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Abstract 

A method for separating the effects of a treatment from those of normal growth and development in the case of 
a randomized parallel groups design with pre- and post-treatment measures is described and implemented. The pro- 
gram allows the user to enter either summary statistics (published data are often in this form), or the pre- and post- 
treatment measurements for each individual. The program is illustrated using data reflecting the extent to which a treat- 
ment can be expected to impede normal growth, but the method and program are more general than this. Ail that is 
required is that the measurement be one that normally increases over time. 
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1. Introduction 

The randomized parallel groups design with pre- 
and post-treatment measures is a simple, widely 
used study design in biomedical research (chapter 
3 of Ref. [ 11). In this design, subjects are randomly 
assigned to a treatment (T) or a control (C) group, 
and measured at comparable times before and 
some time after the treatment (TX) is admin- 
istered. The data so collected are then analysed 
with a view towards comparing: (1) the pre- 
treatment mean values in the groups (i.e., did the 
T and C groups start with comparable values?); (2) 

* Corresponding author. 

the pre- and post-measurements within each of the 
groups (i.e., did the T and/or C groups change 
from time 1 to time 2?); (3) the changes in the 
groups (i.e., did the T and C groups exhibit equal 
amounts of change?) 

Hypothesis tests corresponding to these com- 
parisons are well developed [2-41 and software for 
performing these tests is accessible to most resear- 
chers. Stanek [4] considered testing l-3 in the con- 
text of repeated measures analysis of variance 
(RM ANOVA), analysis of covariance (AN- 
COVA), and seemingly unrelated regression 
(SUR) models. These are closely related and give 
identical estimates for certain of the parameters in 
the models; but the assumptions underlying the 
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methods differ, and estimates of the variances of 
the parameters differ. The critical question in 
choosing the appropriate test is whether differ- 
ences in pre-TX means are viewed as real or are 
considered to be the result of pure measurement 
error. If real, RM ANOVA appears to be the best 
choice (the relationship between RM ANOVA and 
simple r-tests in this context is given in Ref. [2]); 
if due to measurement error, either ANCOVA or 
SUR models should probably be employed, but 
the choice between these two is not clear-cut. SUR 
models can be expected to produce estimates with 
smaller variances, but this gain is somewhat com- 
promised by lack of exact distributions for the test 
statistics. In any event, software for testing l-3 is 
readily available. 

Less emphasis has been accorded the estimation 
of the effect of the TX relative to the control. In 
this paper we describe, illustrate, and make avail- 
able a user-friendly, menu-driven PC program 
which can be used to estimate and compute conti- 
dence intervals for an index of this relative effec- 
tiveness in the situation in which the TX is 
designed to affect (either to stimulate or suppress) 
a measurement subject to growth. This measure- 
ment is made in both the T and C groups before 
and after the application of the TX. The theory 
behind our method was developed in Ref. [l] 
(p. 210) in the somewhat different - but related - 
context of describing the TX effects for ‘deter- 
iorating conditions’, i.e. the response variable is 
one for which high values are ‘bad’ and the mea- 
surement is assumed to be non-decreasing. An ex- 
ample given in Ref. [l] is that of the DMFS score 
(the number of decayed, missing and filled surfaces 
of a patient’s permanent teeth), which cannot 
decrease with the passage of time and, in the ab- 
sence of TX, can be expected to increase. We will 
illustrate and discuss the method in the context of 
growth, but follow the notation and computa- 
tional procedures detailed in Ref. [l]. This will 
allow the interested reader to relate our discussion 
to other material given in Ref. [I], and provides a 
source for additional examples. 

