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Effect of solid conductivity on radiative heat transfer in packed beds 

B. P. SINGH and M. KAVIANYt 

Department of Mechanical Engineering and Applied Mechanics. The University of Michigan, 
Ann Arbor, MI 48109. U.S.A. 

1. INTRODUCTION 

THE SOLUTION of the radiative heat transfer problem in 
porous media has received considerable attention for a num- 
ber of years (e.g.. Vortmeyer [I], Tien and Drolen [2], ’ nd 
Kaviany and Singh [3]). The medium may be considere d as 
a continuum or as a discrete collection of particles, depending 
on whether the packing lies in the dependent or independent 
scattering/absorption range. Independent scattering/absorp- 
tion is said to occur when the interaction between the radi- 
ation and a particle is not influenced by the presence of the 
neighboring particles. Dependent scattering can be divided 
into a far-field interference influencing the scattering charac- 
teristics of the medium and a near-field multiple scattering 
within a representative elementary volume in which the 
scattering and absorption characteristics of the particles are 
affected. Singh and Kaviany [4] show that the limits of 
independent scattering are a minimum value of porosity 
(E z 0.95) and a minimum value of C/j.. The average inter- 
particle clearance distance C for a rhombohedral packing is 
given by C/d = 0.905/[(1 -&)I ’ - I]. Since ati practical 
packed beds and most of the fluidized beds have a porosity 
lower than this independent limit. the scattering/absorption 
will generally lie in the dependent range. This implies that 
the radiative properties of the bed cannot be predicted from 
the properties of a single particle by the theory of inde- 
pendent scattering/absorption. Then the continuum 
approach to the packed bed internal radiation becomes 
difficult unless the properties are determined either exper- 
imentally or from discrete models (Singh and Kaviany [5]). 

In the dependent range, ray tracing has been successfully 
used to solve the internal, bed radiative heat transfer (Chen 
and Tien [6] ; Yang er al. [7]). Singh and Kaviany [5] have 
extended this approach to include absorbing and emitting 
as well as transparent and semi-transparent particles. One 
limitation of this approach is that the spherical particle diam- 
eter has to be much larger than the wavelength of radiation, 
i.e. the particles must lie in the geometric optic range. 
However, this is generally satisfied in most packed-bed appli- 
cations. The second limitation has been that the problem was 
solved by assuming that the solid conductivity is either very 
large (as compared with radiant conductivity) or is very 
small. The difference between the predicted values of the 
radiant conductivity from these two asymptotes can be quite 
large (as much as fivefold). This latter limitation provides 
the motivation for the solution of the generalized problem, 
i.e. the radiative heat transfer through a packed bed of 
absorbing-emitting-scattering spheres with an arbitrary 
solid conductivity. For optically thick media, the concept of 
radiant conductivity (Vortmeyer [I]) k, has been used and 
through this an exchange factor Fhas been introduced which 
depends on the particle properties (Tien and Drolen [2]). For 
opaque particles and for porosites characteristic of packed 
beds, the use of radiant conductivity is generally valid. 

t Author to whom correspondence should be addressed. 

In this note. a technique has been developed to model the 
effect of the solid conductivity on the radiant conductivity in 
packed beds of spherical particles. The solution is obtained 
for both diffuse and specular, scattering spheres by com- 
bining the Monte Carlo method for the radiation transport 
and a finite-difference scheme for the temperature dis- 
tribution within a representative sphere in each layer of a 
multilayer bed. The results show that the radiant con- 
ductivity is strongly influenced by the solid conductivity and 
the particle emissivity. The computed values for the exchange 
factor are curve fitted as a function of the dimensionless solid 
conductivity k: and the particle emissivity E,. for a simple- 
cubic packing. The limits for variation with porosity are 
discussed. Also. sensitivity studies are carried out which con- 
firm the validity of this technique for computing the radiative 
conductivity of the bed, as well as establishing the conver- 
gence. 

2. PROBLEM CONSIDERED 

A one-dimensional. plane-parallel medium is used and is 
rendered in Fig. I. The problem can be divided into the 
following two cases. In the case of a cold medium, the med- 
ium does not emit in the wavelength of the incident energy. 
This case is common in optical experiments, where a low- 
frequency laser irradiation is used and the medium is at room 
temperature and does not radiate any significant amount of 
radiation in the wavelength of the incident beam. Also, the 
experiment of Chen and Churchill [8] can be considered in 
this class. Methods of solution include the Monte Carlo 
method (Singh and Kaviany [4]). a simple scaling approach 
combined with the discrete ordinates method (for opaque 
spheres. Kaviany 191). and a more complex variant 
(DIDOM. Singh and Kaviany [5]) for transparent and semi- 
transparent spheres. 

