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Almhmct--Parameterodependent Lyapunov functions are 
developed for discrete-time systems with constant real 
parameter uncertainty. This construction of a family of 
Lyapanov functions is then used to analyze robust stability 
with He performance bounds for state space systems. A 
special case of these results generalizes the classical 
discrete-time Popov criterion. 

Notation 
R, R "×', R" 
C, C r×', C r 

E, tr, Orxs 
1,, ( )T,( ) ,  

p ( ) ,  o,,.,,, 
5", N', P" 

ZI < Z2, Zt  < Z2 
Ilxlh 
IIZlIF 
IIH(z)lh 

real numbers, r x s real matrices, R "x~ 
complex numbers, r x s  complex mat- 
rices, C rx I 
expectation, trace, r x s zero matrix 
r x r identity, transpose, complex conjug- 
ate transpose 
spectral radius, largest singular value 
r x r symmetric, negative-definite, 
positive-definite matrices 
Z 2 - Z I ¢ N r, Z 2 - Z I  E p r  Z l  ' Z 2  E 5 r 
Ix*x] '~, x e C r 
[tr ZZ*] ta (Frobenius matrix norm) 
[(1/2~)f~_,, IIH(e~°)ll 2 dO] trz 

1. Introduction 
SINCE MOST physical processes evolved naturally in 
continuous time, it is not surprising that the bulk of robust 
control theory has been developed for continuous-time 
systems. Nevertheless, it is the overwhelming trend to 
implement controllers digitally. The analysis and synthesis of 
robust digital controllers thus requires an understanding of 
how the continuous-time uncertainties transform into an 
uncertain discrcte-time model. A glimpse of the nature of 
this type of difficulty can be seen in Bernstein and Hollot 
(1989). 
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The above difficulties notwithstanding, one would expect 
the construction of a naive (that is, not sampled-data) 
discrete-time robustness theory to represent a simpler task 
than the development of its continuous-time counterpart. 
Some reasons for this view include the natural limited 
bandwidth of discrete-time processes as well as such 
technicalities as the fact that, in contrast to the 
continuous-time case, the He norm of a nonstrictly proper 
discrcte-time transfer function is finite. Experience has 
shown, however, that the development of discrete-time 
robustness theory is often an intricate affair as can be seen 
by the extensive activity being devoted to the development of 
discrete-time state space H® theory. 

Many practical applications of robust feedback control 
involve constant real parameter uncertainty, whereas small 
gain or norm-bounding techniques guarantee robust stability 
against complex, frequency-dependent uncertainty, thus 
entailing undue conservatism. Since conventional Lyapunov 
bounding techniques guarantee stability with respect to 
time-varying perturbations, they possess a similar drawback. 
This is simply due to the fact that time-varying parameter 
variations can destabilize a system even when the parameter 
variations are confined to a region in which constant 
variations are nondestabilizing. Consequently, a feedback 
controller designed for time-varying parameter variations will 
unnecessarily sacrifice performance when the uncertain real 
parameters are actually constant. 

In a recent paper (Haddad and Bernstein, 1991b) a 
framework for parameter-dependent Lyapunov functions, a 
less conservative refinement of 'fixed' Lyapunov functions, 
was developed for continuous-time systems. It was shown by 
Haddad and Berustein (1991b) that this framework provides 
a reinterpretation of the classical Popov criterion as a 
parameter-dependent Lyapunov function for constant linear 
parameter uncertainty. 

The main contribution of the present paper is to provide a 
general framework for discrete-time parameter-dependent 
Lyapunov functions and recognize the fact that the classical 
discrete-time Popov criterion (Szego, 1963; Szego and 
Pearson, 1964; Jury and Lee, 1964a; Pearson and Gibson, 
1964; Siljak and Sun, 1971) is based on a parameter- 
dependent Lyapunov function. As a result, we obtain a 
generalized multivariable version of the Popov criterion for 
matrix-valued uncertainty (the classical Popov criterion is 
limited to scalar nonlinearities). 

2. Robust stability and performance problems 
Let ~ / c  R "x" denote a set of perturbations AA of a given 

nominal dynamics matrix A ~ R "×". We begin by considering 
the question of whether or not A + AA is asymptotically 
stable for all AA e q/. 

2.1. Robust stability problem. Determine whether the 
linear system 

x(k + 1) = (.4 + AA)x(k),  k = 0, 1, 2 . . . . .  (1) 

is asymptotically stable for all An, ~ ~. 
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To consider the problem of robust performance, we 
introduce an external white noise disturbance as in standard 
LQG (H2) theory. The robust performance problem 
concerns the worst-case H2 norm, that is, the worst-case over 
q/ of the expected value of a quadratic form involving 
outputs z ( k ) =  Ex(k), where E ~ R q×", when the system is 
subjected to a standard white noise disturbance w ( k ) e  R d 
with weighting D • R n×d. 

