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ABSTRACT 
The results of a study of natural convection along an isother- 
mal wavy cone embedded in a fluid-saturated porous medium 
are presented. The boundary layer under consideration is 
cencerned with the regime where the Darcy-Rayleigh number 
Ra is very large. It is assumed that the surface waves have 
O(1) amplitude and wavelength. The boundary layer equa- 
tions are solved numerically using the Keller-box method. 
Detailed results of the effect of the sinusoidal waves on the 
heat flux on the wall are given. 

Introductior~ 

Natural convection from wavy surfaces is of importance in several heat 
transfer devices such as flat-plate solar collectors and flat-plate condensers 
in refrigerators. The presence of roughness elements disturbs the flow past 
surfaces and alters the heat transfer rate. Most of the reported surveys on 
natural convection in a porous medium deal with cases in which surfaces 
are uniform, see Nield and Bejan[1]. The interest of research in the case of 
natural convection from wavy surfaces has surged during recent years, see 
references [2-6]. 
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In the present paper, a theoretical study of the natual convection along a 
vertical cone with transverse curvature and sinusoidal undulations embedded 
in a fluid-saturated porous medium is reported. Of primary relevance to this 
work are the papers by Rees and Pop[5,6] in which the authors reported 
numerical solutions for the problem of natural convection along a vertical 
wavy surface in a porous medium. To the best of our knowledge, natural 
convection along a cone with transverse undulations in a porous medium has 
not been reported prior to the present analysis. 

Analysis 

Consider a vertical cone with transverse sinusoidal undulations embedded 
in a fluid-saturated porous medium, as illustrated in Fig.1. In particular, we 
assume that the surface profile is given by 

~ = &(~) = a  sin(~r-~) (1) 

where a is the amplitude of the transverse surface wave and g is the char- 
acteristic length of the wave. The surface of the cone is held at a constant 
temperature T~, which is greater than the temperature of the ambient fluid 

Too. 

FIG.1 
Physical Model and Coordinate System 

The non-dimensional equations governing natural convection from the 
wavy cone can be written under the Darcy-Boussinesq approximation as 
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co(~.) o(r . )  = o (2) 
0---7- + co~- 

cOu cOy = Ra f CO0 COO } 
~ t ~ + °-xtan+ (3) 

cOcO 020 COO COO 
COx------ ~ + ~ = u~x + v Ny (4) 

where (x, y) are the Cartesian coordinates, (u, v) are the velocity components 
along (x, y)-axes, Ra is the Darcy-Rayleigh number, (I) and r are the half 
angle and the local radius of the smooth surface of the cone, where r is given 
by 

r = x sin(I) 

The dimensionless variables are defined by 

(~) 

T -  T~ 
Y -¢ r = O= 

x = - [  , Y = 7 '  ¢ = ~  ' 7 " "T~-Too 

a g~K(T~. - Too)~cos(I) 
= 7 '  a = 7 - ,  R a =  (6) 

OIP 

where T is the temperature, g is the acceleration due to gravity, /3 is the 
expansion coefficient of the fluid, ~ is the kinematic viscosity of the fluid, K 
and a are the permeability and thermal diffusivity of the fluid - saturated 
porous medium. 

Introducing the stream function ¢ defined by 

1 0¢ 1 0¢ 
u . . . .  v . . . .  (7) 

r COy ' r cOx 

where the equation of continuity is satisfied identically and Eqs.(3) and (4) 
become 

r~ O0 
r [ 0~  2 + 0y ~ r = [ ~  + 

(8) 



894 I. Pop and T.-Y. Na Vol. 21, No. 6 

020 020 1 ~ 0¢ 00 0¢ 00 } 
Ox 2 + Oy ~ - r [--~y--~x Oz-~y (9) 

where the subscript x denotes differentiation with respect to z. The boundary 
conditions of Eqs.(8) and (9) are 

¢ = 0  , 9 = 1  on y = a(x )  = a sin(Trx) (10) 

0~ (11) - - = 0  , 0 = 0  as y ----* oo 
Oy 

We now assume that  the Darcy-Rayleigh number Ra is large so that  
natural  convection takes place within a boundary layer whose cross-stream 
width is substantially smaller than the amplitude a of the wavy surface of 
the cone. Accordingly, we define new variables by substracting out the effect 
of the surface waves and then introduce the usual boundary layer variables 
defined as 

x = ~ :  , y = R a - ½ O + o ' ( k )  , ¢ = n a ½ ~  (12) 

