$\mathbf{H}_{\mathbf{2}}$-suboptimal Stable Stabilization* \dagger

Y. WILLIAM WANG \ddagger and DENNIS S. BERNSTEIN \ddagger

Key Words- H_{2} optimization; strong stabilization; stable control; reduced-order control.

Abstract

In this paper we present two approaches for designing H_{2}-suboptimal stable controllers. Both full-order and reduced-order controllers are considered.

1. Introduction

Although LQG theory provides stabilizing controllers, these controllers may not be stable, even if the open-loop plant is stable. The problem of synthesizing stable stabilizing controllers has been of interest for many years (Youla et al., 1974) and a variety of techniques have been proposed (Smith and Sondergeld, 1986; Boyd, 1987; Ganesh and Pearson, 1986, 1989; Jacobus, 1990; Jacobus et al., 1990; Halevi et al., 1991).

In this paper we present new results that are in the spirit of Jacobus (1990), Jacobus et al. (1990) and Halevi et al. (1991). Specifically, in these references the authors modify full- and reduced-order LQG theory (Hyland and Bernstein, 1984) to obtain suboptimal controllers that are stable. The new results given herein are based upon two different modifications of LQG theory that offer advantages over these earlier approaches. The first approach (Section 2) is based upon an a posteriori modification of LQG theory in the vein of Halevi et al. (1991). Unlike the technique of Halevi et al. (1991), our modification of LQG theory involves a third equation coupled to the regulator Riccati equation. The advantage of our approach over Halevi et al. (1991) is a unified treatment of the reduced-order case (Section 3).

Our second approach (Section 4) involves an a priori modification to LQG theory (that is, prior to optimization) in the vein of Jacobus (1990) and Jacobus et al. (1990). Our approach is an improvement over the approach of Jacobus (1990) and Jacobus et al. (1990) in that the modification to the design equations is less conservative, that is, sacrifices less H_{2} performance in return for yielding a stable compensator.
2. Full-order compensation

Consider the \boldsymbol{n} th-order plant

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t)+D_{1} w(t) \tag{1}\\
& y(t)=C x(t)+D_{2} w(t) \tag{2}
\end{align*}
$$

with performance variables

$$
\begin{equation*}
z(t)=E_{1} x(t)+E_{2} u(t) \tag{3}
\end{equation*}
$$

[^0]where $w(t)$ is standard white noise. Using the n_{c} th-order dynamic compensator
\[

$$
\begin{align*}
\dot{x}_{c}(t) & =A_{c} x_{c}(t)+B_{c} y(t), \tag{4}\\
u(t) & =C_{c} x_{c}(t) \tag{5}
\end{align*}
$$
\]

we obtain the closed-loop system

$$
\begin{align*}
\dot{\tilde{x}}(t) & =\tilde{A} \tilde{x}(t)+\tilde{D} w(t) \tag{6}\\
z(t) & =\tilde{E} \tilde{x}(t) \tag{7}
\end{align*}
$$

where

$$
\begin{array}{cc}
\tilde{x}(t) \triangleq\left[\begin{array}{c}
x(t) \\
x_{c}(t)
\end{array}\right], & \tilde{A} \triangleq\left[\begin{array}{cc}
A & B C_{c} \\
B_{c} C & A_{c}
\end{array}\right], \\
\tilde{D} \triangleq\left[\begin{array}{c}
D_{1} \\
B_{c} D_{2}
\end{array}\right], & \tilde{E} \triangleq\left[\begin{array}{ll}
E_{1} & E_{2} C_{c}
\end{array}\right]
\end{array}
$$

The H_{2} performance index is defined by

$$
\begin{equation*}
J\left(A_{c}, B_{c}, C_{c}\right)=\lim _{t \rightarrow \infty} \mathscr{E}\left[x^{\mathrm{T}}(t) R_{1} x(t)+u^{\mathrm{T}}(t) R_{2} u(t)\right] \tag{8}
\end{equation*}
$$

where ' \mathscr{E} ' denotes expectation and $R_{1} \triangleq E_{1}^{\top} E_{1}$, $R_{12} \stackrel{\Delta}{=} E_{1}^{\mathrm{T}} E_{2}=0, \quad R_{2} \stackrel{\Delta}{\Delta} E_{2}^{\mathrm{T}} E_{2}>0$. For convenience, we define $V_{1} \triangleq D_{1} D_{1}^{\mathrm{T}}, V_{12} \triangleq D_{1} D_{2}^{\mathrm{T}}=0, V_{2} \triangleq D_{2} D_{2}^{\mathrm{T}}>0$.
The H_{2}-optimal control problem can be stated as follows: minimize the H_{2} performance $J\left(A_{c}, B_{c}, C_{c}\right)$ given in (8) or, equivalently

