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Ala~tmet--In this paper we present two approaches for 
designing H2-suboptimal stable controllers. Both full-order 
and reduced-order controllers are considered. 

1. Introduction 
ALTHOUGH LQG THEORY provides stabilizing controllers, 
these controllers may not be stable, even if the open-loop 
plant is stable. The problem of synthesizing stable stabilizing 
controllers has been of interest for many years (Youla et al., 
1974) and a variety of techniques have been proposed (Smith 
and Sondergeld, 1986; Boyd, 1987; Ganesh and Pearson, 
1986, 1989; Jacobus, 1990; Jacobus et al., 1990; Halevi et al., 
1991). 

In this paper we present new results that are in the spirit of 
Jacobus (1990), Jacobus et aL (1990) and Halevi et al. (1991). 
Specifically, in these references the authors modify full- and 
reduced-order LQG theory (Hyland and Bernstein, 1984) to 
obtain suboptimal controllers that are stable. The new results 
given herein are based upon two different modifications of 
LQG theory that offer advantages over these earlier 
approaches. The first approach (Section 2) is based upon an a 
posteriori modification of LQG theory in the vein of Halevi 
et al. (1991). Unlike the technique of Halevi et al. (1991), our 
modification of LQG theory involves a third equation 
coupled to the regulator Riccati equation. The advantage of 
our approach over Halevi et al. (1991) is a unified treatment 
of the reduced-order case (Section 3). 

Our second approach (Section 4) involves an a priori 
modification to LQG theory (that is, prior to optimization) in 
the vein of Jacobus (1990) and Jacobus et al. (1990). Our 
approach is an improvement over the approach of Jacobus 
(1990) and Jacobus et al. (1990) in that the modification to 
the design equations is less conservative, that is, sacrifices 
less H2 performance in return for yielding a stable 
compensator. 

2. Full-order compensation 
Consider the nth-order plant 

Yc(t) = Ax( t )  + Bu(t)  + D, w(t), (1) 

y(t)  = Cx(t) + D2w(t), (2) 

with performance variables 

z(t)  = E ,x ( t )  + E2u(t), (3) 
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where w(t) is standard white noise. Using the ncth-order 
dynamic compensator 

Yet(t) = Acxc(t) + Bcy(t),  (4) 

u(t) = Ccxc(t), (5) 

we obtain the closed-loop system 

~(t)  = A~( t )  + E)w(t), (6) 

Z(t) = E$(t) ,  (7) 

where 

2 ( t )=  x t ' "~= ~( ) B~C ac J' 

/)--a[BDD2 ], /~=a[E, E2Cc]. 

The H2 performance index is defined by 

J(Ac, B¢, C~) = lim ~ x r ( t ) R t x ( t )  + uT(t)R2u(t)], (8) 

• A 
where 'fg' denotes expectation and Rt = ETEt, 
Rt2 a= ET E2 = O, R2 a= ET2 E2 > 0. For convenience, we 

"~ T A T A T define I/i = D1D1, Vt2= D1D2 =0, V2= D2D2 >0. 
The H2-0ptimal control problem can be stated as follows: 

minimize the H2 performance J ( A o  Be, Cc) given in (8) or, 
equivalently 

J(Ac, Bc, Co) = tr 0/~ (9) 

subject to 
0 =,4(2 + Q.4T+ 17, (10) 

where 

0 0 
]~---~ETj~=[ l l  CTR2Cc], ~ ' ~ L ) / ) T = [  VI BcV2BT] • 

In the following development, we assume that both (A, B) 
and (A, D1) are stabilizable and both (C, A) and (El, A) are 
detectable. Then, it is well known that the optimal full-order 
controller (4), (5) is given by 

A ,  = A + BC~ - B~C, (11) 

Be = QCTV~ 1, (12) 

Cc = - R ~ t B T p ,  (13) 

where Q, P are nonnegative-definite matrices satisfying 

0 = ATP + PA + Rt - PZP,  (14) 