For the case of a medium emitting in the range of the 
incident radiation, as considered here, the upper boundary 
is assumed to be at a temperature T, and the lowerboundary 
at a temperature Tz. with both boundaries assumed to be 
behaving as blackbodies. Consider the two blackbodg emiss- 
ive powers to be related by the relation ‘4 

& = ;.& (1) 

where ;’ varies between 0 and I. The spheres have a solid 
conductivity k, and the matrix has a porosity E. The objective 
is to find the radiative heat transfer through the medium. 

The low and high conductivity limits of this problem have 
been explored experimentally (Vortmeyer [I]) and by the 
Monte Carlo method (Singh and Kaviany [4]). In the low- 
conductivity asymptote. the rays are considered to be emitted 
from the same point on the sphere at which they are 
absorbed. Thus the ray tracing approach may be used suc- 
cessfully. Similarly, the high-conductivity asymptote, i.e. 
when the solid conductivity is much higher than the radiant 
conductivity, can be treated with the ray-tracing.approach. 
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NOMENCLATURE 

T 

I = I, 2, 3. 4 ; constants 
average interpartrcle clearance distance [m] 
particle diameter [m] 
blackbody emissive powrr [W m ‘1 
exchange factor 
thermal conductivity [W m ~’ K ‘1 
bed length [m] 
number of particle layers 
number of rays 
heat flux [W mm’] 
volumetric heat source [W m ‘1 
temperature [K]. 

Greek symbols 
Y constant 

E porosity 
6, surface emlssivity 
I wavelength [m] 
/‘I reflectivity 
U\H Stefdn-Boltzmann constant [W mm2 K-j]. 

SuperscrIpt 
* dimensionless 

Subscripts 
I.2 boundmg surface I. 2 
b blackbody or bounding surface 
m mean 
r radiation 
s <olid. 

An Individual sphere IS assumed to be isothermal and a ray 
absorbed by the sphere is given an equal probability of being 
emitted from anywhere on the sphere surface. This results 
in an increase in the radiant conductivity (over the low- 
conductivity case), because the rays absorbed on one side can 
be emitted from the other side, thus by-passing the radiative 
resistance. 

The general problem, where the solid and the radiant con- 
ductivities can have arbitrary magnitudes, has not been 
explored before. This is the primary objective of this note and 
the formulation, solution method, and results, are described 
below. 

3. FORMULATION 

Consider an absorbing, emitting packed bed of spheres, as 
shown in Fig. I. The radiative heat flux, q, for this one- 
dimensional, plane geometry is given by (Vortmeyer [I]) 

FGSB 
qr = (l+I,,h):(l-P,h)+(L,d)(T~-T~) 

(2) 

where orb is the bounding surface reflectivity. L is the bed 
depth, and d is the particle diameter. The radiant con- 
ductivlty k, is defined as 

and 

k, = 4F&r,,T:, (3) 

F = F(k,. E,, E) (4) 

where d is the diameter of the sphere, osR is the Stefan- 
Boltzmann constant, T,,, is the mean temperature of the bed, 
and F is the exchange factor and is a function of the given 
solid conductivity k,, surface emissivity E,, and the porosity 
of the bed E. We define a dimensionless solid conductivity 
k: as 

(5) 

The mean bed temperature T,,, can be given in terms of the 
emisslve powers of the bounding black surfaces as 

Surface Surface (Diffuse or Specular) 

Upper Surface Emissive Power 
Solid 

Conductiviz s - Layer 1 

Bed Porosity -2 

E 
-3 

-n 

Lower Surface Emissive Power 

FIG. I. The plane-parallel geometry considered showing the bounding. emitting surfaces. and layers of 
particles. 
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(6) 

In this problem I’,.~ = 0, so the value of the radiant con- 
ductrvity can be determined from the heat flux through the 
bed as 

Yr 
k’ = (l+(L/d))(T,-T2)' (7) 

The factor 1 in the denominator is often neglected, because 
L >> d. Here, in the determination of the exchange factor F, 
the factor 1 is retained, i.e. once the value of k, is known, the 
exchange factor F is calculated from equation (3) 

