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Proximate, caloric, nitrogen and mineral
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Proximate (live mass, water, lipid, ash, non-fat organic), caloric, nitrogen, and mineral
(sodium, potassium, calcium, magnesium, and iron) concentrations and total body content of
individuals of 24 species of Neotropical and Paleotropical bats were determined.
Mass-related, concentration patterns were found for all measured variables, except iron.
Concentrations increase with size for nitrogen, calcium, and magnesium but are concave,
opening upward, for sodium and potassium. These last two elements reach minimal
concentrations in bats weighing about 22 and 28 g dry mass, respectively. Total body content
of nitrogen and minerals was compared with amounts in similar-sized birds and tetrapodal
mammals.
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Introduction

Studies of body composition of tropical and
temperate bats have been limited mainly to
variables such as caloric content and lipid
levels, which are related to energetics
(McNab, 1976). Similar emphases have
been applied to other small mammals
(Studier, 1979) and birds (Holmes, 1976).
That trend relates directly to the implied
critical importance of energetics as a prob-
able limiting factor in maintaining adequate
nutritional budgets in small endotherms.
Recent investigations in birds (Hungerford
et al, 1993), other small mammals
(Randolph er al., 1991; Willig and Lacher,
1991}, and bats (Studier and Kunz, 1994)

Correspondence to: E. H. Studier, Department of
Biology, University of Michigan-Flint, Flint, MI
48502-2186, U.S.A. Tel. 810 762 3360.

Received 31 January 1994; accepted 10 June 1994,

601

have expanded studies of nutrition to
include nitrogen and mineral requirements
and budgets. Just as body energy concen-
tration (Cummins and Wuycheck, 1971) is
essential in the calculation of energy
budgets, similar estimates of nitrogen and
mineral levels are necessary to establish
budgets for those nutrients. Limited data
are available on nitrogen and mineral
concentration and content in small birds
(Bilby and Widdowson, 1971; Sturges et al.,
1974; Hagen et al., 1976; Pinowski er al.,
1983; Taylor and Konarzewski, 1992) and
other mammals (Gentry et al., 1975); how-
ever, no data have been published on levels
of those elements in bats. We present data
on live mass, water, fat, and non-fat organic
matter, as well as on nitrogen, sodium,
potassium, calcium, magnesium and total
iron levels in a broad sample of tropical bat
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species. Portions of those data are com-
pared with data on temperate bats. Nitro-
gen and mineral levels in bats are compared
with levels in small, tetrapodal mammals
and with small birds to investigate whether
bat body composition reflects that of other
mammals, or if composition is modified by
physical demands of flight.

Materials and Methods

Paleotropical bats were collected by
members of the 1979 Taylor South Seas
Expedition from the Natural History
Museum of Los Angeles County from mid-
June through early August 1979 from
various sites on New Ireland and New
Britain Islands in Papua/New Guinea.
Those specimens were sent to us as
uniformly and finely ground whole bats in
individual ziplock bags with labels indicat-
ing live and dry mass and gender of each
specimen. These samples were re-dried to
constant mass at 50-60°C before analyses.

Neotropical bats were mist-netted
between 18.00 and 19.30 hr during July
1992 at various sites near the Amazon or
Napo Rivers downstream from Iquitos,
Peru. Captured bats were held for 1-3 hr in
monkscloth or burlap bags, allowing the
gut to empty for feces collection. Selected
male bats and female bats, which were not
obviously pregnant or lactating, were
euthanized, weighed to 0.01 g (American
Scientific  Battery-Powered Scale) to
determine live mass, then partially dried.
Upon return to the lab, bats were dried to
a constant weight at 50—-60°C, and dry mass
(DM) was determined to 0.1 mg. Dried bats
were individually ground to a uniform
mixture in a Braun coffee grinder.

Depending on the total DM of each
specimen, duplicate or triplicate 0.5 g sub-
samples (weighed to 0.1 mg) were analyzed
for fat, non-fat organic matter, and ash
content. Fat was extracted with 50 volumes
of petroleum ether in 125 ml Erlenmeyer
flasks that were mixed on rotary shakers for
4 hr. Extracted samples were then filtered
and rinsed with petroleum ether through
pre-weighed filter paper, then dried to
constant mass in a hood, and sample fat
was determined by DM loss. Fats extracted
with petroleum ether are primarily stored,
neutral body fats, not including all polar

membrane lipids. These dried samples were
then burned in a muffle furnace at 500°C for
6 hr and re-weighed to determine non-fat
organic matter and ash content. Individual
reported values are means of two or three
replicates. Water and fat indices (as g/g lean
DM) were calculated from those values.
Caloric density (kcal/g DM) was caiculated
using energy equivalents of 9.4 kcal/g fat
and 4.1 kcal/g non-fat organic matter.
These procedures are reviewed by Pierson
and Stack (1988).