Let A1 and AZ denote the underlying mean 
changes in the response variable from baseline. We 
use the subscript 1 to denote the T group, and 2 for 
the control. By assumption, neither Ai nor A2 can 

be negative. The quantity 

P= A2 - 4 

A2 
(1) 

is, in the context of a deteriorating condition, then 
the proportion by which the mean worsening 
associated with the control group has been 
diminished by the TX. Values of P close to zero 
show a relatively small TX effect; values near 1, a 
large TX effect. Dubey [5] developed a somewhat 
different method for confidence interval construc- 
tion which allows A, to be negative, so that P can 
be larger than 1. In the context of deteriorating 
conditions, this corresponds to a TX which is 
positively curative, i.e., one that has reversed the 
course of the disease. We follow Fleiss’s develop- 
ment [I] since our primary interest is in growth, 
and Ai < 0 would correspond to ‘shrinkage’. 

In the context of growth, P is the proportion by 
which mean normal growth has been slowed by 
TX. Values of P near 0 (A, near A,) indicate that 
the TX has been ineffective. Values near 1 (A, 
near 0) indicate that the TX has suppressed 
growth. Values less than zero (A, > A,) indicate 
that the TX has stimulated growth (a negative 
reduction is a gain). 

Let 0, and B2 denote the two sample mean 
changes calculated from samples of sizes nl and 
n2. In the notation of Ref. [l], 

(2) 

i.e. the baseline measurements are denoted by Z, 
the post-TX measurements by X. For example, Xii 
is the post-TX measurement for the jth individual 
0’=1,2,..., ?Zi) in gOUp i (i = 1, 2). 

We consider two cases. In the first, the simple, 
unadjusted means (Eq. 2) are used to estimate P. 
In the second, we use instead so-called covariance- 
adjusted means, which are derived through use of 
ANCOVA. These adjust the Ei values for any 
imbalances in the response variable that might 
have existed prior to TX. In randomized studies, 
we expect the groups will be comparable at base- 
line, but this expectation is not always realized in 
practice. 
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2. Unadjusted means 

In this case we use the simple mean differences 
as given in Eq. 2. P can then be estimated by 

(3) 

and confidence intervals for P can be constructed 
by first using Fieller’s theorem (Ref. [l], p. 42) to 
get a confidence interval for R = A1/A2, then using 
the fact that P = 1 - R to derive the correspon- 
ding interval for P. To get a (1 - a) x 100% con- 
fidence interval, first compute 

t:_&~, + n2 - 2)sZ, 
g= 

n2F$ 
(4) 

where tl _ ar/2(nl + n2 - 2) is the (1 - o/2)th per- 
centile of the t distribution with nl + n2 - 2 
degrees of freedom, and ~2 is the pooled estimate 
of the variance of the differences in the two 
groups, namely, 

Sk = 
(nl - 1)&i + (n2 - lbb2 

nl + n2 - 2 (5) 

where s& and sk2 are the variances of the differ- 
ences in the two groups. Confidence limits for R 
have the lower limit 

1 
RL = ~ tl - a/2@l + n2 - 2bD 

1-g 
x- - 

02 

l-g + Iz2 ___ ~ 
nl n2 1 

and upper limit 

1 
RU = ~ fl - d2h + n2 - 2bD 

1-g 
R- - 

D2 

II l-g + R2 

ni n2 1 

(6) ii = xi - &Zi - 2) (10) 

where 2 is the overall (weighted) mean of the ZP 
In Ref. [9] we introduce the WSS and WSP nota- 
tion used in the ANCOVA tables of Ref. [ 11. These 
are read ‘within sum of squares’ and ‘within sum 
of products’, respectively. In terms of simpler, 
more familiar quantities we note that 

(7) WSS(Z) = (nl - 1)s:~ + (n2 - I)& (11) 

The confidence limits for P are then (1 - RU, 
. 1 - RL). 

