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Abstract

The Johnson-Neyman (JN) procedure, as originally formulated (Star Res Mem, 1 (1936) 57-93), applies to a situ-
ation in which measurements on 1 dependent (response) variable, X, and 2 independent (predictor) variables, Z, and
Z,, are available for the members of 2 groups. The expected vaue of X is assumed to be a linear function of Z, and
Z,, but not necessarily the same function for both groups. The JN technique is used to obtain a set of values for the
Z variables for which one would reject, at a specified level of significance « (e.g., & = 0.05), the hypothesis that the
2 groups have the same expected X values. This set of values, or ‘region of significance,” may then be plotted to obtain
a convenient description of those values of Z, and Z, for which the 2 groups differ. The technique can thus be
described as a generdlization of the analysis of covariance (ANCOVA) which does not make the assumption that the
regression coefficients for the regression of X on the covariates, Z, and Z,, are equal in the groups being compared.
In this paper we describe, illustrate and make available a menu-driven PC program (TXJIN2) implementing the JN pro-
cedure.

Keywords: Analysis of covariance; Nonparallel regressions;, Region of significance; Three-dimensiona graphics, PC
program

1. Introduction

In a recent paper [1], we described and im-
plemented a method for dealing with nonparallel
regressions in the analysis of covariance (AN-
COVA) where we had exactly 2 groups (TX =
treatment, C = control), and pre- and post-TX
measurements on each, the pre-TX value acting as

* Corresponding author.

the (only) covariate. This was an application, in a
specia case, of the so-caled Johnson-Neyman
(IN) technique[2-5]. The JN technique has since
been generadized to dlow a larger number of
covariates and, in this paper, we extend our discus-
sion — and program — to accommodate 2 con-
comitant variables. The method and program are
illustrated using 2 sets of data. The first has but a
single covariate, and is used mainly to illustrate the
computations, and to tie the present discussion
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and notation to [1]. In the second, 2 covariates are
included. The technique is not limited to 2
covariates but, when more are present, the graphi-
cal part of the output -which is perhaps the most
interesting from the practical standpoint — is dif-
ficult to implement. We begin with a description of
the JN procedure. We maintain the basic notation
established in [1]; in particular, Z,; denotes the
pre-TX value for the i individual (1 =1,2, ... .np)
ingroup g (g = 1, 2), and X,; the corresponding
post-TX vaue. Here, however, it will be con-
venient to use matrix notation in describing the
computations. We follow [5] closgly in our
development.

2. The Johnson-Neyman technique

The JN procedure, as originaly formulated in
[2], appliesin situations in which measurements on
1 X variable and 2 Z variables are available for
each of the individuals comprising 2 groups. The
JN techniqueis used to obtain a set of values of the
Z variables for which one would reject the hypo-
thesis that the 2 groups have the same expected X
vaue a a given level of significance (eg.,
a=0.05). Thisset of Zvaluesisreferredto asa
‘region of significance'. Thiswasillustrated for the
special case of asingle Z variablein[1].

We now consider the JN procedure when, say,
Q covariates (Z variables) are available. These
may be any measurements made at baseline, not
only the premeasure matching the postmeasure, X.
It is assumed that the conditional distribution of
X, given Z; is normal (Gaussian) with the same
variances in the 2 groups, and that

E(Xgilzgi) = ﬁOg + B'ngi 1)

We use boldface type to indicate vectors and/or
matrices. In the above, Z,;isQ x 1, containing
the values of the covariates for a given individual;
and B, is the Q x 1 vector of corresponding
regression coefficients (8,, is the ‘intercept’).

