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Abstract 

A PC program extending the procedure due to Carter and Yang (Commun Stat: Theory Methods, 8 (1986) 
2507-2526) to allow unique times of measurement for subjects is described, illustrated and made available. Given lon- 
gitudinal observations on each of N subjects comprising a single group, this program determines the lowest degree 
polynomial in time adequate to tit the average growth curve (AGC); estimates this curve and provides confidence bands 
for the AGC, and confidence intervals for the corresponding polynomial regression coeffkients; and so-called predic- 
tion intervals which, with a given level of confidence, will contain the growth curve of a ‘new’ subject from the same 
population of which the N subjects constitute a random sample. Two kinds of missing data are accommodated. First, 
in the context of studies planned so that subjects will be measured at identical times and, second, in unstructured stud- 
ies where subjects may present with their own, unique times of measurement. 

Keywords: Longitudinal data; Missing values; Unbalanced designs; PC program 

1. Introduction 

A longitudinal study which is planned so that 
subjects will be measured at the same set of time 
points is said to be balanced (or to have a balanced 
design). If there are no missing data, the resulting 
data set is said to be complete. In an earlier paper 
[ 11, we described, illustrated, and made available a 
menu-driven PC program implementing Rao’s [2] 
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so-called two-stage, or random coefficients, 
polynomial growth curve model. Given a data set 
which is both balanced and complete, this pro- 
gram can be used to (a) determine the degree of the 
polynomial adequate to fit the average growth 
curve (AGC) of the sample, and (b) estimate and 
compute confidence bands for the AGC. More 
recently [3], we implemented the Carter-Yang [4] 
extension of this procedure which accommodates 
missing data, but still requires a balanced design. 
This program produces output similar to that in 
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[l], with the addition of (c) prediction intervals 
which, with a given level of confidence, will con- 
tain the growth curve for a ‘new’ subject from the 
same population as the sample used in the analy- 
sis. In this paper, we describe and illustrate a pro- 
gram extending [3] to unbalanced designs: subjects 
may have their own, unique times of measurement. 

2. The method 

The method is based on Carter and Yang [4]. In 
our notation [1,3], we assume that the observa- 
tions at the Ti times of measurement for the ith 
subject (i = 1, 2,...,N) have the structure 

xi - MVN (Wiry WiAWi’ + 0~1r.J (1) 

i.e., Xi has a multivariate normal distribution 
with mean vector Wir and covariance matrix 
WiAWi’ + a*IT,. In (l), the time design matrix, 
W, consists either of powers of the times of mea- 
surement fl,t2,...,tTi for the ith subject, or the 
values of orthogonal or orthonormal polynomials 
[5,6]; ITi is the TiXTi identity matrix; and r is the 
P x 1 vector of regression coefficients for the 
AGC. The regression coefficients specific to sub- 
ject i, Ti, are assumed to have the distribution 

‘i - MVN(r,A) (2) 

and e* measures the variability of subjects about 
their individual growth curves (error variance). 
The subscripts on W and T emphasize the fact that 
subjects need not be measured at the same times 
nor have the same total number of observations. 

To illustrate the structure of the model, suppose 
the first of 2 subjects had observations 25.2, 29.0, 
33.6, and 35.8 at times I, 2,3 and 5; and the second 
observations 27.3, 32.1 and 41.8 at times 1.2, 2.3 
and 3.8. These correspond to the tirst 2 subjects 
from the data set considered in [ 1,3] in which 
T = 5 measurements, t = l(l)5 were taken on 
each ;of N = 12 subjects; here we have discarded 
some.of the data, and altered the times of measure- 
ment for the second subject. We have Tl = 4, 
T2 = 3; and 

Then, if polynomials of degree D = 2 are tit to 
these subjects, and the successive-powers of-t form 
of the time design matrix is used, 

F 

1 1 1’ 

v, 
1 2 4 

= 1 3 9 
1 5 25 . 

3. Estimation 

1.2 1.2* 
2.3 2.3* 
3.8 3.8* 

The parameters of the model are estimated 
(all summations are from i = 1 to N) 

+i = (wi’Wj)-’ Wi‘Xi (3) 

-2 GT, - Phi 
’ = C(Ti - P) 

and 

jl = s, - 5 c(wi’wi)-’ 

or 

A=s,- (+ - w &yqc) 
N 

(4) 

according to whether + > i* or + I &*, respec- 
tively, where 4 is the smallest root of the deter- 
minantal equation 

I s, - $ c(wifwi)-’ = 0 I (7) 

a = CT, + trace [z(W’, W)-‘1 (8) 

1 
Si = 

Ti - P 
Xi’[ITi - Wi(Wi’Wi)-’ Wi’] Xi (9) 
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and 

S r=& C(ii- +)(+i- +)’ (10) 

It will be noted that, in the above, P is fixed (a 
D = P - 1 degree polynomial is tit to each sub- 
ject’s curve), and that S, is the sample covariance 
matrix of the ii. 