(4 
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Within the bed, the radratron 1s treated by combrning the 
ray tracing with the Monte Carlo approach of Sin&h and 
Kaviany [5]. The conductlon through a sphere is allowed by 
solving for the temperature distribution in a representative 
sphere for each particle layer rn the bed. The finite-volume 
approach is used (Patankar [IO]) to solve the heat conduction 
equation 

k,V’T=S (8) 

where s is the source term which is non-zero for the boundary 
nodes (i.e. surface nodes) and is found from the radiation 
part of the problem (i.e. the energy absorbed at each location 
on the surface of the sphere). 
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FIG. 2. The results of convergence tests showing the variatton of the normalized radiant conductivrty with 
respect to the normalized solid conductivity. (a) Effect of number of rays, (b) effect of ratio of emissive 

powers. (c) effect of grid-net resolution, and (d) effect of number of particle layers. 
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4. SOLUTION METHOD 

The method ofsolution combines the Monte Carlo method 
for a packed bed (Singh and Kaviany [4]) with the finite- 
volume formulation for a temperature distribution in a 
sphere. The Monte Carlo method is the same as described in 
[4]. The important features include the random, horizontal 
displacement of the particle layers after each individual ray 
is traced through the bed, in order to simulate a randomly 
arranged packed bed. Periodic boundary conditions in the 
horizontal direction are employed in conjunction with a unit 
cell which includes portions of the four neighboring spheres, 
The portions included in the unit cell make up one whole 
sphere and are treated as parts of the same sphere for the 
solution of the conduction problem. Each sphere (one for 
every layer in the packed bed) is divided into concentric 
circles with each band representing the thickness of a finite- 
volume cell. The upper boundary is allowed to emit a number 
of rays N, and the energy absorbed by each band on each 
sphere is recorded in a matrix. Similarly, the bottom surface 
emits a number of rays Nz = ‘JN, and the energy absorbed 
by each band is again recorded. Then, each band on each 
sphere emits a fixed number of rays and the energy absorbed 
by every surface is stored in a matrix E(i,, j,, i,,, j,) which 
represents the fraction of energy emitted by the j, band on 
the i sphere that is absorbed by the j0 band on the i, sphere. 
Also the fraction going to each surface is recorded. Thus the 
system is divided into a number of surfaces and E(ii, j,. 4, j,) 
represents a factor analogous to the view factor in the surface 
radiation problems. The difference lies in the fact that it takes 
into account energy from the multiple reflection and the 
individual spheres actually represent the whole layer, because 
of the use of periodic boundary conditions. 

This procedure results in a significant saving in the com- 
putation, since the radiative view factors are stored in the 
beginning of a run and do not have to be iterated upon along 
with the conduction solution. Initially, all the spheres are set 
to the temperature of zero. The bottom and top planes emit 
a number of rays N, cc Eb, and N, cc _I&,. The number of 
rays absorbed by each band on each sphere is recorded. 
This represents the boundary conditions for the conduction 
solution which results in a new temperature distribution in 
each sphere. Then, in the next radiation iteration, each band 
on each sphere also emits energy (a function of its tem- 
perature recorded in the conduction part) and the energy 
absorbed by each band is recorded and used as a boundary 
condition for the next conduction iteration. This procedure 
is repeated until convergence is reached, i.e. the temperature 

of each band becomes stable and the net energy transferred 
from the top surface to the bottom surface no longer changes. 

5. RESULTS AND DISCUSSION 

Figure 2(a) shows that as the number of rays is increased 
progressively from I OS to 2 x IO5 to 5 x IO’ to IO”, a con- 
vergence is reached. The number 5 x IO5 is used for all the 
runs considered converged. Changing the number of rays 
also changes I& and Ebl. Note that this independence of 
E,,, and Et,, numerically establishes the influence of k,* as a 
parameter (since the same value of Fis recorded for different 
T, and T2 combinations while keeping k: constant). Figure 
2(b) shows the convergence with respect to Ebl/Eh,. 