$$
\begin{equation*}
J\left(A_{c}, B_{c}, C_{c}\right)=\operatorname{tr} \tilde{Q} \tilde{R} \tag{9}
\end{equation*}
$$

subject to

$$
\begin{equation*}
0=\tilde{A} \tilde{Q}+\tilde{Q} \tilde{A}^{\mathbf{T}}+\tilde{V} \tag{10}
\end{equation*}
$$

where

$$
\tilde{R} \triangleq \tilde{E}^{\mathrm{T}} \tilde{E}=\left[\begin{array}{cc}
R_{1} & 0 \\
0 & C_{c}^{\mathrm{T}} R_{2} C_{c}
\end{array}\right], \quad \tilde{V} \triangleq \tilde{D} \tilde{D}^{\mathrm{T}}=\left[\begin{array}{cc}
V_{1} & 0 \\
0 & B_{c} V_{2} B_{c}^{\mathrm{T}}
\end{array}\right]
$$

In the following development, we assume that both (A, B) and $\left(A, D_{1}\right)$ are stabilizable and both (C, A) and $\left(E_{1}, A\right)$ are detectable. Then, it is well known that the optimal full-order controller (4), (5) is given by

$$
\begin{align*}
& A_{c}=A+B C_{c}-B_{c} C \tag{11}\\
& B_{c}=Q C^{\mathbf{T}} V_{2}^{-1} \tag{12}\\
& C_{c}=-R_{2}^{-1} B^{\mathbf{T}} P \tag{13}
\end{align*}
$$

where Q, P are nonnegative-definite matrices satisfying

$$
\begin{align*}
& 0=A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P \tag{14}\\
& 0=A Q+Q A^{\mathrm{T}}+V_{1}-Q \bar{\Sigma} Q \tag{15}
\end{align*}
$$

where $\Sigma \triangleq B R_{2}^{-1} B^{T}, \bar{\Sigma} \triangleq C^{T} V_{2}^{-1} C$. Note that (11) can be written as

$$
\begin{equation*}
A_{c}=A-Q \bar{\Sigma}-\Sigma P \tag{16}
\end{equation*}
$$

Since $A-\Sigma P$ and $A-Q \bar{\Sigma}$ are asymptotically stable, there exist nonnegative-definite matrices \hat{Q} and \hat{P} such that

$$
\begin{align*}
& 0=(A-\Sigma P) \hat{Q}+\hat{Q}(A-\Sigma P)^{\mathrm{T}}+Q \bar{\Sigma} Q \tag{17}\\
& 0=(A-Q \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-Q \bar{\Sigma})+P \Sigma P \tag{18}
\end{align*}
$$

The optimal cost (8) is thus given by either of the expressions

$$
\begin{align*}
J\left(A_{c}, B_{c}, C_{c}\right) & =\operatorname{tr}\left[(Q+\hat{Q}) R_{1}+\hat{Q} P \Sigma P\right] \\
& =\operatorname{tr}\left[(P+\hat{P}) V_{1}+\hat{P} Q \bar{\Sigma} Q\right] \\
& =\operatorname{tr}\left[Q R_{1}+P Q \bar{\Sigma} Q\right] \\
& =\operatorname{tr}\left[P V_{1}+Q P \Sigma P\right] . \tag{19}
\end{align*}
$$

Furthermore, the state cost is given by

$$
J_{s}\left(A_{c}, B_{c}, C_{c}\right) \triangleq \lim _{t \rightarrow \infty} \mathscr{C}\left[x^{\mathrm{T}}(t) R_{1} x(t)\right]=\operatorname{tr}(Q+\hat{Q}) R_{1}
$$

while the control cost is given by

$$
J_{c}\left(A_{c}, B_{c}, C_{c}\right) \triangleq \lim _{t \rightarrow \infty} \mathscr{E}\left[u^{\mathrm{T}}(t) R_{2} u(t)\right]=\operatorname{tr} \hat{Q} P \Sigma P .
$$