O = A Q  + QAT + V 1 - -  QZQ, (15) 

where Y,a--BR£IBT, Y,a-CTV~1C. Note that (11) can be 
mit ten as 

A c = A - Q~. - EP. (16) 
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Since A -  XP and A -  Q~: are asymptotically stable, there 
exist nonnegative-definite matrices 0. and P such that 

O = ( A - Z P ) O + ( 2 ( A - Z p ) T + Q T ~ Q ,  (17) 

0 = (A - QS:)TP +/5(A - Q2) + PZP.  (18) 

The optimal cost (8) is thus given by either of the expressions 

J (Ao  Bc, C~) = tr [ (a  + 0)R~ + 0PrP] 
= tr [(P + P)V1 + PQ~,O] 

= tr [QR1 + PQ~,Q] 

= tr [PV~ + a P z e ] .  (19) 

Furthermore, the state cost is given by 

J~(A~, B~, Cc) a= lim ~xT( t )R ,x ( t ) ]  = tr (Q + 0)R1, 
t ~  

while the control cost is given by 

J~(Ac, B~, C~) a__ lim ~g'{uT(t)R2u(t)] = tr O.PZP. 

In general, the LOG result does not guarantee that A~ is 
asymptotically stable. The goal of the following result is to 
obtain a suboptimal controller (4), (5) such that ,,~ is 
asymptotically stable and A¢ is either Lyapunov stable or 
asymptotically stable. 

Theorem 2.1. Suppose there exist a,/3 > 0  and nonnegative- 
definite matrices Q, P and P satisfying 

0 = A Q  + Q A T +  V~ - Q~Q, (20) 

0 = ATp + PA + Rt - P Z P  + ( a P  - a - l P )  

XZ(aP - ot- lP)  + t iATA + f l - lp2 ,  (21) 

0 = (A - Qy~)Tp + P ( A  - Q~..) + PEP,  (22) 

and let (Ac, Br, C~) be given by (11)-(13). Then A is 
asymptotically stable, A~ is Lyapunov stable, and the 
closed-loop cost (8) is given by (19) where 0. satisfies (17). If, 
in addition, R~ > 0, then A~ is asymptotically stable. 

Proof. Defining 

R1 a_ R1 + (aP  - a - l  P ) Z ( a P  - a - l  P)  

+ t i A T A +  t i - lP2>O,  

it is seen that (20) and (21) are in the form of the standard 
LQG Riccati equations, (14) and (15), with R~ replaced by 
k~. Thus ,4 is asymptotically stable. Now combining (21) 
and (22) yields 

ATP + PA~ = - [R,  + (tilaA + t i - , ap)y  

X ( t i l / 2 A  + t i -mp)]  <-0, 

which shows that A¢ is Lyapunov stable. If R~ >0, then 
A~vP + PA¢ < 0 which further implies that A¢ is asymptoti- 
cally stable. [] 

Note that unlike the standard LQG result and its 
modification by Halevi et al. (1991) to stable controllers, 
Theorem 2.1 involves three matrix equations. Equation (20) 
is the standard estimator Riccati equation, while equations 
(21) and (22) are coupled in P and P. Note that Theorem 2.1 
does not assume that A is asymptotically stable. Hence, there 
may not exist a stable compensator that stabilizes the plant 
(Youla et al., 1974). Furthermore, even if a stable stabilizer 
exists, its order may be greater than that of the plant. 
Nevertheless, Theorem 2.1 provides a constructive sufficient 
condition for stable, full-order compensation. 

3. Reduced-order dynamic compensation 
In this section, we focus on the reduced-order case n c < n.  

First we recall from Hyland and Bernstein (1984) the 
necessary conditions for H2-optimal reduced-order 
compensation. 