Depending on the DM of each specimen,
duplicate or triplicate 250 mg (weighed to
0.1 mg) samples were digested in 250 ml
volumetric flasks using 2.5ml of boiling,
concentrated H,SO, followed by 7.5 ml of a
2:1 (v/v) mixture of 30% H,0, and concen-
trated H,SO,. After appropriate dilution,
aliquots of those digestions were analyzed
for nitrogen by Nesslerization (Treybig and
Haney, 1983), for sodium and potassium
levels by flame emission spectropho-
tometry, and for calcium, magnesium and
total iron by atomic absorption spectropho-
tometry. Details of these analyses are given
in Studier and Sevick (1992). Average
values for replicates are reported.

Data were stored in Lotus files and
analyzed using SYSTAT (Wilkinson, 1989).
Most data previously reported for nitrogen
and mineral concentrations and total
content in each group compared (bats,
other mammals, small birds) are from small
species (<40 g DM), with very few data for
larger species in any of those groups.
Reported regession analyses are, therefore,
certainly more precise at the lower end of
the DM scale. SYSTAT regression analyses
allow for identification of data points that
are statistical outliers or exert significant
leverage within the analysis. No such data
points were found; therefore, the few data
for bats of large mass do not unduly influ-
ence the reported regession lines. Linear
and polynomial regression analyses were
performed, and only significant regression
coefficients are reported for 200 individuals
of 24 species of bats and on average values
for each of 25 species of birds. Published
linear regression analyses for 26 or 27
species of rodents and shrews were used for
comparison with bird and bat data. Our
data might have been analyzed to yield
allometric equations after log-log trans-
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formation; and, many physiological func-
tions have been shown to be exponentially
related to size (Peters, 1983); however, such
analysis would not be comparable with
previously published data on body
composition.

Since our primary interest in these data is
body concentrations and total content of
nitrogen and minerals, data for those el-
ements have been analyzed and discussed
more thoroughly than proximate and
caloric data. Reduced data, shown in
Appendix 1, will allow sexual dimorphism
differences to be compared, will allow
measured variables to be re-calculated in
other units, e.g. ash-free or fat-free DM, for
comparison to literature data reported in
such units, and will allow calculation of
regression equations (on transformed data,
if desired) or other statistical testing on
species averages.

Results

Reduced data for all measured and
calculated variables for all bats analyzed
are given by species and gender in Appen-
dix 1. Data for individual bats are available
on - diskette or in hard copy from the
authors upon request. Body water content
(water in g/100g live mass) increases
slightly, but significantly (F = 8.643,
d.f. =192, r*=0.043, P =0.00369), with
increasing size (DM in g) as expressed by:

Water = 0.0006659 DM? + 67.19.
(£0.0002265) (£0.18),

where values in parentheses are standard
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errors of the regression coefficient(s) and
intercept. The very low r? value, however,
indicates that water content and the other
relations of proximate variables to body
size have very low prediction accuracy.
Body fat (fat in g/100g live mass) and
fat index (FIND in g/g lean DM) are
both inversely related to body size as DM
in g (F=5.290, d.f =192, r’=0.027,
P =0.0225; and, F=3.615 d.f =192,
r’=0.037, P =0.0288, respectively) as
shown by the equations:

Fat = — 0.0004127 DM? + 3.719,
(£0.0001794) (+0.139)
and
FIND =
—0.0000408 DM? + 0.00185 DM + 0.119.
(+£0.0000163)  (£0.00100) (+0.008)

Total body organic content (TORG = non-
fat organic matter + fat in g/100g live
mass) is also inversely related to body size
as DM in g (F=6942; d.f =192,
r?=10.035, P =0.00911) as follows:

TORG = — 0.0005583 DM? + 27.46.
(£0.0002119) (x0.16)

The only other variables found to relate
to size were most measured elements. Re-
sults of polynomial regression analyses of
body concentrations (in mg/g DM) of
measured elements as potential functions
of body size (DM), with the exception of
total iron, which exhibits no relationship,
are best expressed by linear or curvilinear
equations that are poorly predictive

Table 1. Significant polynomial regression equations of element (E) concen-
tration (in mg/g dry mass) as functions of size (in g dry mass) in tropical bats

E a b c F r?

