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Abstract 

We consider the problem of estimating parameters of an irregular sampling process defined as a uniform sampling 
process in which the deviations from the nominal sampling times constitute a random IID process (jitter). Emphasis is 
placed on estimating the variance of the jitter, based on observation of samples taken from a continuous band-limited 
third-order stationary process. We derive an estimation procedure which uses the bispectrum estimates of a process with 
a priori known bispectrum. Derivation of the generalized likelihood ratio in the bispectral domain, leads to a statistic 
with which a bispectrum-based maximum likelihood estimation can be done. We propose a suboptimal estimator, and 
show that it is asymptotically unbiased and consistent. The dependence of the estimator's performance on the data length 
and the skewness is studied for a specific example. The estimator's variance is compared to the bispectrum-based 
Cramer-Rao bound (BCRB), and is shown to approach it for sufficiently large data length or skewness. Computer 
simulations verify the effectiveness of the proposed estimation method for small jitter. 

Zusammenfassung 

Wir betrachten die Sch/itzung von Parametern eines unregelm/iBigen Abtastprozesses. Dieser ist definiert als re- 
gelm/iBiger AbtastprozeB mit statistisch unabh/ingigen und identisch verteilten zuf/illigen Abweichungen von den 
nominellen Abtastzeitpunkten (Jitter). Im Vordergrund steht die Schfitzung der Varianz des Jitters basierend auf 
beobachteten Abtastwerten eines stetigen, bandbegrenzten und bis zur dritten Ordnung station/iren Prozesses. Wir leiten 
eine Sch/itzmethode ab, die die Bispektrum-Sch~itzwerte eines Prozesses mit bekanntem Bispektrum verwendet. Die 
Ableitung des verallgemeinerten Likelihood-Verh/iltnisses im Bispektrum-Bereich ffihrt zu einer Statistik, die eine auf 
dem Bispektrum beruhende Maximum-Likelihood-Sch/itzung erm6glicht. Wir schlagen einen suboptimalen Sch~itzer 
vor und zeigen dessen asymptotische Erwartungstreue und Konsistenz. Die Abh/ingigkeit der Leistungsf~ihigkeit des 
Sch~itzers vom Umfang der Daten und yon der Asymmetrie wird anhand eines konkreten Beispiels untersucht. Die 
Varianz des Sch/itzers wird mit der auf dem Bispektrum beruhenden Cramer-Rao-Schranke (BCRB) verglichen, und es 
wird gezeigt, dab sich die Varianz der BCRB bei hinreichend groBem Datenumfang oder hinreichend groBer Asymmetrie 
ann~ihert. Computersimulationen best/itigen die Effektivit/it der vorgeschlagenen Sch/itzmethode im Fall kleinen Jitters. 
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R~ume 

Nous consid~rons dans cet article le probl~me de l'estimation des param~tres d'un processus fi ~chantillonnage 
irr6gulier d6fini comme processus ~ 6chantillonnage uniforme pour lequel les d6viations vis-fi-vis des instants 
d'6chantillonnage uniforme constituent un processus al6atoire ind6pendant fi distribution constante (gigue). L'emphase 
est raise sur l'estimation de la variance de la gigue, sur la base d'observation d'6chantillons obtenus fi partir d'un 
processus continu stationnaire d'ordre trois fi bande limit+. Nous d6rivons une proc6dure d'estimation qui utilise les 
estim~es du bispectre d'un processus dont le bispectre est connu a priori. La d6rivation du rapport de vraisemblance 
g6n6ralis6 dans le domaine bispectral conduit fi une statistique avec laquelle une estimation aux maximum de 
vraisemblance bas+e sur le bispectre peut ~tre effectu6e. Nous proposons un estimateur sous-optimal, et montrons qu'il 
est asymptotiquement non biais6 et consistant. La d6pendance de la performance de I'estimateur vis-~t-vis de la longueur 
des donn6es et de l'asymm6trie de la distribution est 6tudi6e sur un exemple sp6cifique. La variance de l'estimateur est 
compar6e fi la borne de Cramer-Rao sur le bispectre, et il est montr6 qu'elle s'en approche pour une longueur de donn~es 
ou une asymm6trie de distribution suffisamment grande. Des simulations sur ordinateur permettent de v6rifier l'efficacit6 
de la m6thode d'estimation propos6e dans le cas d'une gigue faible. 

Key words. Sampling noise; Jitter; Bispectrum; Higher order spectra 

1. Introduction 

An increasing number of signal processing applications are done on discrete data. In most cases, the 
discrete data are obtained by a sampling operation which converts a continuous physical signal to a discrete 
signal. This operation may be subject to a systematic or random timing error (jitter), which causes the 
sampling instants to become shifted in an unpredictable manner, sometimes resulting in a significant 
undesirable effect on the performance of the system. While a considerable amount  of research was done on 
the effects of other disturbances, such as noise and quantization, relatively little was done regarding the 
problem of jitter in sampling, basically because in most cases sampling clocks are sufficiently accurate, so that 
the jitter has a negligible effect. However, as sampling rate increases, the jitter may become a factor that 
should be taken into account. 

In previous works, jitter has been discussed mainly in the framework of irregular sampling. Spectral 
estimation of an irregularly sampled process has been studied in [71, based on observation both of the 
sampled data and the sampling times. Other works [1,31 treated the data as a discrete sequence and 
determined the relation between the discrete-time and continuous-time signal spectra in terms of the 
statistical properties of the jitter, i.e. its characteristic function. This approach seems to be more practical 
than the former, because it avoids the difficulty of obtaining an accurate observation of the sampling times. In 
[8, 93 this approach is extended further to the bispectrum, which is defined as the two-dimensional Fourier 
transform of the third-order cumulant sequence. The main result in those papers is that jitter in sampling can 
be detected without prior assumptions about the statistics of the sampled continuous-time process, beyond 
that it is a non-Gaussian, third-order stationary stochastic process, and that sampling rate is greater or equal 
to the Nyquist rate. A test statistic based on bispectrum estimates is developed in [91 and its performance is 
evaluated. Simulation results of the performance of this test are reported in [111. 