Letting 1, denote the n, x 1 vector of 1°s, if we
define

Zg(Q X ng) = (ZglaZng R Zgng) #)

xg(ng X 1) = (XglngZ’ oo Xgng), (3)

- 1 - 1

ZLQx1) = —Z1,X,=—X;l, Q)
1

C(@xQ) =Z,2Z, - " (Zg10(Z,1,)’ (%)
(-4

and
1

W@ x1) = Z)X, - n— (Zg1)(Xg1y) (©)
4

then we can estimate

Bg and Bog by

b(Q x 1) = C;'W, @)
and

bog =X, — by Z, ®)

The error mean square will be written s2 = S%f
where

2
2= [x;xg
g=1

I
- (X412 - b;wgl )
hg

and
2

f= YL -0-1 (10)
g=1

These quantities are needed to estimate and
judge the goodness-of-fit of the model. We turn
now to constructing the region of significance. Let
Z(Q x1) = [Z,Z,, ... Zy)' denote a set of
values of the Z variables. Define

AZ) = (Bor + BAZ) — By + B'2Z)
= (Bor—Bo) + B1-B)'Z a1

which is the true difference in expected values of X
in the 2 groups at the ‘point’ Z. This can be
estimated by

D(Z) = (bgy — byp) + (by—~by)'Z (12)
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We adso define

2

Wz)= Y, [i +Z-ZyC'@- Zg)1 (13)

n
g=1 L8

Then the N ‘region of significance’ consists of the
set of al points Z such that

R.(Z) = DXZ)-t}_an(W@)s>0  (14)

wheret; _ .» (N isthe 1 — /2 percentile of the ¢-
distribution with ¥ degrees of freedom. We use the
notation & to denote the set of points for which
Eq. 14 is satisfied. For any point Z in®, one can
regject A(Z) = O at level . Thisis for any specified
individual point in ®&. We use the notation Ry(Z.)
to represent the marginal (one-at-a-time) function
defining the JN region of significance. Simulta-
neous inferences, for all points in another,
somewhat smaller set ®g, can be obtained by
using

Ry(Z) = DXZ) (13)
- (@ + DF_o(Q + Lfw@)st>0

where Fy _ (@ + 1 /) isthe 1 - o percentile of the
F-distribution with Q + 1 and ¥ degrees of
freedom.

It is perhaps more useful to express Egs. 14 and
15 in terms of confidence intervals for A(Z). For a
specified Z, Eq. 14 becomes

D(2) coucty - (NN 2)s21? (16)

while the ssimultaneous interval is, from Eq. 15,

DZ)x [(Q + DF-o(@ + LIp@sA” (1)

It may be appropriate to consider the difference
between Ry(Z) and R¢(Z) in more detail. Given a
single, prespecified point Z, one can compute
Ry(Z) at that point: if R,,,(Z2) > 0, the expected
values of X in the 2 groups differ significantly for
that given value of Z. It does not, however, follow
from this that there is a significant difference be-
tween the 2 groups simultaneousdly for al pointsin

the region where Ry(Z) > 0. A statement of this
latter type requires the use of simultaneous confi-
dence bounds, and this is what is afforded us by
R«(Z). Having determined Rg={Z: R(Z)>0},
one can conclude that the expected values of X in
the 2 groups differ significantly for al points, Z, in
Rs. This extension of the JN procedure was
developed by Potthoff [4] who may be consulted
for more details and examples.

3. N vs. ANCOVA

It is usual to test the hypothesis H: g8, = 8,
before applying JN. If this H is not contradicted
by the data, one might prefer to use ANCOVA
since he/she will generaly be rewarded with
sharper tests and/or confidence intervals. On the
other hand, the JN technique will be preferred by
others since it does not depend on the (abeit
testable) assumption that 8, =8,. In our pro-
gram, we test H, and perform the ANCOVA for
those who wish to follow the common strategy of
testing first and deciding later. To perform the test,
we compute

b =(C;+ C)~'(W; + Wy (18)
and

2
1
si= Y [x;xg - n—(x;lg)z]
g=1 ,

4
- b (W, + W) (19)

which is the error sum of squares (cf Eq.’9) under
the model with 8,=8,. Then

SA _ §2

F= ZSE)/Q 20)

Self

may be compared with the F(Q,/) distribution to

test 8,=8,. The (1 - «) x 100% confidence in-
terval for By — By When 8, =B, is

Y[ '—Yz - b'(zl - Zz):l:t*l:—l‘ + L
ny n;
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+ X - X' (€ + C)\(X, - 7_(2)]

sA 12
gererer e

where t* denotes the value t; _ on(m + n,— Q -
2).