The coefficients of the AGC are then estimated 
by 

(11) 

where 

Ai = [VU~(~;)]-’ = [li + ~2(Wi’Wi)-‘] -’ 

4. Tests of hypotheses 

(12) 

Hypotheses of the form H: L7 = 70, where L is 
a specified L x P matrix and r. is a vector of 
known constants, can be tested using the statistic 

T2 = N(+ - +L’(LbL’)-’ L(i - 7) (13) 

where 

6= (14) 

When min ( Ti) is large, and H is true, (13) has 
Hotelling’s T2 distribution with N - 1 degrees of 
freedom, so that 

these results. We begin by asking the user to 
specify the degrees, FD and RD, of the so-called 
full and reduced models, respectively [1,3]. FD C 

Tmin _ I is a degree which the user feels should be 
more than adequate to model the AGC, and RD 
the smallest degree which may be contemplated 
(often the user will choose RD = 1). We then, 
using the level of significance supplied by the user, 
perform a series of step-up goodness-of-fit tests, 
testing first that RD is adequate then, if necessary, 
that RD + 1 is adequate, etc., up to degree FD 
which is used if no smaller D passes the test for 
goodness-of-fit. 

If, e.g., the user specifies RD = 1 and FD = 3 in 
the previous example, r is estimated by 

and the test for linearity corresponds to the hypo- 
thesis H: r3 = r4 = 0. This is of the form 
HILT = 7. with 

L=[i 0” i p] andro=[i]. 

In our program we compute and print the P- 
values corresponding to both (15) and (16). 
Following [4], who choose to be conservative, the 
P-value corresponding to (15), the F-test, is com- 
pared to the user-specified level of significance to 
determine whether a linear equation is adequate, 
i.e., if one accepts H: r3 = r4 = 0. 

F* = 
N-L 

T2 
L(N - 1) 

- F(L,N - 1) (15) 

5. Confidence intervals and bands 
where F(L, N - 1) is the F-distribution with L and 
N - 1 degrees of freedom. 

Alternatively, if N is large, 

T2 - X2(L) (16) 

where X2(L) represents the chi-squared distribu- 
tion with L degrees of freedom. 

In our program, tests for specification (i.e., for 
the adequacy of a given value of D) are based on 

We also compute confidence intervals for the 
elements of r, and confidence bands for the AGC 
either at the planned times of measurement or at 
times specified by the user when times of measure- 
ment differ among individuals. The user specifies 
the level of confidence to be used (e.g., 0.95). Let 
w be a 1 x P vector. Then approximate (for large 
values of N or min( T,)), (1 - a) x 100% co&i- 
dence intervals for the elements of T are given by 
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l/2 

f~ -a/20' - 1) 

by taking, in turn, 

WI = [l,O,O ).... O,O] 
w2 = [O,l,O ,.... O,O] 

(17) 

wp = [O,O,O ).... O,l] 

In (17), tl _& (N - 1) denotes the (1 - o/2) x 
100th percentile of the t-distribution with N - 1 
degrees of freedom. 

To generate confidence bands for the AGC, 
identify w with the rows of W, and let P = w?, the 
corresponding fitted value. Then marginal confi- 
dence bands are computed using 

l/2 

P* tl - a/2(9’ - 1) (18) 

Simultaneous confidence bands are of the form 

R f W - l)P 
1 

l/2 

N(N - P) 
wQw'F, _ ,(P,N - P) (19) 

where F, _ a (P, N - P) is the F-distribution with 
P and N - P degrees of freedom. 

We also compute prediction intervals [3,4]. 
These are of the form 

4 f C f WfDWf’ + WfAWf’ + d2 1 l/2 

tl - u/2 W - 1) (20) 

Marginal confidence bands for the AGC are 
appropriate for use when the investigator is in- 
terested in bounding the AGC at a single, 
preselected value oft. Simultaneous bands, as sug- 
gested by their name, provide a joint confidence 
statement for all values of t. As such, these inter- 
vals will be wider than their marginal (one-at-a- 
time) counterparts. Prediction intervals may be 
used to bound the growth curve of a new subject 
from the same population as the sample used to 
construct the AGC. These must take into account 
both the variability of the individual curves about 
the AGC (wAw’ + a2) and the variability (uncer- 
tainty) associated with the fact that the AGC was 

estimated (fl). They will therefore be the widest of 
the 3 kinds of confidence bands computed by our 
program. They are, however, useful in diagnostic 
contexts where one may wish to judge, e.g., 
whether a given subject is ‘growing normally,’ 
where normal is defined in terms of the population 
from which the sample used to construct the AGC 
is presumed to constitute a random sample. 