A related problem to jitter detection is the problem of estimation of jitter parameters. An efficient 
estimation procedure can be applied, for example, in ECM systems for classification of jammers and 
identification of friendly sources. Unlike jitter detection, which under the conditions stated above, can be 
done only in the bispectral domain, provided that the sampling rate is no smaller than Nyquist rate, 
estimation of jitter parameters can be done also the spectral domain. The question as to which domain is 
preferable for carrying out the estimation is considered in [101, where it is shown using Cramer -Rao  bounds 
that the answer depends on the skewness of the continuous process. If the skewness is larger than one, then it 
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may be possible to achieve better estimation performance by using the bispectrum. However, no specific 
estimation procedure is proposed there. 

In this work we present an algorithm for estimation of the jitter variance using the bispectrum. This 
procedure can be adapted to the estimation of other jitter parameters, as long as they affect the characteristic 
function of the jitter. The advantage of estimating jitter variance is that the jitter detection and estimation 
problems can be solved simultaneously. Specifically, the sampling is assumed to be uniform with additive 
independent identically distributed (liD)jitter. That is, the normalized sampling times have the form 

G = n + z , ,  n = 0,_+ 1 , _ 2 , . . . ,  (1) 

where {%}, the normalized jitter, is an l iD zero mean random sequence with unknown probability density 
function (PDF) f(r). In this work we will be interested in estimating the parameter 0, which is defined as the 
variance of the jitter. 

0 = E{r~. }. (2) 

The effect of the jitter, that was defined above, on the bispectrum has been studied previously in [9]. In 
Appendix A we derive the expression given below of the discrete bispectrum Bd(tOx ,co2) of the sampled data: 

Bd(C01,C02) = Bs(COl,CO2)~(COl)~b(c02)~*(co 1 + 02) + Bl(C01) + Bl(C02) + B*(co I + 02) + Bo, (3) 

where (o~,co2) is a bifrequency in the principal domain of the bispectrum, and Bs(O)l, co2) is the discrete 
bispectrum in the case of uniform, jitter-free sampling. The jitter by-product terms B~ (co) and Bo are given by 

i ;  
BI(CO) = ~ [14~(o)1 ~ -- q~(o)q~(u)~b*(co + u)]B~(co, u)du 

- / t  
(4) 

and 

(7~)2f" f :  [1 Bo = - I ~ ( ( D 1 ) I  2 - -  1 ( ~ ( o 2 ) 1 2  - -  [q~((DI + (02)12  + 2 t ~ ( ( D 1 ) ~ ( O ) 2 ) q ~ * ( O ) l  + (D2)] 

x B~(e~I, o)2) dcol dto 2. (5) 

The characteristic function of the jitter is the Fourier transform off(r): 

th(~o) = E{exp(jcoz,)}. (6) 

In this work we use the terminology introduced in [6], which separates the principal domain of the bispectrum 
(PD) to two subsets called the inner triangle (IT), and the outer triangle (OT): 

IT - {(~1,02) 1c01 + c02 ~< n, 0) 1 ~ (/)2, O) 2 /> 0 } ,  

OT --- {(~ol,o2)1eol + o) 2 /> n ,  O) 1 -~- 0)2/2 ~< n, C01 /> tO2}. 
(7) 

Our underlying assumption is that the sampled process is third-order stationary, strictly band-limited, whose 
bandwidth is smaller than half the sampling rate. It was shown in [6] that in the case of uniform sampling the 
bispectrum in the OT is identically zero. 

The parameter estimation method is based on using a continuous process with a priori known bispectrum 
as the input to the sampler. This requirement can be justified in several applications. One example is testing 
of a sampling system - an analog signal with known spectrum/bispectrum is sampled, in order to measure 
the variance of the jitter introduced by the sampling system. Another example is classification of source 
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stations. Assuming that the random jitter characteristic of a transmitter is unique, one can identify the 
signature of a source by estimating the jitter parameters. Notice that estimation of jitter variance can be done 
also when the bispectrum is unknown, as will be shown later. However, to get a significant estimate one needs 
extremely large amount of data, which may be unrealistic in practice. The bispectrum of the output sequence 
is estimated by a standard bispectrum estimation procedure, in which a sample sequence of length N is 
divided into K records, each of length M, forming a bispectrum estimate for each record, averaging it over 
a square of L 2 bifrequencies, and averaging each estimate over the records. Refer to Appendix B for details of 
this estimation algorithm. The bispectrum estimates obtained are asymptotically unbiased and consistent, 
and in addition have been shown to be asymptotically distributed as a complex Gaussian vector with 
a positive definite diagonal covariance matrix [4,13]. This property has been used in the formulation of 
a generalized likelihood ratio test (GLRT) in the bispectral domain, that has been applied in [9] for the 
problem of detecting the existence of jitter in a proper subset of the bispectral domain. In the present work we 
extend the likelihood ratio to the whole principal domain, and we propose to use it for estimating 0. We note 
that any estimation carried out in the bispectral domain is essentially suboptimal, because it makes use of 
a transformation of the sampled data, unless the bispectrum is a sufficient statistic of the data. Therefore, 
a bispectrum-based maximum likelihood (BML) estimate of 0 is suboptimal compared to an ML estimate 
which uses the data directly. However, an obvious advantage of bispectrum-based estimation is that it is 
much simpler and robust, because it does not require knowledge of the joint probability distribution of the 
jitter or the sampled process. 

The jitter model considered in this work assumes an IID jitter. In many practical cases this assumption is 
not valid, e.g. digital magnetic recording where jitter is data dependent, or cases where jitter is correlated. 
Therefore, the model developed in this work cannot be applied directly to the given problem. However, once 
the correct relation between jitter variance, or any other parameter and the bispectrum has been established, 
it is still possible to use the bispectrum for estimation of that parameter. So, the same principles can be used 
for the more general cases of jitter. 