4. Examples

We first consider data originaly collected by
Rikkers et a. [6] and later used by Brogan and
Kutner [7] to compare and contrast some of the
analyses which are often used in two-group,
pretest/posttest Situations. The data were gathered
as part of a prospective randomized surgical trial
in which cirrhotic patients were allocated to either
a nonsel ective shunt (standard operation or ‘ con-
trol’) or to a selective shunt (new operation). The
dependent variable is the maximal rate of urea syn-
thesis (MRUS), which is a measure of kidney func-
tion: poor liver function is associated with low
MRUS values. The purpose of the analysisis to
test for a difference between the treatments, using
the pretreatment measurement as the (single)
covariate. The data, as assembled into an ASCI|
file for input into our program, are shown below:

15148
13555
166 60
14035
13936
14643
152 46
14254
23416
240 36
23416
23618
23832
23214
24420
25043
2 60 45
26367
25036

242 34
24332

The 3 columns comprising the data set are, respec-
tively, the group indicator variable, and the pre-
and post-measurements. The T group is indicated
by a ‘1’ in column 1; the C group by a ‘2’ in column
1. Upon issuing the command gsruni txjn2, and
giving the name and location of the ASCII file, the
user is prompted for the confidence coefficient to
be used in constructing the confidence intervals (it
is set at 0.95 for this example).
For this data set, we have

Z, = [51,35,66,40,39,46,52,42]

Z, = [34,40,34,36,38,32,44,50,60,63,50,42,43]
'y = [48,55,60,35,36,43,46,54]

X', =[16,36,16,18,32,14,20,43,45,67,36,34,32]

Thefirst piece of output is a plot of the individu-
a changes as shown in Fig. 1. These are color
coded (on the screen) for group membership. This
plot may be useful in describing the overall interin-
dividual patterns of change, group differencesin
change patterns, and in identifying outliers. The
numbers on the far right of the inset refer to the
case numbers of subjects in the data set. Next we
plot the mean changes as shown in Fig. 2. It is
clear from Fig. 2 that TX group (#1) is maintaining
their MRUS values, while those who received the
standard operation (#2) are deteriorating.

The descriptive statistics for the 2 groups are
printed in the form:

NUMBER OF SUBJECTS: 21

TREATMENT GROUP:

N1=8

ZBAR1 = 46.3750 SD = 9.8697 VAR = 97.4107
XBARI = 42.1250 SD = 8.9831 VAR = 80.6964
DBAR1=0.7500 SD = 9.7358 VAR = 94.7857

RZX =0.4699
RZD = -0.5802
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Fig. I. Pre- and post-individual MRUS values. Numbers in the inset refer to the sequential order of subjects in the data set.

O

[so]

~r L -0

or G- — &

s

< |-

ok

NS

<+ L

@L

ok

™ L

ok

o F

oL

ok

ok

el

ok

o

» 0 e —T

8—— #2

Pre Post

Fig. 2. Pre- and post-mean MRUS valuesin the 2 groups. #1 is the treatment group; #2 the control.
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CONTROL GROUP:
N2 =13
ZBAR2 =43.5385 SD = 9.7947 VAR = 95.9359
XBAR2 = 31.4615 SD = 15.0644
VAR = 226.9359
DBAR2 = -12.0769 SD = 7.6317
VAR = 58.2436

RZX = 0.8967
RZD = 0.4867

We next compute
1
C,=2,72,- g(z,ll)(zlll)' =68 1.875
|
Cz = ZzZ'z - :(Zzlz)(lzlz)' =1151.2308