Figure 2(c) shows that the number of nodes in the finite- 
volume conduction solution is increased progressively from 
21 x21 to 31 x31 to 41 x41. The results show that a good 
convergence is found and that the grid net 3 I x 3 1 is used in 
all the solutions considered converged. Figure 2(d) shows 
the effect of the number of layers. A depth of six sphere 
layers is found to be sufficient to eliminate the boundary 
effects, thus simulating the bulk properties of a continuous 
medium. However, eight layers are used in all the runs con- 
sidered to be converged. Since the properties of the medium 
(i.e. independent of the boundaries) are determined, the 
results can be used in any arbitrary medium, as long as each 
dimension is large compared with the sphere diameter. The 
results for E = 0.476 and various values of E, and k: have 
been obtained for both diffusive and specular surfaces. The 
results are shown in Figs. 3(a) and (b). The results for both 
surfaces are nearly the same. Both low and high k: asymp- 
totes are present. The low k$ asymptotes are reached for 
k: < 0.10 and the high k: asymptote is approached for 
kf > IO. There is a monotonic increase with E,, i.e. as absorp- 
tion increases, the radiant conductivity increases, for high 
k:. 

The results of Figs. 3(a) and (b) have been correlated using 

(9) 

The best-fit values of the constants are given in Table 1. 
The computer intensive nature of the problem prevented 

a thorough sweep of the porosity range as an independent 
variable. However, the effect of the porosity in the high 
conductivity limit, has been discussed by Singh and Kaviany 
[3, 41. For example, by decreasing the porosity from 0.6 to 
0.5, the magnitude of F changes from 0.47 to 0.51 for 

. Diffuse Surface, 
l.O- E = 0.476 

0.0.’ . . . . . . . . . . . . . . . . . . - 0.0. . . . . . . . . . ..““., . .“..“, ..mwf- 
0.01 0.10 1 10 loo 0.01 0.10 1 10 100 

k: = k,/4da,,T3 k; = k,/4do,,T3 

FIG. 3. Variation of the normalized radiant conductivity with respect to the normalized solid conductivity 
for (a) diffuse particle surfaces, and (b) specular particle surfaces, The results are for s = 0.476 and for 

various surface emissivities. 
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Table I. Constants in the exchange factor 
correlation 

Specular Diffuse 

0.5711 0.5756 
I .4704 I .5353 
0.8237 0.801 I 
0.2079 0.1843 

E, = 0.35 (specular surfaces) and from 0.94 to 0.97 for 
F, = 0.85 (diffuse surfaces). In practical packed beds, the 
porosity ranges between 0.3 and 0.6 with a value of 0.4 
for randomly arranged, loosely packed monosized spheres. 
Therefore, the sensitivity of the radiant conductivity with 
respect to the porosity (as compared to other parameters) is 
not expected to be very significant, 
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1. INTRODUCTION 

THE EXPERIMENTAL study of liquid metal flows is required to 
better understand the physics of convective fluid flow and 
heat transfer in materials science applications. Improvement 
of the quality of electronic solids through control of the 
convective melt environment requires a thorough grasp of 
both buoyant and thermocapillary flow mechanisms in low 
Prandtl number fluids. A large number of convective studies 
towards this application have&en made using high Prandtl 
number transparent fluids. However, due to the large differ- 
ence in Prandtl number between transparent fluids and liquid 
metals, the driving mechanisms for convective flow have a 
different character. This was presented by, among others, 
Carpenter and Homsy [l], who showed large differences in 
surface tension gradients for high Prandtl number fluids vs 
low Prandtf number fluids. Knowledge of these low Prandtl 
number flow mechanisms will foster an improved under- 
standing of materials solidification issues. 

Because liquid metals are opaque, their study requires the 
use of unconventional flow analysis techniques. Historically, 
this has been limited to probing with thermocouples and 

tTo whom correspondence should be addressed. 

observations of surface motion [224]. Also, highly intrusive 
electromagnetic techniques were used [5]. A new, non-invas- 
ive method of liquid metal flow visualization has recently 
been developed. The system described here uses real time 
radioscopy and has been employed with much success to 
visualize the melting and solidification interfaces [6-g]. The 
method has now been improved to permit’ coarse vis- 
ualization of the density fields in liquid gallium,. Analysis 
of the density fields can yield information concerning the 
character of the convective flow field as well as the natur> of 
the heat transfer taking place. Real time visualization of the 
thermal fields is complementary to thermocouple probing 
because it allows visualization of the entire flow field. In 
addition, this method is non-intrusive and can be utilized for 
the visualization of multiple liquid layers where thermo- 
couple techniques would interfere with the interface 
behavior. 

To assess the heat transfer characteristics in a liquid metal 
it is desirable to have knowledge of the thermal fields within 
the fluid, especially during convective or unsteady flow. Cre- 
ating isothermal patterns from convective fluids using the 
method of holographic interferometry [9] has proven to be 
useful for determining the character of convective flow. Not 
only is the temperature field clearly diagrammed, but also 