3. Covariance-adjusted mean differences 

The above computations are based on the raw, 
unadjusted differences D = X - Z in the two 
groups. As indicated in Ref. [l] (p. 213), it is possi- 
ble that covariance-adjusted differences will pro- 
duce narrower confidence intervals should the 
groups differ at baseline. The adjusted differences 
are based on the ANCOVA model (Ref. [I] p. 
194): 

Xij = /Ai + fl(Zij - Z) + eij (8) 

where eij is a normally distributed error term with 
mean 0 and variance u2. We write eU - N(0, a2). 
The least squares estimators of the parameters of 
the model are 

i 2 (Xij -Xi)(Zij - Zi) 
fk i=l j=l 

2 n; 

C ~ (Zij - Zi)2 
i=l j=l 

WSP(XZ) 
= WSS(Z) (9) 

and 



86 C.J. Kowalski et al. /ht. J. Biomed. Comput. 37 (1994) 83-91 

and 

where, for example, six (respectively, &) is the 
standard deviation (respectively, variance) of X in 
group 1; and Cov,(X,Z) (respectively, r&Z)) is 
the covariance (respectively, correlation) between 
X and Z in group 1. Below, and in the output of 
the program, we use S.D. to stand for standard 
deviation. 

The covariance-adjusted means within the two 
groups are then 

and 

61 = 02 - &Z2 - Z) (14) 

We then compute 

(1% 

Now, the form of Fieller’s theorem used above 
cannot be applied here since the adjusted 
estimators are dependent (they both involve B and 
2). Instead, we compute 

t:-,,2(n, + n2 - 3)&a; 
g= 

(b i)2 
(16) 

In Eq. 16, f refers to the t-distribution as before 
(one degree of freedom fewer since we estimated 
8). We also need 

& = WSS(D’)l(ni + n2 - 3) (17) 

where 

B’SS(D’) = B’SS(D) - [ ~ww1 2 
wwz) 

(18) 

Again, as in Eqs. 11 and 12, it is possible to express 
the quantities in Eq. 18 in terms of simple sum- 
mary statistics. We have, for example, WSS(D) = 
(n, - l)& + (n2 - I)&. We follow Fleiss [l] so 
that the reader will have the opportunity to relate 
our discussion to this more extended material. 

In Eq. 16, and subsequently, we also need to 
define 

1 a;=-+ (Zj - 2)2 

ni wwa 
(19) 

Finally, we let 

Q = (1 - g)a: + @‘)‘a; - ~B’u,~ + g $ 
(21) 

Then the (1 - o) x 100% confidence interval for 
R’ is given by 

& [(a&&) 

f 
t:_,12(nl + n2 - 3)s&Jiz 

Di 
(22) 

For reasons given in section 6 below, we also 
compute and print the estimated correlation be- 
tween D and Z, namely, 

r(D,Z) = 
WSP(DZ) 

d WSS(D) WSS(Z) 
(23) 
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This is the ‘pooled within-group’ correlation coef- 
ficient, which combines data on the relationship 
between D and Z from both groups. It is not, as 
is sometimes thought, found by computing the 
correlation coefficient from the data from both 
groups considered as a single group (see also, Ref. 
M, P. 147). 

4. The program 

The program is invoked by issuing the com- 
mand gsruni rxrpg. The user is first asked whether 
the data are (i) in a (ASCII or GAUSS) tile, or if 
(ii) summary statistics are to be entered interac- 
tively. If(i), the user is prompted for the type, loca- 
tion, and name of the file, which is assumed to be 
of the following structure: group indicator in col- 
umn 1, pre- and post-measurements in columns 2 
and 3. The user is next asked for the confidence co- 
efficient (e.g., 0.95) to be used to construct the 
confidence interval. Color coded plots of the 
‘growth curves’ of the individuals comprising the 
two groups are shown; descriptive statistics are 
given; estimates of the model parameters and the 
covariance adjusted mean differences are printed; 
and the values of the unadjusted and adjusted 
estimators of P and their corresponding confi- 
dence intervals are provided. 

If the user responds (ii), they are prompted for 
the values of the summary statistics necessary to 
estimate P. These may be in the form of pre- and 
post-TX values or pre-TX values and differences, 
i.e., the user can enter either Z,X statistics or Z,D 
statistics. The information we require for the case 
of Z,X statistics is summarized in Table 1. 