Theorem 3.1. Let nc<-n, suppose (A~.,B,.,Q) minimizes 
J(Ac, B~, C,,) and assume that (A~, B,) is stabilizable. Then 
there exist n × n nonnegative-definite matrices Q, P. Q, /3 
such that Ac, Be, Cc are given by 

A,. = F(A - Q'Z - Z P ) G  T, (23) 

Bc = FQCTV2 1, (24) 

C,. = - R ~  IBrpGr ,  (25) 

where Q, P, Q, P, F and G satisfy 

0 = A Q + QA T + Vt - QZQ + z± Q~,Qr~, (26) 

0 = ( A  - Z P ) Q  + Q(A - Z P )  T+ QZQ - r LQYZQz~, (27) 

0 = ATP + PA + R 1 - P Z P  + z ~ P Z P z z ,  (28) 

0 = (A - Q'2)T/5 +/5(A - QfZ) + PZP - f r e e z e r s ,  (29) 

rank 0 = rank/3 = rank 0 t  3 = no, (30) 

0_./5 = G TMF, FG T = In,., M ~ gg,,.x,,,, (31) 

r __a GTF, rj. __a I~ - z, (32) 

( ~ = r Q ,  P = P r .  (33) 

Furthermore, the closed-loop cost (8) is given by either of 
the expressions 

J(Ac, Bo  C,.) = tr [(O + O)R~ + r(2PZPG T] 

= tr [(P +/5)V~ + G/SQ~-QF T] 

= tr [OR1 + P(Q'£Q - r± OS:QCD] 

= tr [PV1 + O(PZP - r5eY~erA]. (34) 

As in the full-order case, Theorem 3.1 does not guarantee 
that the controller is asymptotically stable. To construct an 
asymptotically stable Ac, we introduce the following 
extension of Theorem 3.1. 

Theorem 3.2. Suppose there exist a, t i > O  and n ×n  
nonnegative-definite matrices Q, P, O a n d  /3 satisfying 
(30)-(33) and 

O = A Q + Q A T - Q ~ , Q + z ± Q ~ , Q z ~  +V, ,  (35) 

0 = (A - YP)Q + Q(A - yp)T + Q~.Q _ z±Q~.QrT, (36) 

0 = A T p  + PA - PY~P + zTPXPz± + R1 + (aP - a-1/5) 

X Z(0tP - or--i/5) + t iArA  + ti ip2, (37) 

0 = (A - O~)r/5 +/5(A - O~) + P Z P  - C~PYPr±, (38) 

and let (AoBc,  Co) be given by (23)-(25). Then A and Ac are 
Lyapunov stable and the closed-loop cost (8) is given by (34). 
If, in addition, (Ao Be) is stabilizable, then A is 
asymptotically stable, while if R~>0 and (Cc, A~.) is 
observable, then Ac is asymptotically stable. 

Proof. Defining/~1 as in the proof of Theorem 2.1, it can be 
seen that (35)-(38) are in the form of the reduced-order 
LQG synthesis equations with Rt replaced by R1 in (37). It 
thus follows that 

where 
o=AO + 0a*+,~, 

^ 
0 

and thus ] is Lyapunov stable. Now if (fi,,/~) is stabilizabte, 
then it follows from Lemma 2.1 that ,4 is asymptotically 
stable. Adding (37) to (38) yields 

0 = ( A  - Q~s)T/5  + P ( A  - O ~ )  + A T p  + P A  

+ Ra + ( a P - a - 1 / 5 ) Z ( a P - a  1/5) 

+ f lATA + f l -  tp2, 
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which can be rewritten as 

0 = (A - Q~: - ZP)T/5 + P ( A  - Q~. - X P )  

+ RI + a 2 p z p  + ¢t-2/sZP 

+ ([3v2A + [3-1c2p)T([3WXA +/3-t/2P). 

Using the fact that / S v = P  and letting P2A--G/SG'r>-o 
(Hyland and Bernstein, 1984), it follows that 

A~P2 + P2Ac = - G [ R t  + a2PZP + a-2/sX/5 
+ (#VZA + #-lr2p)T(#VM + #-"2p)]GT 

<-0, 

which implies that A~ is Lyapunov stable. Furthermore, if 
R I > 0  and (CoA~) is observable, then GR1GT>O and 
P2 > 0. Thus A~ is asymptotically stable. [] 

Remark 3.1. Note that by setting n~ = n and thus z = 1, we 
recover Theroem 2.1. 