N 0.002275 155.03 9.679 0.046
+ 0.000731 +0.55

Ca 0.2789 13.976 187.33 0.482

+0.0204 +0.310

Mg 0.0001086 0.9357 94.904 0.321
+ 0.0000111 + 0.0084

Na 0.0003819 —0.01659 4.389 12.195 0.109
+ 0.0000850 + 0.00522 +0.043

K 0.001697 —0.09475 9.823 25.776 0.205
+ 0.000236 +0.01451 +0.119

Data for 24 species are included. Values are coefficients and intercepts ( + SE)
for lines of the form y =ax*+bx +¢. In each case, d.f. =199 and
P < 0.0001, except for nitrogen (N) where P = 0.0021.
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Table 2. Significant polynomial regression equations for total body element (E)
level (in mg) as functions of size (in g dry mass) in tropical bats

E a b c F r?

N 0.1841 152.9 —2.565 65619.0 0.998
+0.0171 +1.1 +8.628

Fe 0.3537 0.3908 1403.8 0.875

+0.0094 +0.1438

Ca 0.3189 12.04 9.439 37999 0.974
+0.0135 +0.83 +6.786

Mg 0.008858 0.8157 0.2478 7111.4 0.986
+0.00423 +0.0260 +0.2132

Na 0.01882 3.747 1.785 12008.0 0.992
+0.00118 +0.073 +0.595

K 0.06539 6.817 8.782 7736.6 0.987
40.00323 +0.198 +1.629

Data for 24 species are inciuded. Values are coefficients and intercepts ( + SE) for
lines of the form y =ax?+ bx + c. In each case, d.f. = 199 and P < 0.0001.

(Table 1). Relationships of total body con-
tent (in mg) of measured elements to body
size (DM) show highly predictive positive
linear or curvilinear relationships (Table 2).

Discussion

The slight increase in relative body water
with increasing size found in the tropical
bats tested may be associated with
decreasing surface area-to-mass ratio that
accompanies increasing size in similarly
shaped organisms, and consequent relative
decrease in evaporative water loss rates
(Studier, 1970). Lack of a significant
relationship of water index (g water/g lean
DM) to size, however, argues strongly
against that explanation. The slight increase
in relative body water is more likely related
to observed slight decreases in body fat
fraction, i.e. body water is constant when
expressed on a fat-free basis.

Data, reviewed by McNab (1976), show
that fat levels in temperate zone bats cycle
seasonally and are generally higher in
females than in males. His study on limited
numbers of neotropical bat species supports
gender related trends for insectivorous
species and seasonal trends for bats of
varying feeding habits; however, seasonal
trends are much less dramatic in bats that
feed primarily on food of plant origin.
Values reported here (Appendix 1) agree
well with very low fat levels found by
McNab (1976) for bats collected in July.
The significant slight decrease in fat index,
which, like the water index, is related to

lean dry mass, implies that an actual
decrease in body fat occurs with increased
body size.

Although sample size is small, Chiro-
derma villosum, especially females, contain
much more fat, on either a live mass or lean
dry mass basis (Appendix 1), than other
species tested. For a fruit eating species
(Gardner, 1977), especially in July, such
high body fat levels are highly unusual and
suggest marked differences in occurrence
and activity of enzymes (fatty acid syn-
thetase complex) required for converting
carbohydrates to fat.

Many fruit-feeding bats seem to lack the
ability to store excess energy as fat and, by
storing that excess as glycogen, possess few
energy reserves (Studier and Wilson, 1991).
Another exception may be the genus
Leptonycteris, individuals which deposit
large stores of subcutaneous fat as well.
However, both species of Leptonycteris are
subtropical, and at least some populations
are migratory (Arita and Wilson, 1987).

Lack of a relationship of total ash or
non-fat organic matter to size also supports
the interpretation that body water is
constant when expressed on a fat-free basis.
In view of the direct positive relations
found for most tested body element concen-
trations (Table 1), a positive relationship of
ash fraction to body size is expected.
Greater precision in measuring slight
differences in concentrations of elements
compared with determination of ash may
explain lack of statistical significance.