If the user indicates that they have Z,D sum- 
mary statistics, the prompts are similar: The only 
change is from ‘Post-TX’ to ‘Differences’. The op- 
tion of providing summary statistics should prove 
useful since the results of studies of the type con- 
sidered here are often published in one or another 
of these forms. See Ref. [l], p. 212 for an example 
of Z,D data; Ref. [6], p. 237 for Z,X data. 

5. Some examples 

Our first example is based on a subset of the 
data first considered by Box [7]. For convenience, 

Table 1 
Information required if data being inputted is Z,X statistics 

Number in TX group 
Pre-TX mean in TX group 
Pre-TX SD. in TX group 
Post-TX mean in TX group 
Post-TX SD. in TX group 
Pre-post correlation in TX group 

Number in control group 
Pre-TX mean in control group 
Pre-TX SD. in control group 
Post-TX mean in control group 
Post-TX SD. in control group 
Pre-post correlation in control group 

these are reproduced in Table 2 in the form of an 
ASCII data file which will be accepted by our 
program. 

The first column is the group indicator (1 = TX, 
2 = Control). The next two columns contain the 
pre- and post-TX measurements. The tabulated 
values are the weights (g) of 20 rats. The TX in- 
volved the use of the drug thiouracil, which was 
added to the drinking water of the rats in this 

Table 2 
Subset of data, first used by Box [7], used in this experiment 

Group Pre-TX Post-TX 

1 61 86 
1 59 80 
I 53 79 
1 59 88 
1 51 75 
I 51 75 
1 56 78 
1 58 69 
I 46 61 
1 53 72 
2 57 86 
2 60 93 
2 52 17 
2 49 67 
2 56 81 
2 46 70 
2 51 71 
2 63 91 
2 49 67 
2 57 82 
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group. Using more extensive longitudinal data 
(five time points), Box showed clear differences be- 
tween the growth curves in these groups. In the 
above, we use only the first time point post- 
treatment, so we are considering only the immedi- 
ate impact of the TX. 

Color coded plots of the ‘growth curves’ of the 
individuals comprising the two groups are plotted 
as shown in Fig. 1. This was called a ‘tilted line 
segment plot’ by McNeil [8]. It gives an indication 
of the overall course of growth, inter-individual 
variability in growth, some insight into tracking 
behavior [ 12- 161, and may be useful in identifying 
outliers. 

Descriptive statistics and estimates of the model 
parameters are provided, as well as the values of 
the unadjusted and adjusted estimators of P and 
their corresponding confidence intervals. The 

descriptive statistics for the above data are given in 
the form shown in Table 3. 

Both estimates of PHAT, the proportion reduc- 
tion in growth due to the treatment, are positive, 
indicating that the thiouracil has retarded natural 
growth, but not to any great extent. The fact that 
zero is contained in the 95% confidence intervals 
means that the amount of reduction is not 
significantly different from zero at the 5% level of 
significance. 

The user may only have access to published 
summary statistics as given, for example, in Table 
4 (taken from Ref. [6], p. 237). These data repre- 
sent pre- and post-measurements of the ‘Pre- 
School Inventory’, which measures the general 
knowledge of pre-school-age children. The control 
group includes children from ordinary Head Start 
programs; the TX group children who received an 

4 - #l 
0 #2 
A-- #3 
+ #4 
+ #5 
+‘- #6 
x #7 
?? -- #a 

PRE 

I- 
4- 

v 
x-- 

#11 
#lZ 
#I3 
#14 
#15 
#I6 
#I? 
#I6 
#19 
#20 

Fig. 1. Tilted line segment plot of the pre- and post-measurements in the two groups. 
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Table 3 Table 4 
Descriptive statistics for the data in Table 2 Summary statistics, taken from p. 237 of Ref. [6] 

TX Broup 
Nl = 10 
ZBARl =54.7000, S.D.=4.6916, VAR=22.0111 
XBARl = 76.3000, SD. = 7.9169, VAR = 62.6778 
DBARI = 21.6000, SD. = 5.3790, VAR = 28.9333 
R(ZX) = 0.7506 
R(ZD) = 0.2325 

TX(N = 157) 

C(N = 669) 

Contro; group 
N2= IO 
ZBARZ = 54.0000, SD. = 5.4365, VAR = 29.5556 
XBAR2 = 78.5000, SD. = 9.6408, VAR = 92.9444 
DBARZ = 24.5000, SD. = 4.8362, VAR = 23.3889 
R(ZX) = 0.9455 
R(ZD) = 0.7607 

gain.) This increase is significant (at the 5% level 
of significance) since the 95% confidence interval 
for PHAT does not contain zero. 