1
Wi =Z,X, ~(Z1)(X 1) = 291.625

1
W, =Z,X,- E(zzlz)(x'2 1,) = 1587.7692
Then

b, = C{'W,=0.4277

bo =X, -b4Z, = 27.2913
b, = C;'W, = 1.3792

by =X, - b’,Z, = -28.5864

and

1
S:=X1X, - 3 X)) =~ biW + X3X,

1
- TlE(X'zlz) - b'sz = 973.5434
f=(8-2+(13-2)=17
s2=8%f=57.2673

Our program next plots separately fitted regres-
sions of the postmeasures on the premeasures in
the 2 groups, as shown in Fig. 3. As mentioned

E T A S S R T

60

50

40

30

20

o [ [
30 34 38 42 46

; — O~ Treatment 1
50 54 56 |[f—— Treatment 2

Fig. 3. Separately fitted regressions of postmeasures on initial MRUS values. One must assume that these are parallel to proceed

with ANCOVA.
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earlier, the ANCOVA assumes these are parallél,
contrary to what Fig. 3 seems to indicate.

To carry out the forma test for equality of
slopes, we compute

b=(C, + C)~'(W, + W,) = 1.0253

1 1
S2 = XXy = S (X11) + X3X, — —(X51)
-b’(W;+W,) = 1361.2542

and

_ Sé-S 6.77
Sif

Our program summarizes the above information
by printing

ESTIMATES OF PARAMETERS

B1= 04277

B2 =1.3792

BO1 = 27.2913
B02 = -28.5864
B =1.0253

SSEF = 973.5434
DFF =17

MSEF = 57.2673
SSER = 1361.2542

F OBSERVED = 6.77
P VALUE = 0.0186

Most of this output is self-explanatory. Some ter-
minology which may be useful in connecting the
above development to the general linear model is:
SSEF is the error sum-of-squares for the full
model (S2); DFF is the number of degrees of
freedom for the full modd (f); MSEF is mean
square error for the full model (s%); and SSER is
the error sum-of-squares for the reduced model
(82). This is consistent with the terminology
employed in [8,9].

In any event, since Fygs(1,17) = 4.45, we reject
equality of dopes at the 5% level of significance
(our program computes the P vaue for this hypo-
thesis, viz.,P = 0.0186). This indicates that the dif-
ference between the adjusted mean differences for
the groups depends on Z. When B, # 8,, the dif-
ference between the groups may be significant for
certain values of Z; not significant for others. And
this is what the JN procedure is designed to
accomplish — to determine those vaues of Z for
which significant differences exist. Thus if one
rejects H:8, = 8, or, simply, does not choose to
make this assumption, the user will continue with
the JN analysis which constitutes the subsequent
output from our program.

The value of D(2) as given in Eqg. 12 and the
lower and upper limits for the marginal and simul-
taneous confidence intervals defined in Egs. 16
and 17, respectively for several values of Z are
shown below and plotted in Fig. 4. The user has
control of the values of Z for which the confidence
intervals are to be computed, and which vaues of
Z will beincluded in the plots. He/she is prompted
for theinitial and final values of Z and the incre-
ment between them. In the example below, we use
30(5)65, i.e., we begin at Z = 30 and work up to
Z =65in steps of 5. (The value Z = 51 was com-
puted separately to make another point.) In Fig. 4,
the confidence intervals shown are the simulta-
neous intervals.