The paper is organized as follows. In Section 2 we develop the likelihood ratio in the principal domain and 
introduce the suboptimal estimator of 0. In Section 3 we examine the performance of this estimator through 
a specific example, and discuss the trade-offs between sample size and skewness needed to achieve high 
performance. In Section 4 we present computer simulation results, and in Section 5 the conclusions. 

2. A suboptimal estimator to the jitter variance in the bispectrum 

In [9] we have analyzed the performance of jitter detection algorithm done in the outer triangle of the 
bispectrum. Clearly, no a priori knowledge of the signal statistics is needed, because the bispectrum of 
a uniformly sampled third-order stationary strictly band-limited signal is identically zero in the outer 
triangle. The only assumption required is that the sampling rate is sufficiently high, so that aliasing is 
avoided. In this section we will see that by assuming a priori knowledge of the signal bispectrum, it is possible 
to use the bispectrum estimates in both the inner and outer triangles for estimating parameters of the jitter. 
Specifically, we propose a suboptimal estimator of the jitter variance 0, by making use of the dependence of 
the jitter characteristic function on this parameter. We will analyze the properties of this estimator, its 
performance and limitations. 

The maximum likelihood estimate of the jitter variance, based on the bispectrum estimates (BML) results 
from maximizing the PDF of the bispectrum estimates (the likelihood function) with respect to the unknown 
parameter. Instead of maximizing this likelihood function, we choose to maximize the bispectral likelihood 
ratio (BLR), where the bispectral likelihood is normalized by the PDF of the bispectrum estimates when no 
jitter is present. Since the later is a positive quantity, independent of the unknown parameter, maximization 
of the BLR with respect to the unknown jitter variance results in its BML estimate. We proceed by 
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formulating the following binary hypothesis problem: 

Ho: ~ ~ N¢(po,Eo), HI: ~"~ N¢(px,E1), (8) 

where ~ is the vector of the bispectrum estimates in the PD, which is asymptotically distributed as a complex 
Gaussian variate. The expectation of ~ under each hypothesis, is just the bispectrum of the sampled signal, 
depending on the existence of the jitter in the sampling operation. Therefore, 

= ~ Bs(toi, to i), (toi, to j) s IT, 

,Uo ( 0, (toi,toj) s O T ,  

(9) 
{ Bs(tol, toj)q~(toi;O)~)(toj; O)(p*(to i -b toil O) 

p, = + B~(to~;0) + Bl(tofi0) + B*(to~ + eoj;0) + Bo(O), (to~,toj) s iT ,  
Bl(tol;0) + Bl(toj;0) + Bl(2n -- toi -- toil0) + Bo(0), (tol,toj) sOT,  

where Bs(toi, ¢oj) is the bispectrum in the case of a uniformly sampled signal with no jitter (0 = 0). In (9) we 
have explicitly denoted the dependence of the bispectrum under the alternative hypothesis on 0. The matrices 
So and Z~ in (8) are unknown positive definite covariance matrices under each hypothesis. Define 

Z=diag{K~S(to,)S( toj)S( to ,+toi)  }, (to~,toj) s P D .  (10) 

Then, Zo = Z, and S1 = Z with S(to) = S(to;0) being the jitter-dependent spectrum of the sampled sequence. 
However, we neglect the dependency of the spectrum on 0 (the justification for this will be discussed later) and 
assume that So = Xt = X. 

Since the expectation under the null hypothesis,/~o, is known, it can be subtracted from ~, leading to the 
following equivalent decision problem: 

Ho: ~ - p o "  Nc(0, S), Hi:  ~ -  Po ~ Nc(pl -- #o,Z). (11) 

The sufficient statistic for the BLR of(11) is known to be the T 2 statistic (see [2]), which simplifies due to the 
asymptotic diagonality of Z to 

1 = ~ I/~(to/,toj)l 2 , (12) 
(COl, coj )~PD 

where fl is the bicoherence function estimate: 

B(to. %) - Bdto,, %) 
[ M 1 '/2' (toi'toj) s lT '  

-ff-~S(to3S(%)S(to, + %) 

/~(toi, to j) = (13) 
/~(to,, to j) 

[~------~S(tol)S(toj)S(o) i + ¢oj)] 1/2'(toi'cOj) sOT" 

Clearly, subtraction of a constant from the bicoherence estimate fl(to~,toj) does not affect its variance. 
Therefore, the test statistic (12) has the following asymptotic distribution: 

l ~  Z2p(2), 2 = ~ )'(toi,toi), (14) 
(cOi, ¢~j)6PD 
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where 

2 ( 0 ) , , o t )  = 

21Bd(0)i, Oj) -- Bdo i ,  oj)l 2 

M ~-ffs(0)~)s(oj)s(~+ %) 

2lBd(Oi, 0)j)l 2 

K--~S(odS(%)S(0)~+ %) 

, (0 ) i ,0 ) t )  e l T ,  

, (0)i, ot)  c O T ,  

(15) 

Z2p(2) is the noncentral chi-square distribution with 2P degrees of freedom and noncentrality parameter 2, 
where P is the number of bispectrum estimates. Bd(oi,ofiO) is the bispectrum of the sampled signal, which 
depends on the jitter variance 8. Since we limit our attention to cases where the jitter is small and zero-mean, 
we can approximate its characteristic function by 

00)~ 
~b(oi;0) -~1 - -  

2 '  

2 8 ( 0  2 + Oj  + (0)i + 0)j)2) 
(16) 

qb(o~;O)qb(0)j;O)qb*(0)i + 0)t;O) _~ 1 - 
2 

The constant term Bo(O) in (9) is usually negligible for small values of 8, because it is proportional to 03 (see 
[8]). The other term B1(0);0) has been shown in [9] to be well approximated by 

B1(0);0) ~-OF(0)), F(0)) = ~ j_~  u (o  + u)Bs(0),u) du. (17) 

By utilizing the expressions above in (15), we obtain 

2 ( 0 ) i , 0 ) j )  = 

2 O) 2 + Oj  -'~ ((D i -'~ O)j) 2 
2KL202 -- Bs(0)i'°J) ' 2 + F(oi )  + F(o  t) + F ( -  o i  - 0)t) 2 

MS(ol)S(0)t)S(0)i  + o j )  

2KL202]F(oi)  + F(0)j) + F(2x - 0 ) i -  ot)l 2 

MS(oi )S (0) t )S (@ + 0)j) 

, (0)i, cot) • IT, 

(0)i, cot) • OT. 