By substi tuting Eq.(12) into Eqs.(8) and (9), we get 

1 { (1 + o'~) 02¢ 2o'~:Ra-½ 02~ ~_!O(k 

" 

+Ra ~ ~ -~)Ra ~ 

) 00 _ , _ 00 
= 1 - o'~tan¢ ~-~ +/fa-~tan¢9~--~ 

a2~ 020 -~ 020 1 O0 

!1o 

(13) 

(14) 
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and the boundary conditions are now 

= o : ~ : o ,  o=1 (15) 

~ = ~ ¢ : ~ - = o ,  o = o  (16) 

If we formally let R a  approach to infinity, Eqs.(13) and (14) reduce to 
the following boundary layer equations for the problem under consideration, 

r 0~  2 = 1 - a ~ t a n ¢  

1+ ~ ~-~ = o~ o~ - 

(17) 

(18) 

and the boundary conditions are those given by Eqs.(15) and (16). It should 
be mentioned that there was tacitly assumed that the surface waves have 
O(1) amplitude and wavelength. 

We shall now proceed to obtain numerical solutions of Eqs.(17) and (18). 
Thus, we assume that the solution is written as 

=r~½/(~,r/) , O : g ( ~ , y )  (19) 

where 

= x ' Y -- ~½(i ~+a~) (20) 

and r is defined by Eq.(5). Introducing Eqs.(19) and (20) into Eqs.(17) and 
(18) gives 

02 f { l _ a~tano } Og 
07]: = 

3_fog = og of og 

which are subject to the boundary conditions 

(21) 

(22) 
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77=0 : f(~,O)---O , g(~,O)= i (23) 

Of(~, oo) 
= c o  : 077 0 , g (~ ,cc)=O (24) 

It is worthy of mentioning that in the case of a smooth cone (a = 0), 
Eqs.(21) and (22) reduce to ordinary differential equations, which are iden- 
tical with those found by Cheng et. al. [7]. 

An important physical quantity for this problem is the local Nusselt num- 
ber defined as 

Nu - xqw 
k(T~ - Too) (25) 

where k is the thermal conductivity of the fluid-saturated porous medium 
and q~ is the heat flux at the wall, which is defined by 

and 

q~ = - k f i . V T  (26) 

a~ 1 } (27) 

is the unit vector normal to the wavy surface of the cone. Using Eqs.(6) and 
(12), one can show that Nu can be expressed as 

N u _  ,½ ~ O g ~  
(28) 

Ra½" (1 + a~) ½ ~" f -  ~ ,=o 

Result and Discussions 

The boundary layer equations, Eqs.(21) and (22), along with the bound- 
ary conditions, Eqs.(23) and (24), were solved numerically by means of the 
Keller-box method (see references[S,9,10]) for some representative values of 
the wavy amplitude a and half angle ¢. The variation of Nusselt number 
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with ~ for a=O (smooth cone), 0.2, 0.4 and ¢ = 1 0  °, 15 °, 20 °, 30 ° are shown 
inFigs.2 to 4. 
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FIG .2 
Variation of Local Nusselt Number with x for ~=15  ° 
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FIG.3 
Variation of Local Nusselt Number with x for ¢ = 3 0  ° 

Fig.2 shows the Nusselt number ratio defined on the left-side of Eq.(28) 
as a function of ~. The effect of the amplitude a, on the average, is seen 
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to decrease the heat transfer rate as compared with the limiting case of a 
smooth cone. The range of x in the figure is from 0 to 4 which corresponds to 
two complete cycles of the undulations as shown in Fig.1. The raise and fall 
of the curves is seen to follow the change of the surface contour. Consider 
one complete cycle, i.e., for x from 0 to 2. The rate of heat transfer is 
seen to increase for the first quarter of the cycle (from x~0  to x,~0.5) and 
then decreases in the second quarter (from x~0.5 to x ~ l ) .  From x ~ l .  to 
x ~ l . 5  (i.e., the third quarter), the heat transfer rate increases whereas in 
the last quarter (from x ~ l . 5  to x~2),  a larger decrease in the heat transfer 
rate  resulted. The cycle will repeat itself as x is advanced by another  cycle. 
The  results represent the nonlinear coupling of the change in fluid velocity 
and orientation of the gravitation. Fig.3 shows the same conclusion can be 
obtained for anothe half cone angle, namely, ¢ = 30% Fig.4 show the effect 
of the cone angle ¢ on the rate of heat transfer. As expected, the effects are 
more pronounced for larger half cone angles. 
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FIG .4 
Variation of Local Nusselt Number with x for a=0.4 
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