In general, the LQG result does not guarantee that A_{c} is asymptotically stable. The goal of the following result is to obtain a suboptimal controller (4), (5) such that \tilde{A} is asymptotically stable and A_{c} is either Lyapunov stable or asymptotically stable.
Theorem 2.1. Suppose there exist $\alpha, \beta>0$ and nonnegativedefinite matrices Q, P and \hat{P} satisfying

$$
\begin{align*}
0= & A Q+Q A^{\mathrm{T}}+V_{1}-Q \bar{\Sigma} Q \tag{20}\\
0= & A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P+\left(\alpha P-\alpha^{-1} \hat{P}\right) \\
& \times \Sigma\left(\alpha P-\alpha^{-1} \hat{P}\right)+\beta A^{\mathrm{T}} A+\beta^{-1} P^{2} \tag{21}\\
0= & (A-Q \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-Q \bar{\Sigma})+P \Sigma P \tag{22}
\end{align*}
$$

and let $\left(A_{c}, B_{c}, C_{c}\right)$ be given by (11)-(13). Then \tilde{A} is asymptotically stable, A_{c} is Lyapunov stable, and the closed-loop cost (8) is given by (19) where Q satisfies (17). If, in addition, $R_{1}>0$, then A_{c} is asymptotically stable.

Proof. Defining

$$
\begin{aligned}
\bar{R}_{1} \triangleq & R_{1}+\left(\alpha P-\alpha^{-1} \hat{P}\right) \Sigma\left(\alpha P-\alpha^{-1} \hat{P}\right) \\
& +\beta A^{\mathrm{T}} A+\beta^{-1} P^{2} \geq 0
\end{aligned}
$$

it is seen that (20) and (21) are in the form of the standard LQG Riccati equations, (14) and (15), with R_{1} replaced by \bar{R}_{1}. Thus \tilde{A} is asymptotically stable. Now combining (21) and (22) yields

$$
\begin{aligned}
A_{\mathrm{c}}^{\mathrm{T}} \hat{P}+\hat{P} A_{c}= & -\left[R_{1}+\left(\beta^{1 / 2} A+\beta^{-1 / 2} P\right)^{\mathrm{T}}\right. \\
& \left.\times\left(\beta^{1 / 2} A+\beta^{-1 / 2} P\right)\right] \leq 0
\end{aligned}
$$

which shows that A_{c} is Lyapunov stable. If $R_{1}>0$, then $A_{c}^{\mathrm{T}} \hat{P}+\hat{P} A_{c}<0$ which further implies that A_{c} is asymptotically stable.

Note that unlike the standard LQG result and its modification by Halevi et al. (1991) to stable controllers, Theorem 2.1 involves three matrix equations. Equation (20) is the standard estimator Riccati equation, while equations (21) and (22) are coupled in P and \hat{P}. Note that Theorem 2.1 does not assume that A is asymptotically stable. Hence, there may not exist a stable compensator that stabilizes the plant (Youla et al., 1974). Furthermore, even if a stable stabilizer exists, its order may be greater than that of the plant. Nevertheless, Theorem 2.1 provides a constructive sufficient condition for stable, full-order compensation.

3. Reduced-order dynamic compensation

In this section, we focus on the reduced-order case $n_{c}<n$. First we recall from Hyland and Bernstein (1984) the necessary conditions for \mathbf{H}_{2}-optimal reduced-order compensation.

Theorem 3.1. Let $n_{c} \leq n$, suppose $\left(A_{c}, B_{c}, C_{c}\right)$ minimizes $J\left(A_{c}, B_{c}, C_{c}\right)$ and assume that $\left(A_{c}, B_{c}\right)$ is stabilizable. Then there exist $n \times n$ nonnegative-definite matrices Q, P, \hat{Q}, \hat{P} such that A_{c}, B_{c}, C_{c} are given by

$$
\begin{align*}
A_{c} & =\Gamma(A-Q \bar{\Sigma}-\Sigma P) G^{\mathrm{T}} \tag{23}\\
B_{c} & =\Gamma Q C^{\mathrm{T}} V_{2}^{\cdot 1} \tag{24}\\
C_{c} & =-R_{2}^{-1} B^{\mathrm{T}} P G^{\mathrm{T}} \tag{25}
\end{align*}
$$