(18) 

We note that in the expression for 2 we have neglected the dependence of the spectrum, which appears in the 
denominator, on 8. This is equivalent to assuming that the covariance matrix Z does not depend on 8. It will 
be shown later, by comparison with the BCRB derived in [10], that the effect on the estimator's performance 
(i.e. its variance) is quite small, particularly when the sampled signal has high skewness. 

By combining (18) and (14), we get the following relation between 2 and 8: 

2 = 8220, 

0)2 
2 K L  2 -- Bd0) i,co t) ( , 

2 0 - -  M- (~i, ~, )~IT 

+ E 

2 + o j  + (0)~ + 0)t) 2 
+ F(0)i) + F(0)j) + F ( -  0)~ - 0)j) 2 

S(0)AS(%)S(0)i + %) 

I r ( 0 ) i )  + r ( 0 ) j )  + r ( 2 n  - 0)i - 0)i)12/ 
1 

+ ] • 

(to/, taj)tOT 

(19) 
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The number of degrees of freedom of the chi-square distribution in (14) is 2P, where P is the number of points 
in the PD: 

M z 
P - (20) 

12L z' 

The exact expression for the chi-square distribution of the statistic (14) is (see [2]) 

1 ~ 2il i F(1/2 + i) 
p(/;2) = 2 ~ e  -t'~+l)/21 t'- 1 i=o2" (~-! F(P + i) (21) 

In order to maximize the BLR, we have to find the parameter 2 which maximizes the likelihood of the statistic 
(14). Using the relation between 2 and 0, given in (19), we get that the ML estimator of 02 is approximated by 

2o ' (22) 

where ~BML is the ML estimate of 2 from the statistic (14), and 20 is a constant that is known a priori. Since it 
is quite difficult to find an analytic solution for 2BML, we propose a sub-optimal estimator 2, based on the first 
moment of the non central chi-square distribution: 

E{X2zv(2)} = 2 + 2P. (23) 

Therefore, the suboptimal estimator is defined as 

l - 2 P ,  l > 2 P ,  
2 =  O, l<~2P. (24) 

We proceed with the analysis of the properties of 2, specifically its bias and its variance. In order to simplify 
the analysis, we make use of a standard approximation to the noncentral chi-square distribution by 
a Gaussian distribution with mean 2P + 2 and variance 4(P + 2). Therefore, the expectation of the estimator 
2 is given by 

f f ~o 1 (1 - 2P)e- tl- 2P- 3.)2/8 (P + ~) dl 
E{)~}--- 2v ( l -  2P)P(l;2)dl"~- x/8rc(P + 2) 2P 

- I ( x / ~  e + 2  1 - ~  - 2 4  

where 

4~(x) = e-"2/z du. 
- -  o O  

Denoting the estimator's bias by b(2), we get 

1 2,27 b()~)=E{2}--2_-__2 ~ ( - p )  =-- e - ° / / ,  
x/Z~p ] 

For p>>l we have that (see [13]) 

1 cb( - p) ~ e-p2/2 . 
x /  2~p 

2 
(25) 

(26) 

2 
= (27) 

P 2 x / ~ +  2 

(28) 
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From [9], 2 = O(N) and p = O(x//N), therefore, 2 is asymptotically unbiased, because x / ~ e  -N goes to 0 as 
N gets large. In order to calculate the variance of the estimation error, we assume that N is sufficiently large 
so that the estimator is nearly unbiased, therefore 

Var{e~} ~Var{2} = E{f .  z} - E2{,~}, (29) 

where e~ is defined as the estimation error: 

ex = 2 -  2. (30)  

We calculate E {2 2 } similarly, 

I E{,~ 2} : (l -- 2 p ) 2 p ( l ; 2 ) d l  ~ 1 ( I -  2p)ee-°-2e-a)2/8(P+~)  dl 
2e x/8rt(P + 2) 2e 

_ 22x//ff + 2 -~/8(e+~) 2F 1 2.2 ] 
e + 4(P + 2) [ I  - ~(  - p) ]  + 2 kx/z-~p'--e-P ' - '/'( - p) ]" (31) 

Therefore, 

2 [- 1 2,2 ] 
- -  2 / - - e  -p / - -  ~ ( - - p ) J .  Var{ea} - - 4 ( P +  2)[1 ~ ( - p ) ]  + L x / ~  p (32) 

Again, the second term in (32) tends for large N to 0, so 

Var{ea} =4 (P  + 2). (33) 

Clearly, the error variance in (33) increases as N gets large, because 2 itself is O(N), but the normalized 
variance, i.e. the standard deviation divided by the mean, tends to 0: 

std {ca } ~ 2 x / ~  + 2) 

2 - 2 
• 0, N ~  o0 .  (34)  

In order to illustrate how 2 is related to the parameter 0 and to the bispectrum, we consider the example 
which has been discussed previously [9, 10], namely, a special case of a signal with flat (constant) spectrum 
S and flat bispectrum B. We can replace the sum in (19) with an integral, whose integration domain includes 
both the inner and the outer triangles. In the inner triangle we obtain 

2,T= Y. 2(0).0) A 
(~i, ~,j)elT 

2 _ 2 K L 2  _ BO( 0)2 + 0)j + (0)i + 0)j)2) 