Lack of a relationship of total ash to size,
when coupled to the inverse relation of fat
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to size, explains the slight negative corre-
lation of total body organic level to body
size.

Lack of an inverse relationship of caloric
density to size is surprising in view of the
inverse relation of fat to size. Gender
relationships are strongly correlated with
fat content, with females showing higher
caloric content than males in every case but
one. Carollia perspicillata males show
slightly elevated caloric densities, as well as
slightly higher fat and fat index values.

Body nitrogen concentrations increase
with size in bats (Table 1) and, perhaps, in
other small mammals (see Munro, 1969;
Gentry et al., 1975). Insufficient data on
body nitrogen concentrations for birds are
available to complete an appropriate
regression analysis; however, data for
individual species (Bilby and Widdowson,
1971; Hagen er al., 1976; Pinowski et al.,
1983; Taylor and Konarzewski, 1992; and
Hungerford et al., 1993) fall very near the
regression equations for bats and other
small mammals. Since body nitrogen is
often assumed to be almost entirely present
as protein and most body protein is in
muscle, increases in nitrogen concentration
with increasing size strongly suggest
relatively greater body musculature with
increasing size in all small vertebrate
endotherms.

Of the minerals measured, only total iron
concentration exhibited no relationship to
size. Because total blood volume and
hemoglobin mass relate directly and
linearly to size in mammals (Peters, 1983),
iron concentration should be constant and
not size-dependent. No relationship exists
between body iron concentration and body
size in other small mammals (Gentry et al.,
1975) and our analyses of data available for
small birds (Bilby and Widdowson, 1971;
Sturges et al., 1974, Hagen et al., 1976;
Pinowski et al, 1983; Taylor and
Konarzewski, 1992; Hungerford er al,
1993) indicate a similar lack of relationship
in that class. Average body iron concen-
trations in small birds (0.308 ppt DM;
Sturges et al., 1974) are identical to concen-
trations in non-bat, small mammals
(0.303 ppt DM; Gentry et al., 1975) and
both are lower than most values for small
bats (Appendix 1).

Among all bats tested, body sodium and

potassium concentrations generally in-
crease with body size (Table 1). The re-
lationships, however, are curvilinear with
minimal (Studier ez al., 1975) body concen-
trations of both sodium (=4.03 ppt DM
at =21.7 g DM) and potassium (=7.18 ppt
DM at 27.9 g DM). If data for bats of body
DM <50 g are analysed (Appendix 1), no
relationship of either mineral to size is
found. No relation for either mineral to size
was found in other small mammals (Gentry
et al., 1975), and analyses of data for birds
(from the same sources given for iron
above) show no relation to size for potass-
ium and a negative relation for sodium
concentrations to body size (F = 13.51;
d.f. =23, P =0.0013, r> = 0.381, regression
coefficient + SE = — 0.1355 + 0.0037). Av-
erage body sodium concentrations in birds
(4.10 ppt DM; Sturges et al, 1974) and
non-bat small mammals (3.68 ppt DM;
Gentry et al., 1975) compare favorably with
minimal values for bats; and minimal pot-
assium values in bats are similar to those for
birds (8.12 ppt DM; Sturges er al., 1974),
but somewhat lower than in other mam-
mals (11.5 ppt DM; Gentry et al., 1975).

In bats, both calcium and magnesium
body concentrations increase curvilinearly
with body size, with minimal concen-
trations found at the origin (Table 1).
Because concentrations of both elements
increase rapidly with DM, comparisions
with average values for birds (Sturges ef al.,
1974) and other small mammals (Gentry
et al., 1975) are meaningless. Lack of a
relationship of concentrations of each of
these minerals to body size in mammals
(Gentry et al., 1975) and birds (from the
same sources given previously for iron) is
very surprising since skeletal mass has been
shown to relate allometrically (as an
exponential function > 1) to body size in
many vertebrates (Kayser and Heusner,
1964, Reynolds and Karlotski, 1977;
Prange et al., 1979; Anderson et al., 1979).

At similar dry masses, total body nitro-
gen content in bats (Table 2) exceeds values
for other mammals (Gentry e al., 1975).
Greater nitrogen levels in bats strongly
suggest that bats exhibit greater muscle
mass than quadrupedal mammals of similar
size and, furthermore, that musculature
required for powered flight in bats exceeds
requirements for terrestrial locomotion.
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Insufficient appropriate data exist for
comparison with birds.