where $Q, P, \hat{Q}, \hat{P}, \Gamma$ and G satisfy

$$
\begin{gather*}
0=A Q+Q A^{\mathrm{T}}+V_{1}-Q \bar{\Sigma} Q+\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}}, \tag{26}\\
0=(A-\Sigma P) \hat{Q}+\hat{Q}(A-\Sigma P)^{\mathrm{T}}+Q \bar{\Sigma} Q-\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}}, \tag{27}\\
0=A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P+\tau_{\perp}^{\mathrm{T}} P \Sigma P \tau_{\perp}, \tag{28}\\
0=(A-Q \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-Q \bar{\Sigma})+P \Sigma P-\tau_{\perp}^{\mathrm{T}} P \Sigma P_{\perp}, \tag{29}\\
\operatorname{rank} \hat{Q}=\operatorname{rank} \hat{P}=\operatorname{rank} \hat{Q} \hat{P}=n_{c}, \tag{30}\\
\hat{Q} \hat{P}=G^{\mathrm{T}} M \Gamma, \quad \Gamma G^{\mathrm{T}}=I_{n_{c}}, \quad M \in \mathscr{R}^{n_{c} \times n_{c}}, \tag{31}\\
\tau \triangleq G^{\mathrm{T}} \Gamma, \quad \tau_{\perp} \triangleq I_{n}-\tau, \tag{32}\\
\hat{Q}=\tau \hat{Q}, \quad \hat{P}=\hat{P} \tau . \tag{33}
\end{gather*}
$$

Furthermore, the closed-loop cost (8) is given by either of the expressions

$$
\begin{align*}
J\left(A_{c}, B_{c}, C_{c}\right) & =\operatorname{tr}\left[(Q+\hat{Q}) R_{1}+\Gamma \hat{Q} P \Sigma P G^{\mathrm{T}}\right] \\
& =\operatorname{tr}\left[(P+\hat{P}) V_{1}+G \hat{P} Q \bar{\Sigma} Q \Gamma^{\mathrm{T}}\right] \\
& =\operatorname{tr}\left[Q R_{1}+P\left(Q \bar{\Sigma} Q-\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}}\right)\right] \\
& =\operatorname{tr}\left[P V_{1}+Q\left(P \Sigma P-\tau_{\perp}^{\mathrm{T}} P \Sigma P \tau_{\perp}\right)\right] \tag{34}
\end{align*}
$$

As in the full-order case, Theorem 3.1 does not guarantee that the controller is asymptotically stable. To construct an asymptotically stable A_{c}, we introduce the following extension of Theorem 3.1.

Theorem 3.2. Suppose there exist $\alpha, \beta>0$ and $n \times n$ nonnegative-definite matrices Q, P, \hat{Q} and \hat{P} satisfying (30)-(33) and

$$
\begin{gather*}
0=A Q+Q A^{\mathrm{T}}-Q \bar{\Sigma} Q+\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}}+V_{1} \tag{35}\\
0=(A-\Sigma P) \hat{Q}+\hat{Q}(A-\Sigma P)^{\mathrm{T}}+Q \bar{\Sigma} Q-\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}} \tag{36}\\
0=A^{\mathrm{T}} P+P A-P \Sigma P+\tau_{\perp}^{\mathrm{T}} P \Sigma P \tau_{\perp}+R_{1}+\left(\alpha P-\alpha^{-1} \hat{P}\right) \\
\times \Sigma\left(\alpha P-\alpha^{-1} \hat{P}\right)+\beta A^{\mathrm{T}} A+\beta^{-1} P^{2} \tag{37}\\
0=(A-Q \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-Q \bar{\Sigma})+P \Sigma P-\tau_{\perp}^{\mathrm{T}} P \Sigma P \tau_{\perp}, \tag{38}
\end{gather*}
$$

and let $\left(A_{c}, B_{c}, C_{c}\right)$ be given by (23)-(25). Then \tilde{A} and A_{c} are Lyapunov stable and the closed-loop cost (8) is given by (34). If, in addition, $\left(A_{c}, B_{c}\right)$ is stabilizable, then \tilde{A} is asymptotically stable, while if $R_{1}>0$ and $\left(C_{c}, A_{c}\right)$ is observable, then A_{c} is asymptotically stable.
Proof. Defining \bar{R}_{1} as in the proof of Theorem 2.1, it can be seen that (35)-(38) are in the form of the reduced-order LQG synthesis equations with R_{1} replaced by \bar{R}_{1} in (37). It thus follows that