MulHAT = 76.1244 
Mu2HAT = 78.6756 
BETAHAT = 0.5016 

The output which appears on the screen is 
automatically saved in a file called TXRPG.OUT 
which can be read into a word processor, edited, 
annotated, and printed. 

DIBAR’ = 21.4244 
DZBAR ‘ = 24.6756 

Pooled correlation between D and Z = 0.4980 

Unadjusted interval 
PHAT = 0.1184, 95% CI = (-0.0864, 0.2886) 

Covariance adjusted interval 
PHAT = 0.1318, 95% CI = (-0.0419, 0.2799) 

This program is a part of a series of programs 
for accomplishing various kinds of longitudinal 
data analyses. These include programs for esti- 
mating the average growth curve (AGC) in a 
group of subjects [9-l I]; for measuring tracking 
behavior [ 12- 161; for growth prediction [ 17- 191; 
and for comparing the AGCs in several groups 
[20,21]. Details on obtaining copies of these pro- 
grams, hardware requirements, etc., are given in 
Appendix 1. 

innovative curriculum. After indicating that sum- 
mary statistics are to be entered (in Z,X form), the 
user is prompted for these values. The output con- 
sists of the descriptive statistics and estimates of 
the model parameters as above; and estimates of 
the unadjusted and adjusted estimates of P and the 
corresponding confidence intervals. When only 
summary statistics are available the plot consists 
of two lines, one for each group, showing the 
amount of mean change by connecting the 
premeasure mean to the postmeasure mean. For 
the data in Table 4 we get the output presented in 
Table 5. 

Table 5 
Output for the data presented in Table 4 

Pooled correlation between D and Z = -0.4688 

MulHAT = 23.931 I 
Mu2HAT = 18.7519 
BETAHAT = -0.3 I 17 

DlBAR’ = 6.8311 
DZBAR’ = 4.1519 

In this case, the proportion reduction in 
‘growth’ is negative, indicating that the innovative 
curriculum has significantly increased the Pre- 
School Inventory mean score. (Again, the reader is 
reminded that a negative reduction represents a 

Unadjusted interval 
PHAT = -0.4419, 95% CI = (-0.6328, -0.2662) 

Covariance adjusted interval 
PHAT = -0.6453, 95% CI = (-0.8305, -0.4749) 

Pre Post corr 

Mean = 17.1 
SD. = 6.1 
Mean = 14.6 
S.D. = 6.2 

Mean = 23.3 
S.D. = 4.6 
Mean = 18.9 
S.D. = 5.8 

r = 0.67 

r = 0.78 
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6. Discussion 

We have described a program which can be used 
to estimate the extent to which a TX has altered 
the course of normal growth and development. It 
can also be used when the response variable 
represents a ‘deteriorating condition’, as described 
above. The object of inference is P = (A, - AJ 
A2, and the differences, A, may be estimated as 
simple mean differences or by covariance-adjusted 
differences. The confidence intervals for covar- 
iance-adjusted estimators will generally be nar- 
rower, but there will probably be little difference 
unless the absolute value of the pooled within- 
group correlation between Z and D exceeds 0.40 
(Ref. [I], p. 215). Another interpretation of the 
pooled correlation between 2 and D, say rp(Z,D), 
can be given in terms of the efficiency of the analy- 
sis of covariance with Z as the covariate relative to 
the corresponding f-test (in which Z is ignored) for 
comparing the two groups. The relative efficiency 
is RE = lOO/[l - &Z,D)] and it is seen that the 
higher the absolute value of rp(Z,D), the more im- 
portant it is to account for it by using ANCOVA. 