M S  3 (toi, o~j )~IT 2 
a t- B I ( 0 ) i )  q'- B,(0)i) + B I ( - -  0)i - -  0) j)  2 

2KL2IBI202  [ 2 2 
M S  3 E [ 0)i -~- 0)j -~- (0)i @ 0)j)2 ~2 

ttoi, e,,j)EIT 2 + + 

3 3 coi + 0)j + (0)~ + 0)j)3 

121t 
- (0)i + 0)j)~]2 

_2N_IBI202 f f  [ _  o)21 + 0)2 + (O)1 ..[_ 0)2)2 
- 4~z2Sa dJiTL 2 

+ r t 2 +  0)~ + 0)3 + (0)1 + 0)2) 3 

12~ 

2 

- -  (0)1 "~ O)2)'/~ d0)1 d0)2. 
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The integration domain in (35) is the IT, defined in (7). The result of the integration is 

2iv ~- 2.358 N 7 02, (36) 

where 7 = IBlZ/$3 is the average skewness of the signal. Similarly, the integration in the outer triangle yields 

)~ov = ~ 2(o)i,cofl ~-0.042N~02. (37) 
(~,, eoj )cOT 

We realize that 21~ is much larger than 2ox. This means that the information we get from the OT is very small 
compared to the information we get from the IT. By combining (36) and (37), we get the total 2 as 

2 = )~ix + 2ox ---2o02, 2o = 2.4N;~. (38) 

From the fact that 2~v >> 2o7 we conclude that the bispectrum estimates in the inner triangle are much more 
significant for the estimation problem than those in the outer triangle. Additionally, the inner triangle has 
three times as many points compared to the outer triangle, which also contributes to the relative significance 
of the IT. Therefore, we may be justified in carrying out the parameter estimation algorithm ignoring the 
bispectrum estimates in the OT, without any significant loss of information. However, use of the IT 
bispectrum estimates for this estimation problem is conditioned on an a priori knowledge of the spectrum 
and bispectrum of the continuous signal that is sampled. In cases where we do not have such a priori 
knowledge of the bispectrum, we may still be able to make use of the OT bispectrum estimates for the 
purpose of jitter detection as proposed in [9], or estimation of its variance by using a recursive algorithm. 

3. Estimator performance evaluation 

In this section we will examine the performance of the estimator 0 2 , using the specific example introduced 
above, of a signal with flat spectrum and bispectrum. This example which is analytically simple, will also lead 
us to a relation between the performance of the estimator and the skewness of the signal. When considering 
the bias of the estimator, b(O 2), it is appropriate to normalize it with respect to 02, in order to have a relative 
measure of the estimator's bias. From the relation between 2 and 02, and using Eq. (27) for b(2), we get 

b(02) F 1 2/2-] 
02 - -  [_4~( - p) ~-- e -p / ,  (39) 

x/Zrtp J 

p depends on 2 and P, both are functions of N. The number of bispectrum estimates in the principal domain, 
P, depends on the choice of M and L (see (20) and Appendix B). It is maximized for the choice M = N and 

L = x/N, 1 and given by 

N 
P 12' (40) 

Using (39) and (40) it is now possible to explore the dependency of the normalized bias on N and on the 
average skewness 7. Fig. 1 shows the normalized bias as a function of 0, for N = 104 and three values of ~: 
1, 10, and 100. The normalized bias can be decreased by increasing p which implies increasing N or y. Also for 
larger values of 0, the normalized bias gets smaller. However, it should be pointed out that as 0 becomes 
larger, the approximate expression relating 2 and 0 is less accurate. Therefore as 0 gets large (typically for 
0 > 0.1) the bias is determined by the model accuracy, rather than the bias implied by the estimator. The 
effect of the sample size on the normalized bias is illustrated in Fig. 2, for three values of N: 104, 3 × 104, and 
105, with constant skewness, y = 10. In both cases it is clear that for small values of 0, the normalized bias is 

~Theoretically, for consistency of the bispectrum estimates one needs L > x/N. Practically, however, L = xfN is acceptable. 



178 1. ShatTfer, H. Messer / Signal Processing 38 (1994) 169-186 

T a b l e  1 

T h r e s h o l d  versus  s amp le  size a n d  skewness  

N @ 7  = 10 0th(dB ) y@ N = 104 0th(dB ) 

104 - 18.1 1 - 13.1 

3 x 104. - 19.3 10 - 18.1 

105 - 20.6 100 - 23.1 

10' 
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Fig. 1. N o r m a l i z e d  e s t ima t ion  bias  va r i a t i on  wi th  skewness .  

-211 -26 -24 .77 -20 -15 -16 -14 

jitmr , ~ - , m  

Fig. 2. N o r m a l i z e d  e s t ima t ion  bias  v a r i a t i o n  wi th  s amp le  size. 

large, but it decreases rapidly as 0 exceeds some threshold. We defined the threshold as the value of 0 for 
which p = 1: 

P - 2 x / ~  0,h 
(41) 

Substitution of (38) and (40) in (41) yields 

2.4N702 

2x/N/12 + 2.4N702 
= 1 .  (42) 

Solving for 02 we get 

02 = 9.67 + x/~ 22.42 (16 + 4N/3) 
2.2.42N72 

which can be simplified for N >> 1: 

(43) 

1 
0 2  ~ (44) 
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o r  

1 
0 t h  ~-- 4 N - 1 / 4 ~ / - 1 / 2  (45) 

Table 1 gives the values of 0th according to (45), corresponding to the values assigned to N and 7 in the figures 
above. 

The normalized bias at the threshold is approximately 8.3%. Both figures clearly indicate that as 0 exceeds 
the threshold given in Table 1, the slope of the curves becomes steeper. The table also shows that the 
performance depends on the fourth root of N and on the square root of 7. That means that increasing N by 
10 dB lowers the threshold by 2.5 dB, while increasing y by 10 dB lowers the threshold by 5 dB. We note that 
the threshold criterion (41) is similar to the condition for high probability of detection used in [9]. 