$$
0=\tilde{A} \tilde{Q}+\tilde{Q} \tilde{A}^{\mathrm{T}}+\tilde{\tilde{R}}
$$

where

$$
\tilde{Q} \triangleq\left[\begin{array}{cc}
Q+\hat{Q} & \hat{Q} \Gamma^{\mathrm{T}} \\
\Gamma \hat{Q} & \Gamma \hat{Q} \Gamma^{\mathrm{T}}
\end{array}\right] \geq 0, \quad \overline{\tilde{R}}=\left[\begin{array}{cc}
\bar{R}_{1} & 0 \\
0 & C_{c}^{\mathrm{T}} R_{2} C_{c}
\end{array}\right] \geq 0
$$

and thus \tilde{A} is Lyapunov stable. Now if $(\tilde{A}, \tilde{\tilde{R}})$ is stabilizable, then it follows from Lemma 2.1 that \tilde{A} is asymptotically stable. Adding (37) to (38) yields

$$
\begin{aligned}
0= & (A-Q \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-Q \bar{\Sigma})+A^{\mathrm{T}} P+P A \\
& +R_{1}+\left(\alpha P-\alpha^{-1} \hat{P}\right) \Sigma\left(\alpha P-\alpha^{-1} \hat{P}\right) \\
& +\beta A^{\mathrm{T}} A+\beta^{-1} P^{2}
\end{aligned}
$$

which can be rewritten as

$$
\begin{aligned}
0= & (A-Q \bar{\Sigma}-\Sigma P)^{\mathrm{T}} \hat{P}+\hat{P}(A-Q \bar{\Sigma}-\Sigma P) \\
& +R_{1}+\alpha^{2} P \Sigma P+\alpha^{-2} \hat{P} \Sigma \hat{P} \\
& +\left(\beta^{1 / 2} A+\beta^{-1 / 2} P\right)^{\mathrm{T}}\left(\beta^{1 / 2} A+\beta^{-1 / 2} P\right) .
\end{aligned}
$$

Using the fact that $\hat{P} \tau=\hat{P}$ and letting $P_{2} \triangleq G \hat{P} G^{\mathrm{T}} \geq 0$ (Hyland and Bernstein, 1984), it follows that

$$
\begin{aligned}
A_{c}^{\mathrm{T}} P_{2}+P_{2} A_{c}= & -G\left[R_{1}+\alpha^{2} P \Sigma P+\alpha^{-2} \hat{P} \Sigma \hat{P}\right. \\
& \left.+\left(\beta^{1 / 2} A+\beta^{-1 / 2} P\right)^{\mathrm{T}}\left(\beta^{1 / 2} A+\beta^{-1 / 2} P\right)\right] G^{\mathrm{T}} \\
\leq & 0
\end{aligned}
$$

which implies that A_{c} is Lyapunov stable. Furthermore, if $R_{1}>0$ and $\left(C_{c}, A_{c}\right)$ is observable, then $G R_{1} G^{\mathrm{T}}>0$ and $P_{2}>0$. Thus A_{c} is asymptotically stable.
Remark 3.1. Note that by setting $n_{c}=n$ and thus $\tau=I$, we recover Theroem 2.1.
4. An alternative approach based upon cost modification

The cost modification approach for obtaining a stable compensator was introduced by Jacobus (1990) and Jacobus et al. (1990). This approach addresses the minimization problem

$$
\begin{equation*}
\mathscr{F}\left(A_{c}, B_{c}, C_{c}\right)=\operatorname{tr} \mathscr{Q} \tilde{R} \tag{39}
\end{equation*}
$$

subject to

$$
\begin{equation*}
0=\tilde{A} Q+Q \tilde{A}^{\mathrm{T}}+\tilde{V}+\Omega(\mathscr{Q}) \tag{40}
\end{equation*}
$$

where $\Omega(\cdot)$ is a matrix function that satisfies $\Omega(\Omega) \geq 0$ for all $Q \geq 0$ while guaranteeing that A_{c} is Lyapunov or asymptotically stable.

Note that if $\Omega(\Omega)=0$, then (40) is the standard covariance Lyapunov equation and we recover the standard H_{2} problem. If \boldsymbol{Q} denotes the solution of (40) with $\Omega(\mathscr{O})=0$, then it follows that

$$
\begin{equation*}
\varrho-\tilde{Q}=\int_{0}^{\infty} \mathrm{e}^{\bar{A} t} \Omega(\varrho) \mathrm{e}^{\tilde{A}^{\mathrm{T}} t} \mathrm{~d} t \geq 0 \tag{41}
\end{equation*}
$$

where \mathscr{Q} satisfies (40). This shows that \mathscr{Q} is a bound for \tilde{Q}. Consequently, the modified covariance matrix Q leads to a suboptimal controller. Several approaches were developed by Jacobus (1990) and Jacobus et al. (1990) for constructing $\Omega(\mathscr{O})$ to obtain stable compensators. However, those approaches were found to be quite conservative by unnecessarily sacrificing H_{2} performance to obtain a stable compensator.