2.2. Robust performance problem. For the disturbed 
linear system 

x ( k + l ) = ( A + A A ) x ( k ) + D w ( k ) ,  k =0,  1,2 . . . . .  (2) 

z(k)  = Ex(k), (3) 

where w(.) is a zero-mean d-dimensional discrete-time white 
noise signal with covariance 1 d, determine a performance 
bound fl satisfying 

j(~/) ___a asup~ limsup [(ltz(k)ll 2) < ft. (4) 

Next, we express the H 2 performance measure (4) in terms 
of the observability Gramian for the pair (A + AA, E). For 
convenience define R A_ ETE, V ~= DD ~'. 

Lemma 2.1. Suppose A + AA is asymptotically stable for all 
AA ~ ¢/. Then 

J(all)= sup trPAAV= sup IIGAA(z))I2 2, (5) 
AAeOl AAe~ 

where PAAeff~ ~×~ is the unique, nonnegative-definite 
solution to 

PAA = (A + AA)Tpa,4(A + AA) + R, (6) 

and 

Gaa(z ) =~ E[zl  - (A + AA)I- 'D.  

Proof. See Haddad et al. (1991). [] 

3. Robust stability and performance via parameter-dependent 
L yapunov functions 

The key step in obtaining robust stability and pe_rformance 
is to bound the uncertain terms AATp~AA +ATpaAAA + 
AATpaAAA in the Lyapunov equation (6) by means of a 
parameter-dependent bounding function Q(P, AA) which 
guarantees robust stability by means of a family of Lyapunov 
functions. This corresponds to the construction of a 
parameter-dependent Lyapunov function. As d i s c u ~  by 
Haddad and Bernstein (1992), this approach constrains the 
class of allowable time-varying uncertainties. The following 
result is fundamental and forms the basis for all later 
developments. 

Theorem 3.1. Let Q0:,N'Gl~n--*$ n and Po:~--+S ~ be such 
that 

AA'rpA + A T p A A  + A A T p A A  <_ no(P ) 

- [(A + AA)'rpo(AA)(A + AA) 

-Po(AA)I, A A c ~ / ,  e e x ,  (7) 

and suppose there exists P E ,h" satisfying 

P = ATpA + no(P ) + R (8) 

and such that P + Po(AA) is nonnegative-definite for all 
AA ¢ q/. Then 

(A + AA, E) is detectable, AA e ¢./, (9) 

if and only if 

A + AA is asymptotically stable, AA ~ ~l/. (10) 

In this case, 

P/,,4 <- P + Po( AA ), AA ¢ all, (11) 

where PAA is given by (6). Therefore, 

J (~ )  < tr PV + sup~ tr Po(AA)V. (12) 

If, in addition, there exists ~) • ~" such that 

Po(AA) -< ~), Aa  • ~d, (13) 

then 
J(~/) < fl, (14) 

where 

t~ ~ tr [(P + Po)V]. (15) 

Proof. We stress that in (7), P denotes an arbitrary element 
of W, whereas in (8) P denotes a specific solution of the 
modified Lyapunov equation (8). This minor abuse of 
notation considerably simplifies the presentation. Now note 
that, for all AA E R "×',  (8) is equivalent to 

P = (A + A,4)Tp(A + A,4) + no(P) 

- (A,4TpA + ATpI~4 +/~k,4TpAA) + R. (16) 

Adding and subtracting 

(A + AA)Tpo(AA)(A + AA) + Po(AA) 

to and from (16) yields 

P + Po(~u4) = (A +/XA)T(P + Po(AA))(A +/~u4) + ~'~o(P) 

- [(A + AA)Tpo(AA)(A + AA) - Po(AA)] 

- (AATpA + ATPAA + AATpAA) + R. 