6. The program 

The program is invoked by issuing the com- 
mand gsruni cyu. The user is first prompted as to 
whether the data represent COMMON or UNI- 
QUE times of measurement. If COMMON, the 
program follows the format outlined in [3]. In this 
case, it is assumed that the study was planned to 
have common times of measurement, say tl,t2,..., 
tT. The user is then prompted for the name and 
location of the (ASCII or GAUSS) tile containing 
the measurements; the columns containing the first 
and last response variables (these must be in con- 
secutive columns); the degrees of the reduced (RD) 
and full (FD) models [ 1,3]; the times of measure- 
ment; the confidence coefficient (e.g., 0.95) to be 
used in constructing confidence intervals and 
bands; the level of significance (e.g., 0.05) to be 
used in determining the degree of the polynomial 
to be tit to the AGCs in the groups; and the miss- 
ing data code. Periods ‘.’ may be used to represent 
missing data, as well as (user-specified) numerical 
values such as 9999. Note that in this case, the 
times of measurement are not part of the data set; 
they are entered by the user while running the pro- 
gram. In terms of our earlier example, assuming 
the planned common times of measurement are 1, 
2, 3,4 and 5, and that the 3 measurements for the 
second case were made at times 1,2 and 4, the first 
2 lines of the data set might read 

25.2 29.0 33.6 9999 35.8 
27.3 32.1 9999 41.8 9999 

or 

25.2 29.0 33.6 . 35.8 
27.3 32.1 . 41.8 . 
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If UNIQUE times are indicated, the prompts 
are similar, but now it is assumed that the times of 
measurement are part of the data set: observations 
and times appear on alternating lines. In the con- 
text of the earlier example, the first 4 lines of the 
data set might read 

25.2 29.0 33.6 35.8 . 
1235. 
27.3 32.1 41.8 . . 
1.2 2.3 3.8 . . 

Here the actual ages are used, and there is no real 
need for a missing data code. Note, however, due 
to the structure of GAUSS, all lines in the data set 
must be of the same length, and it is necessary to 
‘fill-up’ the data set with ‘missing data’ so that 
each line has length Tm,, where T,,,,, denotes the 
maximum number of observations for individuals 
in the data set. (In the example, T,,,,, = 5.) 

7. An example 

We consider an example based on the first 10 
cases of the data set given in Goldstein [7]. The 
observations are the heights of children in the 
Harpenden growth study conducted by Tanner et 
al. [8]. For convenience, these data are reproduced 
below, in the format required by our program in 
the case of UNIQUE times of measurement, alter- 
nating lines of observations and times of mea- 
surement: 

110.0 117.3 123.3 127.7 132.6 
5.055 6.164 7.071 8.030 9.082 
113.1 120.4 126.2 133.7 140.2 
5.022 6.091 7.008 7.992 9.134 
113.6 120.7 127.1 133.0 140.0 
5.030 6.085 7.008 7.986 9.087 
109.6 115.3 121.4 127.8 134.4 
5.041 6.071 7.052 7.997 9.030 
104.3 111.0 116.9 122.7 130.5 
5.161 6.084 6.964 7.961 9.013 
108.6 116.2 122.4 127.7 133.7 
5.000 6.038 7.008 7.972 9.024 
101.5 107.4 114.0 119.5 125.9 
5.006 6.025 6.981 7.959 9.006 
95.5 101.2 105.6 110.6 117.0 

109 

102.3 106.5 112.2 117.1 122.2 
5.011 6.394 7.383 7.967 8.981 
112.8 121.8 128.2 134.5 142.1 
5.025 6.178 7.107 8.008 9.197 

After indicating that UNIQUE times of mea- 
surement are present, and the name and location 
of the (GAUSS or ASCII) data set, the user is 
prompted for the number of subjects (N = 10) and 
the maximum number of time points (Tm, = 5). 
The user then indicates whether the observations 
are in the first or second row (we require alter- 
nating rows of observations and time points, but 
these can be in any order), and chooses between 4 
forms of the time design matrix [1,3,5,6]. For pur- 
poses of this example, we choose powers of the 
original time scores. Taking the degrees of the 
reduced and full models, respectively to be RD = 1 
and FD = 3 (this causes the program to first test 
for the adequacy of a line, then, if necessary, for 
a quadratic. If a quadratic is inadequate, a cubic 
is used), and 0.95 for the level of confidence to be 
used in constructing intervals and bands, and 0.05 
the level of significance for the tests of tit of the 
models, we find that a line is adequate to fit the 
data (P = 0.4581 for the F-test; P = 0.3833 for the 
chi-squared test), and that the estimated regression 
coefficients for each individual are 