Marginal Simultaneous
z D(2) Lower  Upper Lower  Upper
30 21.33 13.46 41.20 9.15 44.95
35 22.51 11.80 33.35 8.89 36.26
40 17.82 9.48 26.15 1.23 28.40
45 13.06 5.80 20.32 3.84 22.28
50 8.30 0.20 16.40 -1.99 18.59
51 7.35 -1.12 15.82 -3.41 18.12
55 3.54 -6.81 13.96 -9.68 16.77
60 -1.21 -14.66 12.24 -18.3 15.87
65 -5.97 -22.80 10.86 -27.4 1541

If O (zero) isin the confidence interval correspon-
ding to agiven value of Z, there is no significant
difference between the groups at that value of Z.
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It is seen from the numerical results and/or Fig. 4
that the region of significance consists of those
values of Z, roughly, for which Z < 50. One can
also get some fedling for the differences in the
widths of the marginal and simultaneous confi-
dence intervals from the above results. The simul-
taneous intervals are considerably wider. While
Z =50 isinthe margina region of significance, it
is not in the simultaneous region of significance.
The largest integral value of Z which is in the
simultaneous region of significanceis Z = 48 (cf
Fig. 4). At that point, D(Z) = 10.21 and the 95%
simultaneous interval is (0.625, 19.79).

Our next example is a continuation of the first.
We add a second covariate (age) to illustrate the
output in this situation. X; and X, are as before,
but now

Z = [é@ 88 66 28 6 44 60 QG].

and

RZX11 = 0.4699
RZX12 = 0.6466

RZD11=-0.5802
RzD12 = 0.3962

CONTROL GROUP:
N2=13

ZBAR21 = 43.5385 SD21 = 9.7947
VAR21 = 95.9359

ZBAR22 = 65.3077 SD22 = 5.2818
VAR22 = 27.8974

XBAR2 = 31.4615 SD = 15.0644
VAR = 226.9359

DBAR2 = -12.0769 SD = 7.6317
VAR = 58.2436

RZX21 = 0.8967

zZ, = [34 40 34 36 38 32 44 50 60 63 50 42 43
64 62 61 58 60 69 65 72 75 70 69 59 62

where the second rows of Z, and Z, are the (fic-
titious) ages of the subjects.

Without showing the intermediate computa-
tions, the descriptive statistics in this case are now
given in the form:

NUMBER OF SUBJECTS: 21

TREATMENT GROUP:
N1=8

ZBARI11 = 46.3750 SD1 1 = 9.8697
VARI1 = 97.4107

ZBARI12 = 62.2500 SD12 = 3.2404

VAR12 = 10.5000
XBARI = 42,1250 SD = 8.9831 VAR = 80.6964
DBARI = 0.7500 SD = 9.7358 VAR = 94.7857

RZX22 = 0.4547

RzD21 = 0.4867
RzZD22 = 0.0544

These are, of course, much the same as before
except now we have a second covariate and the
output is labeled to reflect this fact. For example,
RZD22 is the correlation between D and 22 in
group 2, i.e., the first 2 signifies group member-
ship, the second the second covariate. It is seen
that the average age for subjects in the second
(control) group is somewhat higher than that for
group one (ZBAR12 = 62.25, ZBAR22 = 65.3).
Next we print

ESTIMATES OF PARAMETERS
B1=0.3240 1.5974
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Fig. 4. Region of significance for the MRUS data. Vaues of Z for which the zero line is not within the confidence bands constitute

thisregion, i.e., values of Z < 48.

B2 = 16181 -0.6745

B01=-67.3423
B02 = 5.0598

B = 0.9402
SSEF = 706.7
DFF =15
MSEF = 47.12
SSER = 1326

F OBSERVED = 6.5708
P VALUE = 0.0089

It is seen that we reject the equality of slopes hy-
pothesis. This would ordinarily prompt users to
not use the ANCOVA and to proceed to the JN
technique. Nevertheless, regardless of the outcome
of thistest for equality of slopes, at this point in
our program we print the confidence interva (Eg.

50

40

o(Z)

Fig. 5. D(Z) for various values of initid MRUS value and age.
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21) for By — By Which is computed under the
assumption that 8, = 8,. In the context of our
example, the program prints

Confidence interval for B01 - B02 assuming Bl = B2

Lower limit Upper limit

4.662 23441

This confidence interval corresponds to what one
would get from the routine use of the ordinary
ANCOVA. If the data do not contradict the hypo-
thesis B, = B,, the user may wish to stop at this
juncture, using the above confidence interva to
assess possible differences between the groups. If
zero is not in thisinterval, the groups differ; if it
is, they do not. In this example, there is a signifi-
cant difference between 8, and 8,, Since zero is
not contained in (4.662, 23.441).