4. An alternative approach based upon cost modification 
The cost modification approach for obtaining a stable 

compensator was introduced by Jacobus (1990) and Jacobus 
et al. (1990). This approach addresses the minimization 
problem 

o¢(A~, Bo C~) = tr~R (39) 
subject to 

0 = fi,~9+ ~gA T + 17" + f~(~), (40) 

where fl(.) is a matrix function that satisfies f l ( ~  - 0 for all 
Q> 0 while guaranteeing that A~ is Lyapunov or asymptoti- 
cally stable. 

Note that if fl(~9) = 0, then (40) is the standard covariance 
Lyalmnov equation and we recover the standard H2 problem. 
If Q denotes the solution of (40) with f~(~ = 0, then it 
follows that 

¢ -  O = oJ~ e'i'g~(~)e~ir' dt >- 0, (41) 

where Q satisfies (40). This shows that ~ is a bound for Q. 
Consequently, the modified covariance matrix C9 leads to a 
suboptimal controller. Several approaches were developed by 
Jaeobus (1990) and Jacobus et al. (1990) for constructing 
f~(¢) to obtain stable compensators. However, those 
approaches were found to be quite conservative by 
unnecessarily sacrificing H2 performance to obtain a stable 
compensator. 

Here we introduce a less conservative choice for D(t~). 
Specifically, we choose 

, (¢~ = [~ QT20Q12 ], (42) 

where 

a Ol Q121 
8= [aT2 Q2J" 

By using the Lagrange multiplier method to minimize (39) 
subject to (40), it follows that B~, C~ are given by (12), (13) 
for the full-order case and (24), (25) for the reduced-order 
case. Furthermore, it can be shown that in the full-order case 
Ac satisfies 

Ac0 + OA~ r = - [ (Q + Q)'~(Q + 0)]  ~ 0, (43) 

while in the reduced-order case, 

AcQ2 + Q2A~ = - r [ ( a  + O)x(O + 0) ]~- - -  o. (44) 

Thus, in both cases, (40) guarantees that A~ is Lyapunov 
stable. The above steps yield the following result: 

Theorem 4.1. Suppose there exist nonnegative-definite 
matrices Q, P, 0., P satisfying 

0 = A Q  + QA T - Q~-.Q + 0 £ 0  + V,, (45) 
0 = (A - ZP)0. + O ( A - ~ . P ) T + Q £ Q - ( ~ £ O ,  (46) 
0 = A r P  + PA - PZP + R, +/5~'~- + ~.(2/5, (47) 
0 = (A - (Q + 0)~:)TP +/5(A - (Q + Q),~) + PZP, (48) 

and let (Ac, Bo Co) be given by 

Ac = A - (Q + Q)): - EP, (49) 

(12) and (13). Then Ac is Lyapunov stable and the modified 
cost (39) is given by (19). Furthermore, if (Ao Be) is 
stabilizable, then A is asymptotically stable. 

Remark 4.1. Note that A - ( Q + O ) ~ .  in (48) is not 
necessarily asymptotically stable. 

Using f~(~ given in (42), we obtain the following sufficient 
condition for reduced-order stable stabilization. 

Theorem 4.2. Suppose there exist nonnegative-definite 
matrices Q, P, Q, P satisfying (30)-(33) and 

O= A Q  + QA T - QZQ + I"1 + v ±QZQzTx + 0 .~0 ,  (50) 

0 = (A - ZP)0  + 0 (A - ZP) T + Q~.Q 

- z±Q~.Qz T - OZ(~, (51) 

0=ATp  + PA - PZP + R1 + "t~PXPT± 

+ P05: + SOP, (52) 

0 = (A - (O + 0)'~)TP + P(A - (O + 0)Z)  + PXP 

- zrxPZPz±, (53) 

and let (Ao Bo Co) be given by 

A~ = r(A - (Q + (~)z - ZP)G T, (54) 

(24) and (25). Then, Ac is Lyapunov stable and the modified 
cost (39), (40) is ~given by (34). Furthermore, if (Ao Be) is 
stabilizable, then A is asymptotically stable. 