We now consider the variance of the estimator of 02. Using relation (19) between 2 and 0, the estimator's 
variance is 

Var {t~ e } - Var { i  } (46) 
Xo ~ 

Since the estimator is asymptotically unbiased, its variance equals the mean square estimation error. In 
addition it is possible to calculate the bispectral Cramer-Rao bound (BCRB) for 02, by using the asymp- 
totically Gaussian bispectrum estimates as the input data. The bound has already been derived in [10], both 
for the general case and for the particular case considered here. The bound is given by 

1 
E{(O-  O) ~ } >~ S-~ '  S(O) = S,(O) + &(O), 

NIfpD~__~Bd(0)I,0)z;O)2 1 O) d0)1 d0)2' Jl(0) = ~ S~(0)~; 0)Sd(0)2; O)Sd(0), + 0)2; (47) 

N I; ; ; ]2 
J2{0) = ~g2 D log Sd(0)l; 0) + log Sd(0)2; 0) + log Sd(O) 1 At- o)2; 0) d0)l d0)2. 

i i.i ................ 

............... i.....!-..i. +-i...i..i..i..i i.-......i.-.-.-¢~ +,i '.i-i ............. ~ ....../....~. +..t i.~4- 

1 0 "  I I I i I I I I I  I I I I I I I l l  I . . . . . . .  

10  4 10 s 10 ~ 10"/ 

S a m p l e  ~ m  - lq 

F i g .  3. N o r m a l i z e d  e s t i m a t i o n  v a r i a n c e  v e r s u s  N .  
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The second t e r m  J2(0)  reflects the dependence of Z, the bispectrum covariance matrix, on 0. In the derivation 
of the suboptimal estimator it was assumed that S does not depend on 0. This is equivalent to J2(0) = 0, and 
results in a more relaxed bound. Since J2(O) depends only on the spectrum of the signal, it will have a small 
effect on the bound, when the signal has high skewness. For example, at 7 = 1 the difference between the 
bounds is 

Jl(O) + J2(0)  2.4 + /~4/45 
10 log - 10 log - 2.79 dB, (48) 

Jl(O) 2.4 

while at 7 = 10 it becomes 

24 + rt4/45 
10 log 24 - 0.37 dB. (49) 

This example shows clearly that there is no significant loss of performance as a result of ignoring the 
dependency of the spectrum on 0, even at moderate skewness values. It can be easily verified that J l (0)  is 
equal to 2o given by (38) for 0 tending to 0. The bound for 0 z is obtained as 

402 42 
Var{02} >~ J(O~)- 22. (50) 

It is easy to verify that the estimator ~2 asymptotically achieves the bound (50), since from (32) and (46) we 
have 

Var{O2 } _ 4(P + 2) 
2o 2 (51) 

Therefore, to achieve the bound it is necessary that 2 >> P. Since 2 increases linearly with N, it is sufficient to 
choose the estimation parameters L and M in such a way that P increases as a power of N that is smaller than 
1. For choice M = N and L = N c we get 

N2(1 -c) 1 
P -  1 ~ '  2 < c <  1. (52) 

101 

10 o .!  

1,o ! 

10120o 101 102 10 s 

Skewness 

Fig. 4. Normalized estimation variance versus skewness. 
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Fig. 5. Normalized estimation variance versus jitter. 
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The choice of c determines how fast the estimator's variance converges to the bound. In order to avoid biased 
bispectrum estimates, it is necessary to choose c close to 1/2, but that comes at the expense of slow 
convergence to the bound. Additionally, due to the fact that 2 is proportional to the average skewness 7, the 
bound can be approached by increasing 7, independent of N. Fig. 3 illustrates the dependence of the 
normalized estimator's variance on the sample size N, and compares it with the normalized BCRB: 

02 >i . (53) 

The graph is drawn for 0 = 0.01 and 7 = 10. It shows that the estimator's variance indeed approaches the 
BCRB, although rather slowly, because N is required to be larger than 106 in order to be within 1 dB from the 
bound. The rate of convergence can be increased by a proper choice of c, so that the condition 2>>P is 
satisfied for smaller N. For  example, if the requirement is that the condition 2 = 10P (0.4 dB from the bound), 
is satisfied at N = 106, then c has to be set as follows: 

1 ( l o g ( 1 . 2 . 2 . 4 0 2 7 )  " ] 
c = ~ 1 -- logN- j = 0.71. (54) 

Clearly, the higher the value of c the larger the bias of the bispectrum estimates, because there are fewer 
estimation points in the principal domain. On the other hand, when c is larger the variance of each 
bispectrum estimate is smaller. The figures shown were all drawn for c = 0.65. 

Fig. 4 shows the normalized variance of 0 z as a function of the skewness, and in comparison with the 
normalized BCRB. The fixed parameters are 0 = 0.01 and N -- 104. Obviously, the variance is reduced as 
7 increases, while approaching further towards the bound. At any skewness value it is possible to approach 
the bound by increasing N. In Fig. 5 we examine the estimator's performance for 0 in the range between 10- 3 
and 10-1, for N = 104 and y = 10. The normalized BCRB in that range is shown as well. It is seen that as 
0 increases the normalized variance decreases and gets closer to the bound, because 2 increases along with 
0 while P remains unchanged, which results in a decrease in the variance. This can be verified by (51) as well: 

02 - ~ + 1. (55) 

4. Computer simulations 

Computer  simulations of the proposed jitter estimation algorithm were done to verify that the assum- 
ptions made in the analysis of the estimator are reasonable, and to determine the performance of the 
proposed jitter estimation method. 

