy 
conditions for self-consistent spinning fluids in GR [6]. This would involve, of course, the task of solving the 
field equations for that theory. However, Martins et al. [22] indicate that constraint conditions [23,15] on the 
field equations seem to prevent meaningful cosmological solutions in GR. The solution shown in this work 
thereby re-emphasizes the point that the correct arena for self-consistent spinning fluids resides in RC spacetime 
even though one should consider effective energy conditions in order to check for viability of solutions. 
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