
Pergamon 0045-6535(94)00276-2 

Chemosphere, Vol. 29, Nos. 9--11, pp. 2253-2259, 1994 
Copyright © 1994 Elsevier Science Ltd 

Printed in Great Britain. All fights reserved 
0045-6535/94 $7.00+0.00 

REDUCTIVE DECHLORINATION OF PCDD/F BY ANAEROBIC CULTURES AND SEDIMENTS 

Adriaens. P. 1, and Grbic'-Galic, D. 2 

1 Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor M148109 USA, 

and 2 Department of Civil Engineering, Stanford University, Stanford CA 94503 USA 

Key Words: Reductive dechlorination, Methanogens, Anaerobic sediments, Peri-dechlorination 

ABSTRACT 

The fate of highly chlorinated (5 to 7 chlorines per molecule) dibenzo-p-dioxin (PCDD) and dibenzofuran 

(PCDF) congeners was studied in anaerobic microcosms, using polychlorinated biphenyl (PCB)-contaminated 

Hudson River sediments, and creosote-contaminated aquifer sediments. The PCDD/PCDF concentrations in 

active microcosms were shown to decrease at higher rates than in chemical and biological controls. The net loss 

of PCDD/F from active microcosms was up to 35% higher than in autoclaved controls after extended incubation 

periods. Lesser chlorinated PCDD/F, identified to be peri-dechlorinated, have been found as the accumulating 

products resulting from reduetive dechlorination under anaerobic methanogenic conditions. 

INTRODUCTION 

Chlorinated dibenzo-p -dioxins (PCDD) and dibenzofurans (PCDF) have been generated as unwanted 

byproducts in many industrial and most incineration processes (1-5). Whereas their widespread distribution in the 

different environmental compartments has been recognized, little is known about their fate in the ultimate 

environmental sinks, soils and sediments. In particular, the susceptibility of PCDD/F to biological oxidation and 

reduction reactions has only recently received (limited) attention. 

Bioremediation strategies for PCDD/PCDF-contaminated environments would be a highly desirable 

approach, as it may be considerably less costly than physical-chemical processes, and as it can be used 'in situ ', 

especially when microbial growth is stimulated via addition of nutrients to the contaminated sites. Little 

information is available on the potential for microbial transformation of PCDD/PCDF. The highly chlorinated 

PCDD/PCDF (5 to 8 chlorines) will not be susceptible to oxidative transformation, because they already are very 

oxidized; reductive transformation is more likely to occur with these compounds. Reductive dehalogenation of 

organohalogen compounds is mainly a cometabolic process whereby a fraction of the electrons generated during 

oxidation of the microbial growth substrate fortuitously reduce the highly oxidized (i.e. chlorinated) compounds, 

resulting in a sequential dechlorination reaction (Fig. 1). This mechanism has been shown to be dependent on the 

concentration and bioavailability of the organohalogen, and can be stimulated by amendment with simple organic 

growth substrates. 
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Figure 1." Schematic electron flow diagram representing the general reactions occurring during simultaneous 

microbial growth and reductive dechlorination of aryl halides (after 10). 

MicrobiaUy mediated reducfive dehalogenation of polychlorinated biphenyls (PCBs) with a high degree of 

chlorine substitution has been demonstrated to occur in previously contaminated Hudson River sediments (6), and 

in methanogenic microcosms containing pristine or adapted sediments, spiked with mg/kg concentrations of either 

Aroclor mixtures (7-9) or individual PCB congeners (10). The PCBs presumably serve as a (metabolically non- 
productive) alternative 'electron sink' to CO2 for methanogenic populations. Although dechlorination was 

dependent on the microbial populations studied, generally the meta - and para -chlorines are preferentially 

removed, while the ortho -chlorines are retained. Structural similarities between PCDD/F and PCBs invoke the 

potential for similar dehalogenation mechanisms to occur. 

Thus, the fate of highly chlorinated PCDD and PCDF congeners (5 to 7 chlorines per molecule) was 

studied in anaerobic (no other electron acceptor, but carbon dioxide) microcosm incubations using PCB- 

contaminated Hudson River sediments, dioxin-contaminated aquifer samples (Pensacola, FL), and 

dichlorophenol-enriched suspended cultures. 

METHODS 

The prereduced anaerobic nutrient medium (pH 7.2) used in all incubation studies contained (per L): 

Phosphate buffer (KH2PO4/Na2HPO4, 40 raM); NaHCO3, 2.0 g; (NH4)2C1, 0.9 g; CaCI2.6H20, 0.07 g; 

MgSO4.7H20:, 0.13 g; FeC12.4H20, 0.02 g; Cystein-HC1 + Na2S.9H20 (25 +25 g/L.), 10 ml; trace minerals 

(500x), 0.027 ml; vitamin stock (100x), 0.075 ml; resazurin (0.1%), 1 ml. A mixture of primary substrates 

was added to augment bacterial growth: acetate (45 mg/L.), propionate (30 mg/L.), butyrate (15 mg/L.), 

benzoate (10 mg/L.). 