82.48 5.607 
79.76 6.661 
81.14 6.499 
77.58 6.268 
70.00 6.690 
78.39 6.182 
70.78 6.129 
70.24 5.080 
75.01 5.183 
78.10 7.008 

The estimated error variance is c2 = 0.476 and 

The generalized least squares estimator of the coef- 
ficients of the AGC is 
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Table 1 Table 3 
95% confidence intervals for the coefficients of the linear equa- 
tion fit to the AGC when UNIQUE times are used 

Simultaneous 95% confidence bands for the AGC when UNI- 
QUE times of measurement are used 

Degree coeff Std error Conf interval Half interval Time Fitted Std error Simultaneous conf Half 
point value interval interval 

0 76.351 1.458 73.053-79.649 3.298 
1 6.130 0.205 5.666-6.595 0.465 

+ = 76.35 
[ 1 6.130 

Confidence intervals of 95% for these coefficients 
are presented as shown in Table 1. 
At this point, since unique times of measurement 
are allowed, and since subjects may present with 
considerably different, even non-overlapping 
periods of observation, it is necessary for the user 
to indicate the interval, and the points within this 
interval, at which the confidence bands should be 
computed. To help in this choice, the program 
prints 

Min time value = 5.000 
Max time value = 9.211 
Max number of observations for an individual = 5. 

The user is then asked to either input a ‘typical 
time vector’ or use the default which places 5 
points equally spaced from 5.000 to 9.211. In this 
example, the choice of the typical vector is clear, 
and the user enters 

Table 2 
Marginal 95% confidence bands for the AGC when UNIQUE 
times of measurement are used 

Time Fitted Std error Marginal conf Half Time Fitted Std error Prediction interval Half 
point value interval interval point value interval 

5 107.00 1.970 102.546-I II.459 4.457 5 107.00 6.548 92.190-121.815 14.812 
6 113.13 2.118 108.432-I 17.924 4.191 6 113.13 7.048 91.190-129.016 15.943 
I 119.26 2.275 114.117-124.409 5.146 7 119.26 7.570 102.139-136.387 17.124 
8 125.39 2.439 119.877-130.91 I 5.517 8 125.39 8.110 107.049-143.739 18.345 
9 131.52 2.609 125.623-137.425 5.901 9 131.52 8.664 111.925-151.123 19.599 

5 107.00 2.955 100.710-113.295 6.292 
6 113.13 3.177 106.368-I 19.897 6.765 
I 119.26 3.412 1 I I .998- 126.529 7.265 
8 125.39 3.658 117.604-133.183 1.189 
9 131.52 3.913 123.192-139.856 8.332 

We then output the fitted AGC, the corresponding 
standard errors and 95% confidence bands for the 
AGC at each of these time points. There are 3 sets 
of output of this type corresponding to (i) 
marginal confidence bands for the AGC, (ii) 
simultaneous confidence bands for the AGC and 
(iii) prediction intervals. These are shown in turn 
in Tables 2, 3, and 4. 

8. Discussion 

The example considered above was chosen be- 
cause it lends itself nicely to comparisons of alter- 
nate analysis strategies which might be considered 
in this situation. Two other approaches which sug- 
gest themselves are to (1) ignore the (in this exam- 
ple) slight departures from the target ages, and 
analyze the data as if everyone was measured at 
t = 5(1)9; and (2) adjust the observations to the 
target ages before performing the analysis. 

In the first situation, we simply run the program 
using COMMON times of measurement (this is 
equivalent to our earlier program [3]) to estimate 
and compute confidence intervals and bands for 

Table 4 
95% confidence bands for prediction intervals when UNIQUE 
times of measurement are used 
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the AGC. Assuming all measurements were made 
at the target ages t = 5(1)9, we again find that a 
line is adequate to fit the data (P = 0.07624 for the 
F-test; P = 0.02010 for the chi-squared test), and 
now the estimated regression coefficients for each 
individual are 

83.26 5.560 
79.47 6.750 
81.31 6.510 
78.23 6.210 
72.21 6.410 
78.53 6.170 
71.03 6.090 
69.30 5.240 
76.78 5.040 
78.97 7.130 

The estimated error variance is now &2 = 0.371 
and 

A= 18.800 1.002 

[ 1.002 0.398 1 
The generalized least squares estimator of the coef- 
ficients of the AGC is 

+= 76.81 

[ 1 6.111 

Confidence intervals of 95% for these coefficients 
are given in Table 5. 