Continuing with the JN procedure, the user next
specifies ranges of values of Z, and Z,, and the in-
crements to be used in evauating and plotting
D(Z) and R(Z), asin our earlier example. Choos-
ing Z; to go from 30 to 65 in steps of 5; and Z, to
go from 55 to 75 in steps of 5, we get 2 sets of
numerica results. For each combination of values
of Z, and Z,, the first set consists of the values of
D(Z) and the lower and upper limits for both the
marginal and simultaneous confidence intervals
for A(Z). Thefirst 5 lines (rounded) of this output
is shown below:

Fig. 6. (Z) for various values of initiadl MRUS value and age
after rotation of the axes (cf Fig. 5).

Zl 22 Marginal R(Z) Simultaneous R(Z)
30 55 -1233 -488.2

30 60 463.4 269.0

30 65 1100 833.2

30 70 1787 1204

30 75 2525 1382

Various plots of D(Z) and R(Z) vs. Z,and Z,
are shown in Figs. 5- 14. The plots are designed to
show those values of Z; and Z, such that D(2Z)
and R(Z) are greater than zero. When D(Z) > 0,
the difference between the TX and control groups

Zl Z2 D(Z) Margina Marginal Simultaneous Simultaneous
Lower limit ~ Upper limit Lower limit Upper limit

30 55 13.73 -3.93 31.39 -12.28 39.14

30 60 25.09 12.20 31.98 6.10 44.08

30 65 36.45 21.34 51.56 14.19 58.71

30 70 4781 25.49 70.13 14.92 80.70

30 75 59.17 27.92 90.42 1314 105.2

In the second set of numerical output, again for
each combination of Z; and Z,, we give the values
of Ry{Z) and R(Z), viz.,
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Fig. 7. D(Z) for various values of initial MRUS value and age.

ispositive; when R(Z) > 0, this difference is signi-
ficant. These plots are produced sequentially in the
program and, while any given plot is on the screen,
the user may print it by pressing the space bar and
selecting one of the printing options shown.

In Fig. 5, the plane D(Z) isshown at the selected
values of Z. Note the orientation of the Z, and Z,

40 €0

20

VA

Fig. 8. D(Z) for various values of initial MRUS value and age
after rotation of theaxes (cf Fig. 7).

Fig. 9. D(Z) for various values of initial MRUS value and age
when more Z values are selected for plotting (cf Fig. 8).

axes. While the plot is on the screen, the user may
choose to reorient (rotate) the plot by using the
arrow keys in the obvious way to rotate left, right,
up or down. With the plot visible, the user presses
the Esc (escape) key and chooses a particular rota-
tion or the proceed option which produces the next
plot in the sequence. These rotations may be used

Fig. 10. Simultaneous region of significance for combinations
of age and initial MRUS values.
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Fig. 11. Margina region of significance for combinations of

Fig. 13. Surface plot ofp(Z) for combinations of age and initial
age and initial MRUS values. MRUS vaues.

more than once and in combination. The result of

rotating twice to the right is shown in Fig. 6. Note
that the Z; and Z, axes are positioned differently
thanin Fig. 5.