Hudson River (HR) sediments containing approximately 100 ppm of 'weathered' endogenous Aroclor 

1242 (containing mainly tri-, and tetrachlorobiphenyls), collected downstream of Fort Edward, NY. This 

sediment is a sandy silt with 7-8 % organic carbon, mostly wood tailings or poorly degradable natural material 
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( 11 ). The second inoculum is low organic carbon (0.02%) aquifer material (PS) from a creosote-contarmnated 

groundwater aquifer near Pensacola, Florida. The aqueous phase is enriched in organic acids, phenolic 

compounds, mono- and polyaromatic hydrocarbons, and nitrogen, sulfur and oxygen containing heterocyclic 

~.;ompounds (12). 

Microcosms were established in 125 mL serum bottles containing 50 mL of the prereduced medium, and 

inoculated with (dry weight): (34 + 2) g of sediments, and (80 + 4) g of soil. After incubation at 30 oc  for 1 

month, or until methane-gas production was visible, the microcosms were spiked with PCDD/PCDF. Three 

replicates were spiked with 100 gL of the respective dioxin and dibenzofuran from a 50 mg/L (except for the 

mixed HexaCDD congener, 5 mg/L) nonane stock solution to give final concentrations of 147+15 ng/g and 62 + 6 

ng/g for sediment and soil, respectively. In addition, duplicate autoclaved biological controls, live biological 

controls (without PCDD or PCDF), and chemical controls (without inocula) have been established, and were 

monitored along with active microcosms. The PCDD/PCDF congeners chosen for this study are: 1,2,3,4,7,8- 

hexaCDD, 1,2,4,6,8,9/1,2,4,6,7,9-hexaCDD, 1,2,3,4,6,7,8-heptaCDD; 1,2,4,6,8-pentaCDF and 

1,2,3,4,6,7,8-heptaCDF. During the incubation time, Hudson River sediments and Pensacola soil microcosms 

were supplied with substrate on a monthly basis. 

At regular time intervals (0, 2, 4, 8, 12, and 14 months, depending on the inoculum), all bottles were 

manually shaken, decapped, and sampled (5 rnl) with a 10-mL glass syringe to contain both aqueous and sediment 

or soil phase ([0.139 + 0.033] g soil, [0.082 + 0.074] g sediment, all in dry weight), under N2.sparging of the 

headspace. Octachloronaphtalene (0.5 gg) was added as an internal standard, and the sample was twice extracted 

with two volumes of hexane : acetone (9:1). The solvent was decanted from the soil or sediment, pooled, and 2 

ml of concentrated H2SO4 were added to precipitate organics. Further sample cleanup was performed as reported 

earlier (13). The sample was then concentrated to 1 ml in a Rotovap evaporator. To this fraction, 100 ILL of 

dodecane-keeper was added. The sample was then further concentrated to 100 ILL under a gentle stream of N2, 

and a 2 I.tl aliquot was used for GC/MS and GC-ECD analyses. Recovery efficiencies of PCDD/PCDF were 

usually in the 55 to 70% range for inoculated microcosms, and 92% for the chemical controls (without inoculum). 

After 14 months incubation time, selected aquifer- and sediment-inoculated microcosms were decapped, 

and the supematant (aqueous phase and suspended particles) was decanted from the sedimented phase after 

centrifugation. Both phases were exu'acted separately. The supernatant was extracted as outlined earlier, while 

the sedimented phase was extracted in a Soxhlet apparatus. Accurately weighed wet aquifer material and sediment 

([52.2 _+ 6.3] and [34.2 + 1.5] g dry weight, respectively) were placed in a cellulose extraction thimble ( 5 t.tg of 

octachloronaphthalene added), and extracted for 36 hours in a Soxhlet apparatus containing hexane : acetone 

(9:1 ). The extract was quantitatively transferred to a 500 mL separatory funnel, containing 200 mL distilled 

water, 35 mL acetone, and 25 mL saturated NaC1 solution. After vigorous shaking for 5 minutes and separation 

of the phases, the aqueous phase was discarded. The remaining hexane layer (60 mL) was concentrated to a final 

volume of 10 mL in a Rotavap evaporator, and further prepared as outlined earlier. Dodecane (100 p.L) was 

added to the clean extract, which was further concentrated to 100 ~L prior to analyses. All samples were analyzed 

as described earlier (13). 
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RESULTS AND DISCUSSION 

The fate of the spiked PCDD/F (except for 1,2,4,6,8,9/1,2,4,6,7,9-HxCDD) in anaerobic sediments and soils 

was investigated. In all cases were the losses over time in the chemical controls negligable compared to the other 

treatments. However, the disappearance of PCDD/F in the autoclaved controls was in most cases nearly as 

extensive as that in the active microcosms, indicating the importance of sorption processes during the incubation 

period. The total decrease of PCDD/F appears to be slightly less in the low organic carbon (0.02%) aquifer 

samples, when compared to the 7-8% organic carbon Hudson River sediment samples. The initial f'trst-order rate 

constants for disappearance, calculated from log(C/Co) plots, and based on the disappearance rates within the first 

6 months, are given in Table 1. The initial removal rates of PCDD/F in active microcosms were 19 to 56% higher 

in Hudson River microcosms, and 23 to 56% higher in ACW aquifer samples, than in autoclaved controls. The 

net rates of removal in active microcosms were very slow, and calculated to be on the order of 10 -3 to 10 -4 d -1. 