Input data can be in the form of individual 
measurements - group indicator in column 1, 
premeasures in column 2, postmeasures in column 
3; or in the form of summary statistics (means, 
S.D.s and correlations in terms of either Z and X, 
or Z and D). This latter possibility is included to 
accommodate users who may have access only to 
this summary information. In some cases, the user 
may have to do some preprocessing to get the data 
into the form required by our program. For exam- 
ple, in Ref. [I] (p. 212) data are given in the form 
shown in Table 6. In this case, the user will have 
to convert the given covariances to correlations. 

Table 6 
Form in which the data is given in Fleiss (Ref. [I], p. 212) 

Pre Diff Covariance 

TX(N = 226) Mean = 6.28 Mean = 2.91 16.4817 
S.D. = 1.11 S.D. = 4.41 

C(N = 225) Mean = 7.50 Mean = 3.24 1.1622 
SD. = 8.23 S.D. = 4.26 

Table 7 
Results produced when summary data from Fleiss (Ref. [l], p. 
214) are entered 

Pooled correlation between I) and 2 = 0.3494 

MulHAT = 9.3625 
Mu2HAT = 10.6243 
BETAHAT = 0.1893 

DlBAR’ = 3.0852 
D2BAR’ = 3.1243 

Unadjusted interval 
PHAT = 0.0833, 95% Cl = (-0.1889, 0.2974) 

Covariance adjusted interval 
PHAT = 0.0125, 95% CI = (-0.2626, 0.2281) 

The relationship to use is 

r(Z,D) = Cov(Z,D)Ls,s, 

In the above example (Ref. [l], p. 214), for the 
TX group, r,(Z,D) = 16.4817/(7.77*4.41) = 0.48 
1. This can also be done for the C group (rz(Z, 
D) = 0.221), and when these summary figures are 
entered into the program, the results are as shown 
in Table 7. In this example, the TX is one designed 
to slow the normal course of dental decay. Both 
estimates,of P are positive indicating that the TX 
has had a positive effect (in that the decay rate has 
decreased), but the effect is seen to be small (8% 
unadjusted; 1% adjusted). The fact that zero is in- 
cluded in both intervals is consistent with the fact 
that the difference between the fis is not signifi- 
cantly different from zero. In this example, the 
widths of the unadjusted and adjusted intervals are 
essentially the same, so that ‘covariance adjust- 
ment was not worth the effort with this set of data’ 
(Ref. [I], p. 215). The width of the adjusted inter- 
val can be substantially less (see, for example, Ref. 
[22]), but, as noted earlier, only when the pooled 
correlation between Z and D exceeds 0.40 in abso- 
lute-value. 
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Appendix 

A full set of PC programs for longitudinal data 
analysis, including this program, can be obtained 
on 5.25’ or 3.5 fl diskettes (please request type) by 
sending US%25 to defray the cost of handling and 
licensing fees. These programs require an 80386 or 
80486 based personal computer (PC) running the 
MS-DOS operating system (version 5.0 or higher 
is recommended, although versions as low as 3.3 
will suffice). 80386 computers must also be equip- 
ped with a 80387 math coprocessor. At least 4 Mb 
of memory is required, and must be available to 
GAUSS386i, i.e., not in use by memory resident 
programs such as Windows. EGA or VGA graphic 
capabilities are required to display the color 
graphics; VGA or SVGA is suggested for optimal- 
ly displaying the graphic results. Runtime modules 
are supplied with the programs so that no ad- 
ditional software (i.e., compiler or interpreter) is 
required to run these programs. One can create 
and edit ASCII data sets for use by these programs 
using the full screen editor supplied with MS-DOS 
version 5.0. The programs are written and compil- 
ed using GAUSS386i, version 3.0, require no ad- 
ditional installation or modification, and are run 
with a single command. When requesting the pro- 
grams, address inquiries to the corresponding 
author and make checks payable to Baylor College 
of Dentistry. 
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