In each simulation run, a random sequence is generated, which corresponds to samples taken at uniformly 
spaced time instants from a continuous band-limited third-order stationary process. This process has 
a known nonzero bispectrum in the IT, and zero bispectrum in the OT. A random IID jitter sequence is 
generated as well, whose elements are each a realization of a random variable with a given variance and 
distribution. The actual samples are then reconstructed from the uniformly spaced samples, using the 
sampling times given by the realization of the jitter process. The reconstruction is carried out by an ideal 
low-pass filter according to the sampling theorem. The bispectrum of the jittered samples is estimated by 
a bispectrum estimation program [5], and the resulting bispectrum estimates are used to calculate the 
statistic (14), and the estimator (24). The bispectrum estimation program uses a slightly different estimation 
algorithm than the one used here. In this algorithm the N samples are divided to blocks of length L each, 
bispectrum estimation is done for each block, and then averaged over all the blocks. Since the test statistic 
does not depend on the bispectrum estimation algorithm, all analytical results remain valid. 



182 I. Shar/er, H. Messer / Signal Processing 38 (1994) 169-186 

• ̂ 1 

.l 

1 l 
I 

-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -lO 

jitter variance - dB j im~ variance - dB 

Fig. 6. Normalized estimation bias versus jitter - simulation. Fig. 7. Normalized estimation variance versus jitter - simulation. 

The stochastic sampled process is generated in the frequency domain by random uncorrelated zero-mean 
spectral components which are multiplicatively coupled. In order to obtain a band-limited signal, no 
coupling is made between frequencies lying in the OT (sum of frequencies equals to 2n). The random process 
generated in this way has a nonzero bispectrum in the IT, and zero bispectrum in the OT. The actual signal 
samples are then generated by means of an inverse DFT, which transforms the signal from its frequency 
domain representation to the time domain. By using proper scaling of the spectral components, the resulting 
signal has flat spectrum, but does not have a flat bispectrum. Therefore, we will use its average skewness, in 
order to compare our simulations with the analytical results. As a consequence of this, the estimator's bias 
was slightly different than the analytical results, but the estimator's variance agreed well generally. Each 
simulation consists of 100 Monte-Carlo runs. The simulations were carried out for jitter with Gaussian and 
uniform distributions, and a sampled signal with average skewness ~ = 1.185, which was the maximal 
skewness that could be achieved with the method described above (see [11] for full description of the 
computer simulations and performance results). 

The computer simulation results are presented in the following figures. Fig. 6 shows the normalized 
estimation bias b(02)/O 2, as a function of 0. The bias is determined by the difference between the mean of the 
estimator and 02. The normalized bias predicted by (55) is shown as well. The number of bispectrum 
estimates in the PD is P = L2/12, where L is the block length of the simulation. The graph shows that for 
0 < 0.01 the simulation and analytical results are quite similar, except for a gap which is due to the 
assumption that bispectrum is flat. As 0 increases the normalized bias does not decrease further, because the 
approximate relation between 2 and 02 becomes less accurate. For sufficiently small 0, the bias can be 
reduced further by increasing N or 7- 

In Fig. 7, a comparison is made between the normalized variance of the estimator (sample variance) and 
the analytical results. The normalized bispectral Cramer-Rao bound is shown as a reference. The figure 
shows a plot of std(02)/02 as a function of 0. The simulation points are in close agreement with the analytical 
results, and both curves approach the BCRB as 0 increases. The difference between the simulation and 
analytical results becomes quite small (less than 1 dB) when both are close to the bound. 

Fig. 8 shows the normalized bias of the estimator as a function of the sample size N, for constant jitter 
variance 0 = 0.05. The normalized bias is reduced initially as N increases, but for larger N it remains 
unchanged because it is limited by the accuracy of the first-order approximation of the characteristic function 
of the jitter in (16). 

Finally, the normalized variance of the estimator as a function of N is presented in Fig. 9, and compared to 
the analytical results and to the bispectrum-based BCRB. A good agreement between simulation and 
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Fig. 8. Normalized estimation bias versus sample size simula- 
tion. 

Fig. 9. Normalized estimation variance versus sample size simu- 
lation. 

analysis is seen, with a difference of less than 1 dB on most of the simulation points. The estimator's variance 

converges rather slowly to the BCRB, because the simulation block length was chosen as L ~ , ~ .  The 
convergence rate can be increased by using a smaller block length, but this will result in an increased bias of 
the bispectrum estimates, because there will be less estimation points in the PD. 

5. Conclusions 

The problem of estimating parameters of a jitter process is important in view of the increasing demand for 
high performance signal processing applications that use sampled data. The present and previous works 
[8 10] can be regarded as a feasibility study, in which we have shown that on certain conditions the 
bispectrum is a domain which can be highly sensitive to the existence of jitter in sampling, and provides 
a useful signal processing tool for either detection or estimation of this effect. The asymptotic Gaussianity of 
the bispectrum estimates is a useful property and has simplified the derivation of the likelihood ratio on 
which the estimation is based. A disadvantage in using the bispectrum in particular and higher-order spectra 
(HOS) in general is that a relatively large sample size is required in order to satisfy the asymptoticity 
assumption, and the need for high computation power, although using the FFT algorithm can help 
considerably. The proposed estimator has been applied on a simulated model of jittered sampling, and was 
shown to be an effective method for estimating jitter. We have pointed out that in order to improve the 
performance we can trade-off the sample size with the skewness of the process. Therefore, finding a method 
which generates a stationary band-limited process with high skewness is a useful research direction. 
Additionally, it is intuitively clear that the high frequencies of the signal are more affected by the jitter than 
the low frequencies. This observation suggests that a high-pass process, in which the bispectrum is supported 
near the outer edge of the inner triangle, has higher potential to detect or estimate the jitter, compared to 
a low-pass process. This claim, however, needs to be substantiated by further research. 
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Appendix A. Derivation of Eq. (3) 

In this appendix we outline the derivation leading to Eq. (3) of the bispectrum of the sampled data. We 
assume a continuous, zero-mean, third-order stationary, band-limited process {x(t)}. It can be written using 
the Cramer representation as 

x(t) = ~ exp(jOt) dZ(~), (A.1) 
- o c  

where 

E{dZ(f~)} = 0, E{dZ(f2~)dZ(f~2)} = 2~3(Q1 + O1)S~(f21) d~21, 

E{dZ(O1) dZ(Q2)dZ(f23)} = 2rt3(Qm + O2 + Q3)Bc(~'~l,~'22)d~l dQ2, (A.2) 