These rates correspond well with published rates on PCB desorption from lake sediments (14). 

Calculated half lives for the PCDD/F, based on the initial rates of removal, ranged from 1 to 4.1 years 

(Table 1). The hexaCDDi congener was found to not be degraded, presumably due to the low concentration 

spiked. The half lives have to be interpreted carefully as rates of removal (i) were not found to follow first order 

kinetics, (ii) account only for the removal of one or two chlorines per molecule, and (iii) do not account for the 

residual concentration of congener which does not get dechlorinated. 

Table 1: First-Order Disappearance Rates and Calculated Half Lives of Selected PCDD/F in Hudson 

River (HR) and Aquifer (PS) Microcosm Incubations. 

PCDD/F Inoculum Pseudo-f'trst-order rates (n = 6-12) Half Lives 

Congener Active Autoclaved Net Rates (yr) 

(10-3 d-l) 

H7CDD HR 2.32 + 0.07 1.85 + 0.14 0.46 + 0.16 4.1 

PS 1.31 + 0.10 1.01 + 0.02 0.30 + 0.10 2.9 

H6CDD HR 2.86 + 0.30 1.92 + 0.23 0.94 + 0.28 2.0 

PS 1.46 + 0.13 0.80 + 0.16 0.66 + 0.21 2.9 

H6CDDi HR 5.71 + 0.16 5.90 + 0.14 0 oo 

PS ND ND ND ND 

H7CDF HR 4.13 + 0. I0 3.22 + 0.05 0.90 + 0.11 2.1 

PS 1.34 + 0.16 5.86 + 0.12 0.75 4- 0.15 2.5 

P5CDF HR 3.30 4- 0.04 1.44 4- 0.02 1.87 4- 0.05 1.0 

PS 1.35 4- 0.18 0.80 + 0.13 0.55 + 0.22 3.5 

ND: Not Determined. 



Therefore, the actual half lives of PCDD/F in the environment may be orders of magnitude higher on 

account of lower dechiorination rates with fewer chlorines on the PCDD/F molecule, and because residual 

concentrations may never be biologically available. Incubations with PCDD/F contaminated sediments, and using 

a range of spiked PCDD/F concentrations may help address this issue of bioavailability. 

f I :  Initial PCDD/F 
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Figure 2: Recovery of PCDD/F in Active and Autoclaved Methanogenic Hudson River (A) and ACW Aquifer 

Microcosms after Extended Incubation. 

The recovery of PCDD/F in both Hudson River and ACW aquifer microcosms is given in Fig. 2. Error 

bars on the graphs represent triplicate microcosms. Overall recoveries for the PCDD were higher in aquifer 

microcosms, when compared to Hudson River samples. Though PCDF recoveries in autoclaved microcosms 

were found to be similar for both inocula, degradation of heptaCDF was more extensive using the Hudson River 

sediments. Net loss of the spiked PCDD congeners ranged from 11 to 35%, for heptaCDD and hexaCDD 

respectively. The PCDF congeners were from 25 to 31% transformed, depending on the inoculum used. 
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Figure 3. ProposedDechlorination of l,2,4,6,8-PentaCDF by SuspendedDichlorophenol-Enriched Cultures (A), 

and of 1,2,3,4,5,6,7,8-HeptaCDF in ACW Microcosms (B). 

Tentative identification of the products indicate that peri-dechlorination was the preferential route of 

reduction, as has been observed with 1,2,3,4,5,6,7,8-heptaCDD in aquifer microcosms. This observation 

corroborates our earlier findings of a similar dechlorination pattern found with 1,2,4,6,8-pentaCDF in 

chlorophenol-enriched sediment cultures, and is contrary to photolytic de.chlorination patterns of soil-sorbed 

PCDD/F. In the latter case, the preferential removal of the lateral chlorines was observed in the case of PCDF, 

and of peri-chlorines in the case of PCDD (16, 17). Dehalogenated congeners found in Hudson River sediments 

spiked have not been analyzed on the isomer-specific level. Even though it is too early to evaluate the ubiquity 

and the extent of the observed microbially-mediated dehalogenation pattern, the selective enrichment of 2,3,7,8- 

substituted PCDD/F congeners could be a matter of environmental concern. 
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