In Fig. 7, the values of D(Z) are shown in a dif-
ferent form. Lines emanating from the zero plane

Q
"

2.5

« 10°
1.5 2,0

1.0

RM(Z)

0.5

indicate the value of D(Z) by circles. solid circles
are positive values; open circles, negative. This
provides the same information as does Fig. 6: it is
offered as an dternative which may be preferred
by some users. Since the plots shown are produced
sequentially in our program, and since we did not

e

A

PN

Pu
S
4

Fig. 12. Marginal region of significance for combinations of
age and initial MRUS values when more Z values are selected Fig. 14. Surface plot of simultaneous region of significance for
for plotting (cf Fig. 11).

combinations of age and initid MRUS values.
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reorient the axes after printing Fig. 6, the axesin
Fig. 7 are the same as those in Fig. 6. We can, how-
ever, get back to the origina orientation of Fig. 5
by rotating Fig. 7 as shown in Fig. 8. Note that the
appearance of these plots depends on the choices
made for the range of values of Z; and Z, and, in
particular, on the increment between them. Figs. 7
and 8 are based on the choices Z,=30(5)65 and
Z, =55(5)75, asindicated earlier. Had we chosen
instead Z, = 30(1)65 and Z, = 55(1)75, Fig. 7
would appear as shown in Fig. 9. It is seen that the
points at which D(Z) is evaluated in Fig. 9 are
much more dense than in Fig. 7. Which is pre-
ferred is a matter of persona preference and/or the
purpose of the investigation. The user may have to
experiment with various choices to find the opti-
mal density of pointsin particular situations.

Plots of the type shown above are also produced
representing the simultaneous and marginal
regions of significance as shown in Figs. 10 and 11,
respectively. The regions where significant differ-
ences exist correspond to those vaues of Z, and
Z, where the circles are solid (and on top of the
line emanating from zero). Note again that the
simultaneous region of significance is smaller than
the marginal. Also, comparing Figs. 10 and 11
with Fig. 8, shows clearly the difference between
D(Z) and the functions R(Z). The D(Z) plot (Fig.
8) shows where D(Z) is positive; the plots of R(2)
show whether or not D(Z) is significantly different
from zero. Finally, note the (marginaly) signifi-
cant point in the far comer of Fig. 11 correspon-
ding to Z, = 65 and Z, = 75. While this can
happen, one should note that this point cor-
responds to the 2 most extreme values of Z, and
Z,. The user is free to choose any ranges for Z;
and Z,, but should, in general, be careful to limit
this choice to regions where data points exist.

As another example of the ways in which the
choice of the increments between the Z values in-
fluences the appearance of the plot, we offer Fig.
12 whichisto Fig. 11 asFig. 9isto Fig. 8.

Other plots produced by our program include
surface plots of D(Z) and the regions of signifi-
cance. Examples are shown in Figs. 13 and 14. The
surface plot of D(Z) isentirely similar to Fig. 5, ex-
cept that a plane has been fit to the datain Fig. 13.
For Q = 2, D(2) will always be a plane and this

correspondence will be true. R(Z), on the other
hand, is atrue surface asis seenin Fig. 14. Again,
this surface can be made smoother by selecting
more Z values to be plotted.
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Appendix

A full set of PC programs for estimating treat-
ment effects and/or performing specialized analy-
ses in the context of simple linear regression, a set
which includes this program and others cited in the
reference list, can be obtained on 5.25" or 3.5”
diskettes (please request type) by sending $25 to
defray the cost of handling and licensing fees.
These programs require a 80386- or 80486-based
persona computer (PC) running the MS-DOS op-
erating system (version 5.0 or higher is recom-
mended, although versions as low as 3.3 will
suffice). 80386 computers must al so be equipped
with a 80387 math coprocessor. At least 4 MB of
memory are required, and must be available to
GAUSS386i, i.e., not in use by memory resident
programs such as Windows. EGA or VGA graphic
capabilities are required to display the color
graphics, VGA or SVGA is suggested to display
optimally the graphic results. Runtime modules
are supplied with the programs so that no ad-
ditional software (i.e., compiler or interpreter) is
required to run these programs. One can create
and edit ASCII data sets for use by these programs
using the full screen editor supplied with MS-DOS
version 5.0. The programs are written and com-
piled using GAUSS386i, version 3.0, require no
additional installation or modification, and are
run with a single command. When requesting the
programs, address inquiries to the corresponding
author and make checks payable to Baylor College
of Dentistry.
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