Here we introduce a less conservative choice for $\Omega(\varnothing)$. Specifically, we choose

$$
\Omega(Q)=\left[\begin{array}{cc}
0 & 0 \tag{42}\\
0 & Q_{12}^{\mathrm{T}} \bar{\Sigma} Q_{12}
\end{array}\right]
$$

where

$$
Q^{\Delta}\left[\begin{array}{cc}
Q_{1} & Q_{12} \\
Q_{12}^{\mathrm{T}} & Q_{2}
\end{array}\right]
$$

By using the Lagrange multiplier method to minimize (39) subject to (40), it follows that B_{c}, C_{c} are given by (12), (13) for the full-order case and (24), (25) for the reduced-order case. Furthermore, it can be shown that in the full-order case A_{c} satisfies

$$
\begin{equation*}
A_{c} \hat{Q}+\hat{Q} A_{c}^{\mathbf{T}}=-[(Q+\hat{Q}) \bar{\Sigma}(Q+\hat{Q})] \leq 0 \tag{43}
\end{equation*}
$$

while in the reduced-order case,

$$
\begin{equation*}
A_{c} Q_{2}+Q_{2} A_{c}^{\mathrm{T}}=-\Gamma[(Q+\hat{Q}) \bar{\Sigma}(Q+\hat{Q})] \Gamma^{\mathrm{T}} \leq 0 \tag{44}
\end{equation*}
$$

Thus, in both cases, (40) guarantees that A_{c} is Lyapunov stable. The above steps yield the following result:

Theorem 4.1. Suppose there exist nonnegative-definite matrices Q, P, \hat{Q}, \hat{P} satisfying

$$
\begin{align*}
& 0=A Q+Q A^{\mathrm{T}}-Q \bar{\Sigma} Q+\hat{Q} \bar{\Sigma} \hat{Q}+V_{1} \tag{45}\\
& 0=(A-\Sigma P) \hat{Q}+\hat{Q}(A-\Sigma P)^{\mathrm{T}}+Q \bar{\Sigma} Q-\hat{Q} \bar{\Sigma} \hat{Q} \tag{46}\\
& 0=A^{\mathrm{T}} P+P A-P \Sigma P+R_{1}+\hat{P} \hat{Q} \bar{\Sigma}+\bar{\Sigma} \hat{Q} \hat{P} \tag{47}\\
& 0=(A-(Q+\hat{Q}) \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-(Q+\hat{Q}) \bar{\Sigma})+P \Sigma P \tag{48}
\end{align*}
$$

and let $\left(A_{c}, B_{c}, C_{c}\right)$ be given by

$$
\begin{equation*}
A_{c}=A-(Q+\hat{Q}) \bar{\Sigma}-\Sigma P \tag{49}
\end{equation*}
$$

(12) and (13). Then A_{c} is Lyapunov stable and the modified cost (39) is given by (19). Furthermore, if (A_{c}, B_{c}) is stabilizable, then \tilde{A} is asymptotically stable.
Remark 4.1. Note that $A-(Q+\hat{Q}) \bar{\Sigma}$ in (48) is not necessarily asymptotically stable.

Using $\Omega(\varnothing)$ given in (42), we obtain the following sufficient condition for reduced-order stable stabilization.
Theorem 4.2. Suppose there exist nonnegative-definite matrices Q, P, \hat{Q}, P satisfying (30)-(33) and

$$
\begin{align*}
0= & A Q+Q A^{\mathrm{T}}-Q \bar{\Sigma} Q+V_{1}+\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}}+\hat{Q} \bar{\Sigma} \hat{Q} \\
0= & (A-\Sigma P) \hat{Q}+\hat{Q}(A-\Sigma P)^{\mathrm{T}}+Q \bar{\Sigma} Q \\
& -\tau_{\perp} Q \bar{\Sigma} Q \tau_{\perp}^{\mathrm{T}}-\hat{Q} \bar{\Sigma} \hat{Q} \\
0= & A^{\mathrm{T}} P+P A-P \Sigma P+R_{1}+\tau_{\perp}^{\mathrm{T}} P \Sigma P \tau_{\perp} \\
& +\hat{P} \hat{Q} \bar{\Sigma}+\bar{\Sigma} \hat{Q} \hat{P} \\
0= & (A-(Q+\hat{Q}) \bar{\Sigma})^{\mathrm{T}} \hat{P}+\hat{P}(A-(Q+\hat{Q}) \bar{\Sigma})+P \Sigma P \\
& -\tau_{\perp}^{\mathrm{T}} P \Sigma P \tau_{\perp}, \tag{53}
\end{align*}
$$