It is seen that, in this example, the estimates of 
the model parameters are not greatly affected 
when one ignores the departures from the planned 
times of measurement. While not shown, the confi- 
dence bands for the AGC and prediction intervals 
are also quite similar (ignoring departures from 
the target ages results in slightly wider bands). One 

Table 5 
95% confidence intervals for the coeffkients of the linear equa- 
tion Iit to the AGC when differences from target ages are 
ignored 

Degree Coeff Std error Conf interval Half 
interval 

0 76.809 1.438 73.555-80.063 3.254 
1 6.111 0.209 5.639-6.583 0.472 

point of difference in the results is the test for the 
adequacy of D = 1 in fitting the AGC. When UNI- 
QUE times are taken into consideration, the F-test 
(the test used by the program in deciding whether 
or not to step-up) yields P = 0.4581, so the 
specification D = 1 is not called into question. 
When COMMON times are used, the correspon- 
ding P = 0.07624 which might cause some to con- 
sider using a higher degree polynomial. 

In the second approach, one might use a method 
like that described by Goldstein [7] to adjust the 
measurements to the target ages t = 5(1)9 before 
doing the analysis. The adjusted measurements are 
as follows [7]: 

109.64 116.22 122.89 127.56 132.22 
112.95 119.80 126.14 133.75 139.44 
113.40 120.12 127.05 133.09 139.45 
109.37 114.88 121.06 127.82 134.21 
103.13 110.41 117.13 122.96 130.40 
108.60 115.94 122.35 127.86 133.56 
101.47 107.24 114.12 119.74 125.86 
95.37 101.12 105.72 110.84 115.93 
102.27 104.86 109.60 117.33 122.30 
112.60 120.49 127.46 134.45 140.84 

When our program, with COMMON times, is 
used to analyze these data, again assuming the 
times of measurement are t = 5, 6, 7, 8, .9, once 
again we find that a line is adequate to fit the data 
(P = 0.5701 for the F-test; P = 0.5101 for the chi- 
squared test), and the estimated regression coefli- 
cients for each individual are now given by 

82.16 5.650 
79.66 6.683 
81.07 6.507 
77.63 6.262 
69.84 6.709 
78.37 6.184 
70.79 6.128 
70.21 5.084 
74.50 5.253 
77.86 7.044 

The estimated error variance is now S2 = 0.488 
and 
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Table 6 
95% confidence intervals for the coefftcients of the linear equa- 
tion fit to the AGC when measurements are adjusted to target 
times 

Degree Coeff Std error Conf interval Half 
interval 

0 76.209 1.450 72.930-79.489 3.280 
1 6.150 0.204 X690-6.61 1 0.460 

The generalized least squares estimator of the coef- 
ficients of the AGC is 

+= 76.21 

[ 1 6.150 

and 95% confidence intervals for these coefficients 
are shown in Table 6. 

The values in Table 6 agree quite closely with 
the results when UNIQUE times (which we view as 
the ‘gold standard’) are used (Table 1). The conli- 
dence bands and prediction intervals are also quite 
similar, showing that, in this example at least, 
Goldstein’s adjustments to the target ages was 
effective. 
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Appendix 

A full set of PC programs for longitudinal data 
analysis, including this program, can be obtained 
on 5.25” or 3.5” diskettes (please request type) by 
sending $25 to defray the cost of handling and 
licensing fees. These programs require a 80386- or 
80486-based personal computer (PC) running the 
MS-DOS operating system (version 5.0 or higher 
is recommended, although versions as low as 3.3 
will suffice). 80386 computers must also be equip- 
ped with a 80387 math coprocessor. At least 4 MB 
of memory is required, and must be available to 

GAUSS386i, i.e., not in use by memory resident 
programs such as Windows. EGA or VGA graphic 
capabilities are required to display the color 
graphics; VGA or SVGA is suggested to display 
optimally the graphic results. Runtime modules 
are supplied with the programs so that no ad- 
ditional software (i.e., compiler or interpreter) is 
required to run these programs. One can create 
and edit ASCII data sets for use by these programs 
using the full screen editor supplied with MS-DOS 
version 5.0. The programs are written and compil- 
ed using GAUSS386i, version 3.0, require no ad- 
ditional installation or modification, and are run 
with a single command. When requesting the pro- 
grams, address inquiries to the corresponding 
author and make checks payable to Baylor College 
of Dentistry. 
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