S~(f2) and B~(O~, 02) are the spectrum and bispectrum of the continuous process {x(t)}, respectively, and 
6(. ) is the Dirac delta function (see [4]). The bispectrum of the discrete (sampled) sequence is defined as the 
two-dimensional DTFT of the third-order cumulant sequence: 

C(k,m) = E{x(t,)x(t,+k)x(t,+m)}. (A.3) 

The sampling times {t, } are obtained by multiplying the normalized sampling times in (1) by T, the nominal 
sampling period. Assuming that the jitter process {~.} and {x(t)} are independent, and using (A.1) and (A.2) 
we can express (A.3) in terms of the jitter and the bispectrum as 

1 E{exp( - j(a)l + a)2)% + jo)lr,+k + je)2r,+m)} 

• exp( - j(o)l + ~o2)n + j~ol(n + k) + je)2(n + m))B~(o)l,~o2) dml d~02, (A.4) 

where 

co - ~T, B~(~o,,~o2) - T2 : \  r '  TJ" (A.5) 

Further evaluation of (A.4) requires to distinguish between different regions in the cumulant plane, which 
correspond to the following cases: 

(2r0 2 ) ~ 3_~ ~b(~ol)~b(~Oz)q~*(col + ~o2)Bs(o91, oo2)exp(jtolk + jo~2m) do91 d¢o2, 

1 7 7  (27t)2j_~j_lck(oo2)[2Bs(~o~,~z)exp(j~ozm)dooldOO2, k = 0 ,  m # 0 ,  

C(k,m) = (~j2~)2 ,~ _,l(9(c01)12B~(~Ox,to2)exp(joOlk)&01 dr02, k :# O, m = O, 

(2n) 2 J_~ J ,~ 

(2~)2 j_ ,~ j_ ,  B ~ ( ~ l , ~ 2 ) d ~  &o2,  k = m = 0, 

where 

[0b(tOl + ¢o2)12Bs(~Ol,ooz)exp(j(¢ol + o92)m) do01 dooz, k = m # 0, 

k # m # O ,  

qS(o)) -=- E{exp(joor,)}. (A.6) 
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The double integration is defined on a hexagonal in the (81,82) plane, such that 1811 ~< n, 1821 ~< n, and 
181 + 821 ~< ~, because the sampled process {x(t)} is assumed to be stationary and band-limited (see [6]). 
However, due to jitter in sampling, the bispectrum corresponding to C(k, m) in (A.6), will be nonzero outside 
the stationary support set. It can be easily verified that the D TF T of C(k, m) inside the stationary support set, 
denoted by Bd(81,82), is given by 

B d ( 8 1 , 8 2 )  = B 2 ( 8 1 , 8 2 )  -4- B1(81)  + B1(82)  -4- B*(81 -4- 092) -4- Bo, (A.7) 

where 

B2(81,82) = B~(8,,82)qS(8,)~b(82)q~*(8, + 0-)2), 

e l ( 8  ) = ~ [1~(8)12 - ~b(8)qS(u)~*(8 + u)]Bs(8, u)du,  

Bo = ~ - ,  -~[1 - Iqk(sx)[ 2 -14(82)12 -1q5(81 + 82)12 -f- 24(81)q~(82)q~*(81 -k (2)2) ] 

× B s ( 8 1 , 8 2 )  d81 d 8 2 .  (A.8) 

In the nonstationary support set, the bispectrum is given by 

Bd(81,t02) = BI (81)  -4- B1(82) + BI(2Tc -- 81 -- 82) + Bo. (A.9) 

The stationary and nonstationary support sets of the bispectrum, are also called the inner triangle (IT) and 
the outer triangle (OT), respectively (see [6]). Clearly, in the absence of jitter (th(8) = 1), the bispectrum in the 
inner triangle is just a replica of the bispectrum of the continuous signal, and the bispectrum in the outer 
triangle is identically zero. 

Appendix B. Bispectrum estimation 

In this appendix, the bispectrum estimation procedure used in this work is summarized. Given N samples 
of a zero mean process {x(t)}: 

{x(n)] = {x(O) . . . . .  x ( N -  1)}, n = O  . . . . .  N -  1. (B.1) 

This sequence is divided to K records, each of length M: 

N = MK.  (B.2) 

A DFT is performed on each of the K records: 

M-1 
X(k)(8m) = ~ x(kl(i)exp(-- jsmi), k = 0 . . . . .  K -- 1, 

i=o (B.3) 
2rtm 

8,, M m = O, ,M - 1. 

The bispectrum estimate for the kth record is given by 

(k) (k) * (k) B(k~(8, , ,8,)  = X (8 , , )X  ( 8 , ) X  (8,, + 8,) .  (B.4) 
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In order to get a consistent estimate of the bispectrum the variance of (B.4) need to be reduced. This is done 
by averaging these estimates over a square of L: bifrequencies: 

~(k)(o ) 1 L/Z L/2 
L, Z Y, lB.5) 

r = - L /2  s = - L /2  

Finally, the estimates are averaged over the K records: 

1 r~ l  /~'(eO,,,~,). (B.6) 

The estimate (B6) is biased: 

E{/~(o~,.,~,)} = B~((o,,,co,) + ~ , (B.7) 

where Bd(~,,,to,) is the bispectrum of the sampled signal. The variance of the estimate is given by 

Var{Re(/~(mm, e)~))} = Var{Im(fi(om,~o,))} = 2KL2S(o~m)S(e),)S(~om + c~,) + -~ , (B.8) 

S(~o) is the spectrum of the sampled process. By appropriate choice of K, L, and M the estimate (B.6) will be 
asymptotically unbiased and consistent [4, 12]. 
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