and let $\left(A_{c}, B_{c}, C_{c}\right)$ be given by

$$
\begin{equation*}
A_{c}=\Gamma(A-(Q+\hat{Q}) \bar{\Sigma}-\Sigma P) G^{\mathbf{T}} \tag{54}
\end{equation*}
$$

(24) and (25). Then, A_{c} is Lyapunov stable and the modified cost (39), (40) is given by (34). Furthermore, if $\left(A_{c}, B_{c}\right)$ is stabilizable, then A is asymptotically stable.
Note that Theorems 4.1 and 4.2 guarantee that A_{c} is Lyapunov stable but not necessarily asymptotically stable.

5. Numerical algorithm and illustrative examples

We implement Newton's method to solve (21), (22). The method involves a first-order parameter variation in the unknown parameters P, \hat{P}. Hence let $\delta P=P_{1}-P_{0}$ and $\delta \hat{P}=\hat{P}_{1}-\hat{P}_{0}$, where $P_{0}, \dot{\hat{P}}_{0}$ and P_{1}, \hat{P}_{1} represent the current and the updated points, respectively. Letting $0=\mathscr{F}(P, \hat{P})$ and $0=\mathscr{G}(P, \hat{P})$ represent (21), (22) and applying a first-order parameter variation in P, \hat{P} at the current point P_{0}, \hat{P}_{0} yields

$$
\begin{align*}
0= & \operatorname{vec} \mathscr{F}\left(P_{0}, \hat{P}_{0}\right)+\mathscr{F}_{P}\left(P_{0}, \hat{P}_{0}\right) \operatorname{vec} \delta P \\
& +\mathscr{F}_{\hat{P}}\left(P_{0}, \hat{P}_{0}\right) \operatorname{vec} \delta \hat{P}, \tag{55}\\
0= & \operatorname{vec} \mathscr{G}\left(P_{0}, \hat{P}_{0}\right)+\mathscr{G}_{P}\left(P_{0}, \hat{P}_{0}\right) \operatorname{vec} \delta P \\
& +\mathscr{G}_{\hat{P}}\left(P_{0}, \hat{P}_{0}\right) \operatorname{vec} \delta \hat{P}, \tag{56}
\end{align*}
$$

where 'vec' denotes the column stacking operator (Brewer, 1976). If

$$
\left[\begin{array}{ll}
\mathscr{F}_{P} & \mathscr{F}_{\hat{P}} \\
\mathscr{G}_{P} & \mathscr{G}_{\hat{P}}
\end{array}\right]_{P_{0}, \hat{P}_{0}}
$$

is invertible, then

$$
\left[\begin{array}{c}
\operatorname{vec} \delta P \tag{57}\\
\operatorname{vec} \delta \hat{P}
\end{array}\right]=-\left[\begin{array}{ll}
\mathscr{F}_{P} & \mathscr{F}_{\hat{P}} \\
\mathscr{G}_{P} & \mathscr{G}_{\hat{P}}
\end{array}\right]_{P_{0} \cdot \hat{P}_{0}}^{-1}\left[\begin{array}{c}
\operatorname{vec} \mathscr{F} \\
\operatorname{vec} \mathscr{G}
\end{array}\right]_{P_{0}, \hat{P}_{0}}
$$

We can then solve for the updated point P_{1}, \hat{P}_{1}. The LQG result provides the initial condition for this algorithm.
Example 1. Consider the two mass system shown in Fig. 1 with $m_{1}=m_{2}=k=1$ such that

$$
A=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]
$$

with disturbance weighting matrices given by

$$
D_{1}=\left[\begin{array}{rr}
0 & 0 \\
0 & 0 \\
0 & 0 \\
68 & 0
\end{array}\right], \quad D_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

Fig. 1. Two mass system.
and performance weighting matrices given by

$$
E_{1}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{c}
0 \\
0.01
\end{array}\right] .
$$