Note that Theorems 4.1 and 4.2 guarantee that A, is 
Lyapunov stable but not necessarily asymptotically stable. 

5. Numerical algorithm and illustrative examples 
We implement Newton's method to solve (21), (22). The 

method involves a first-order parameter variation in the 
unknown parameters P, /3. Hence let t i P =  P1-  Po and 
8/3 =131-Po, where Po, Po and Ph P1 represent the 
current and the updated points, respectively. Letting 
0--- ~:(P, P) and 0=~d(P,P) represent (21), (22) and 
applying a first-order parameter variation in P, P at the 
current point Po, Po yields 

0 = vec ~(Po,/50) + ~l'(Po,/30) vec 6P 

+ ~(Po,  Po) vec 815, (55) 

0 = vec @(Po,/50) + %(Po,/50) vec 8P 

+ (~b(Po, Po) vec ~P, (56) 

where 'vet'  denotes the column stacking operator (Brewer, 
1976). If 

is invertible, then 

vecSPl - I  rvo  
(57) 

We can then solve for the updated point PI, /31. The LQG 
result provides the initial condition for this algorithm. 

Example 1. Consider the two mass system shown in Fig. 1 
with ml = m2 = k = 1 such that 

I°°11] Ill 0 0 0 1 , B =  0 , C=[1 0 0 01, 
A =  - 1  1 0 

1 - 1  0 

with disturbance weighting matrices given by 

Jill D1 = 0 , D2=[ 0 1], 
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xl=y x2 

FIG. 1. Two mass system. 

and performance weighting matrices given by 

0 1 0], E2=[0.O1]. 
0 0 

The eigenvalues of A are {0, 0, :/5/1.4142}. In the full-order 
case, LQG design yields the closed-loop poles {-99.985, 
-1.0277 4-/2.8161, -2.4941 4-/'1.1604, -1.0001, -0.0035 + 
/.1.0}, while the eigenvalues of Ac are {-99.6374, 
-8.399,0.0003+tl.0396}. The closed-loop LQG cost is 
261.6534. By performing a simple parameter search on a and 
/3, we choose a =4.51, /3 = 1.175 in Theorem 2.1. The 
modified design yields the closed-loop poles {-99.9796, 
-1.0277 4-/2.8161, -2.4941 4-/'1.1604, -1.0014, -0.0035 4- 
/1.0}, while the eigenvalues of Ac are {-99.632,-8.3993, 
-0.00024-/'1.0396}. The closed-loop cost for the modified 
design is 332.148. The cost increment for the design of an 
asymptotically stable compensator is thus 26.94%. 

Example 2. Next we consider Example 2 of Halevi et al. 
(1991). Specifically, [00 

0 - 2  0 B =  
A =  0 0 - 3  ' ' 

0 0 0 - 

c=11 1 1 1], 

V1 = D1DT = 10314, V2 = D2D~ = 1, R1 = l&14 and R2 = 1. In 
the full-order case, the LQG cost is 7.2156 x 106, while the 
eigenvalues of Ac are {-264.4913, 1.3969, -2.2669, -3.5039}. 
The H2-suboptimal result given by Halevi et al. (1991) has a 
total cost of 7.2215 x 106. Now choosing a = 1.0059,/3 = 1.45 

and applying the computational procedure described in this 
section to solve equations (20)-(22) in Theorem 2.1, we 
obtain the closed-loop cost 7.2190× 106 , which shows that 
the cost increment is slightly less than the cost increment 
obtained in Halevi et aL (1991). The resulting eigenvalues of 
Ac are {-235.389, -1.6989, -4.2047, -2.8711}. 

6. Conclusion 
Two approaches were developed for obtaining stable 

compensators. One approach involves modifying the 
standard LQG Riccati equations to guarantee stability of the 
compensator, while the other approach is based upon 
bounding the closed-loop covariance. 
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