Total body iron content is essentially
identical in bats (Table 2) and birds and
both are higher than values in other
mammals of similar size (Fig. 1). Because
many bats have higher blood volumes,
RBC counts and hemoglobin levels than
other mammals (Kallen, 1977; Riedesel,
1977), higher total body iron levels in bats
are expected. These blood measures are
also high in many small birds (Pettingill,
1970), which would also be expected to
exhibit total iron levels similar to bats. The
presence of higher levels of myoglobin in
the predominant slow-twitch cells in the
flight musculature of both birds and bats
may also contribute to the higher iron
levels found in those two groups.

Total body contents of sodium and
potassium are similar to each other, in that
each element in birds increases somewhat
less rapidly with size than in bats and other
mammals (Table 2; Fig. 1). These
differences are minimal among small
(<40 g DM) species and become progress-
ively more pronounced in larger species,
where bat body content exceeds levels in
other mammals. Similarities in total
body content of these minerals are expected
since sodium is the primary extracellular
fluid cation and potassium is the primary
intracellular cation in both birds and
mammals.

Among the small (<40 g DM) endother-
mic vertebrates compared, no differences
were found in the increases of both
calcium and magnesium contents with size
(Table 2; Fig. 2). Large bats contain
more of both minerals than other
mammals or birds of similar size. Because
magnesium and calcium are highly
sequestered in the skeleton, differences
were expected among the three groups
tested based on variations in supportive
characteristics of skeletons of quadrupeds
and physical demands that sustained flight
impose on the skeleton. Higher contents of
these minerals in very large bats suggest
that they store proportionately more of the
calcium and magnesium needed for
reproduction. Additionally, increased wing
loading in larger bats that employ greater
flight speeds (Findley et al., 1972) may
increase skeletal physical stresses of flight
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disproportionately in very large bats but
not birds.

In summary, fat and total organic
content, although quite variable, decrease
and water content increases with increasing
body size expressed. Although body fat
levels in tropical bats are routinely lower
than in temperate species, occasional
species, e.g. Chiroderma villosum, especially
females, show much higher fat concen-
trations than other tropical species. Except
for iron, where no relationship exists,
concentrations of other measured elements
increase with increasing body DM. Sodium
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Fig. 1. Solutions to regression equations relating
total body iron (top), sodium (middle) and potassium
(bottom) content (in mg) to body size (dry
mass =DM in g) in bats (squares), other small
mammals (circles) and small birds (triangles).
Equations for bats (24 species) are given in Table 2.
For other small mammals (rodents and insectivores),
linear regression equations for 25 or 26 species are
given by Gentry et al. (1975). Polynomial regression
equations (coefficients + SE) for small birds (21-24
species) were calculated from average values reported
by Bilby and Widdowson (1971), Sturges et al.
(1975), Hagen et al. (1976), Pinowski et al. (1983),
and Taylor and Konarzewski (1992). In birds,
total body iron content=0.000765 + 0.000187
DM? +0.294 + 0.027 DM + 0.0904 + 0.2480 (F =
4164.; d.f. = 20; P < 0.0001; r? = 0.998); sodium con-
tent = —0.0124 + 0.0017 DM?+4.12 4+ 0.25 DM +
0.771 +2.558 (F=1186.; d.f.=23; P <0.0001;
r?=0.991); and potassium content = 7.690 + 0.076
DM + 4.85 + 3.31 (F =10334.; d.f. = 23; P <0.0001;
r? = 0.998).
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Fig. 2. Solutions to regression equations relating
total body calcium (top) and magnesium (bottom)
content (in mg) in relation to body size (dry
mass = DM in g) in bats, other small mammals, and
small birds. See legend for Fig. 1 for more details. In
birds, total body calcium content=32.0+ 0.6
DM + 19.0 £ 18.5 (F = 2801.; d.f. =23; P <0.0001;
r’=0.992), and total body magnesium con-
tent=131+0.02 DM -156+048 (F=7021;
d.f. =23; P <0.0001; r* = 0.997).

levels in large bats are higher than in other
mammals, whose sodium levels are higher
than in similar-sized birds. Magnesium and
calcium increase most rapidly in very
large bats but are otherwise similar in all
three groups. Total body potassium tends
to be lower in birds than in similar-sized
bats and other mammals. Total body
iron content is higher in birds and bats
than in other mammals of similar size.
Mineral compositions, therefore, do not
consistently align bats with other (tetrapo-
dal) mammals or flying endotherms
(birds).
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