The eigenvalues of A are $\{0,0, \pm \neq 1.4142\}$. In the full-order case, LQG design yields the closed-loop poles $\{-99.985$, $-1.0277 \pm{ }^{2} 2.8161,-2.4941 \pm \neq 1.1604,-1.0001,-0.0035 \pm$ $j 1.0\}$, while the eigenvalues of A_{c} are $\{-99.6374$, $-8.399,0.0003 \pm 11.0396\}$. The closed-loop LQG cost is 261.6534. By performing a simple parameter search on α and β, we choose $\alpha=4.51, \beta=1.175$ in Theorem 2.1. The modified design yields the closed-loop poles $\{-99.9796$, $-1.0277 \pm 2.8161,-2.4941 \pm p 1.1604,-1.0014,-0.0035 \pm$ $j 1.0\}$, while the eigenvalues of A_{c} are $\{-99.632,-8.3993$, $-0.0002 \pm j 1.0396\}$. The closed-loop cost for the modified design is 332.148 . The cost increment for the design of an asymptotically stable compensator is thus 26.94%.
Example 2. Next we consider Example 2 of Halevi et al. (1991). Specifically,
$A=\left[\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -4\end{array}\right], \quad B=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \quad C=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$,
$V_{1}=D_{1} D_{1}^{\mathrm{T}}=10^{3} I_{4}, V_{2}=D_{2} D_{2}^{\mathrm{T}}=1, R_{1}=10^{4} I_{4}$ and $R_{2}=1$. In the full-order case, the LQG cost is 7.2156×10^{6}, while the eigenvalues of A_{c} are $\{-264.4913,1.3969,-2.2669,-3.5039\}$. The H_{2}-suboptimal result given by Halevi et al. (1991) has a total cost of 7.2215×10^{6}. Now choosing $\alpha=1.0059, \beta=1.45$
and applying the computational procedure described in this section to solve equations (20)-(22) in Theorem 2.1, we obtain the closed-loop cost 7.2190×10^{6}, which shows that the cost increment is slightly less than the cost increment obtained in Halevi et al. (1991). The resulting eigenvalues of A_{c} are $\{-235.389,-1.6989,-4.2047,-2.8711\}$.
6. Conclusion

Two approaches were developed for obtaining stable compensators. One approach involves modifying the standard LQG Riccati equations to guarantee stability of the compensator, while the other approach is based upon bounding the closed-loop covariance.

References

Boyd, S. (1987). Stable \mathbf{H}_{∞}-Optimal Controllers. Technical Report No. L-104-87-1, Stanford University.
Brewer, J. W. (1976). Kronecker products and matrix calculus in system theory. IEEE Trans. on Aut. Control, 25, 772.
Ganesh, G. and J. B. Pearson (1986). Design of optimal control systems with stable feedback. Proc. Am. Contr. Conf., Seattle, WA.
Ganesh, G. and J. B. Pearson (1989). H^{2}-optimization with stable controllers. Automatica, 25, 629.
Halevi, Y., D. S. Bernstein and W. M. Haddad (1991). On stable full-order and reduced-order LQG controllers. Optimal Control Applications \& Methods, 12, 163.
Hyland, D. C. and D. S. Bernstein (1984). The optimal projection equations for fixed-order dynamic compensation. IEEE Trans. on Aut. Control, 29, 1034.
Jacobus, M. J. (1990). Stable, Fixed-order Dynamic Compensation with Applications to Positive Real and \mathbf{H}^{∞}-constrained Control Design. Ph.D. Dissertation, University of New Mexico.
Jacobus, M. J., M. Jamshidi, C. Abdallah, P. Dorato and D. S. Bernstein (1990). Suboptimal strong stabilization using fixed-order dynamic compensation. Proc. Am. Contr. Conf., San Diego, CA.
Smith, M. C. and K. P. Sondergeld (1986). On the order of stable compensators. Automatica, 22, 127.
Youla, D. C., J. J. Bongiorno, Jr. and C. N. Lu (1974). Single-loop feedback-stabilization of linear multivariable dynamical plants. Automatica, 10, 159.

[^0]: * Received 7 July 1993. This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor F. Delebecque under the direction of Editor Ruth Curtain. Corresponding author Mr Dennis S. Bernstein. Tel. +13137643719; Fax +1313763 0578; E-mail dsbaero@engin.umich.edu.
 \dagger This research was supported in part by the Air Force Office of Scientific Research under grant F49620-92-J-0127.
 \ddagger Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, U.S.A.