(17) 

Hence, by assumption, (17) has a solution P • X for all 
AA • R n×n. If AA is restricted to the set ~/then, by (7), the 
expression 

no(P) - [(A + AA)Tpo(AA)(A + AA) - Po(AA)] 

- (AATpA + A T p A A  + AATpAA)  

is nonnegative definite. Thus, if the detectability condition 
(9) holds for all AA • q/, then it follows from Theorem 3.6 of 
Wonham (1979) that (,4 + AA, [R + l'~(P, 6,4) - (AATpA + 
ATpAA + AATpAA)] v2) is detectable for all AA • 9/, where 

Q(P, AA) 
=A l)o(p) _ [(A + AA)Tpo(AA)(A + AA) - Po(AA)]. (18) 

It now follows from (17) and l.,¢mma 12.2', p. 282 of 
Wonham (1979) that A + AA is asymptotically stable for all 
AA e ¢/. Conversely, if A + AA is asymptotically stable for 
all A,4 e q/, then (9) is immediate. Now, subtracting (6) from 
(17) yields 

P + P0(AA) - PAA 

= (A + AA)T(P + Po(AA) - PAA)(A + AA) + Q(P, AA)  

-- (AATpA + ATpAA + AATpAA), All e ~,  (19) 

or, equivalently, since A + AA is asymptotically stable for all 
AA e ¢/, 

P + Po(AA) - PaA 

= '~  (A + AA)"r[~(P, AA) - (AATpA + A T p A A  
i=o 
+ AATpAA)](A + AA)i->0, AA • ~//, (20) 

which implies (11). The performance bounds (12) and (14) 
are now immediate consequences of (5), (11), and (13). [] 

Note that with Q(P, AA) defined by (18), condition (7) 
can be written as 

AATpA + ATpAA + A A T p A A  

-<Q(P, AA), A A ~ d ,  P • 2 f ,  (7)' 

where fl(P, AA) is a function of the uncertain parameters 
AA. For convenience we shall say that o( . ,  .) is a 
parameter-dependent bounding function or, to be consistent 
with Berastein and Haddad (1990) a parameter-dependent 
n-bound. One can recover the standard guaranteed cost 
bound or parameter-independent n-bound as developed in 
Haddad et al. (1993) by setting Po(&A)m0 so that 
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t)(P, AA) = fl0(P) and therefore A A T p A  + A T p A A  + 
AATpA.A -< f~o(P) for all AA • ~/. Finally, since we do not 
assume that Po(0)=0, Qo(P) need not be nonnegntive- 
definite. If, however, Po(0)=0, then f~o(P)---0 for all 
nonnegative-definite P. As in the continuous-time case 
(Haddad and Bernstein, 1991b, 1994), to apply Theorem 
3.1 we first specify a function f~o(') and an uncertainty set ~l/ 
such that (7)' holds. If the existence of a nonnegative- 
definite solution P to (8) can be determined analytically or 
numerically and the detectability condition (9) is satisfied, 
then robust stability is guaranteed and the performance 
bound (15) can be computed. 

Finally, we note that the parameter-dependent Q-bound 
framework establishing robust stability given by Theorem 3.1 
is equivalent to the existence of a parameter-dependent 
Lyapunov function of the form V(x )  = xT(p  + Po(AA))x 
which also establishes robust stability. For further details see 
Haddad and Bernstein (1992). 

4. Construction o f  parameter-dependent Lyapunov 
functions: quadratic bound and connections to the discrete- 
time Popov criterion 

Having established the theoretical basis for our approach, 
we now assign explicit structure to the set ~/ and the 
parameter-dependent bounding function f2(., .). Specifically, 
the uncertainty set ~/is defined by 

~ l l ~ = { A A e ~ ' × ~ : A A = B o F C o ,  w h e r e F ~ 3 ; } ,  (21) 

where 3~ is a given set of matrices satisfying 

~ ~ ~ (F  ~ ~ mO . . . .  : FT(M - i + M - T ) F  <_ F + FT), (22) 

and where B o • R ~ × m ° , c o e ~  '~°×~ are fixed matrices 
denoting the structure of the uncertainty, F • Rm0×m~} is an 
uncertain matrix, and M is a given mo x mo invertible matrix. 
Note we do not exclude the possibility that ~ is equal to ~:. 
However, for flexibility ~: may be a specified proper subset 
of ~. 

Next, we digress slightly to provide simplified charac- 
terizations of the set ~:. Define the subset ~o of ~ by 

~o = {F e ~ : d e t  (I - M - ' F )  *0) .  

Proposition 4.1. The set ~o is equivalently characterized by 

~0 ffi (F  • R"°×"°  : F = (I + FM-  ~)- ~/~, where 

~ • R m o × " o ,  ~ + ~T_>0, and det ( l +  ~M-~) ~:0}. 

Proof. See Haddad and Berustein (1991b, 1994). [] 

In the special case that M is positive definite, it follows 
from Lemma 4.1 of Haddad and Bernstein (1991a, 1993b) 
that the condition det (! +/~M-~) ~ 0 in the definition of ~o 
is automatically satisfied. In this case we have the following 
norm bound inequality on F • ~. 

Lemma 4.1. Let F e ~ and assume M is positive definite. 
Then 

o,,,~x( F) <- a,,,~x( M). (23) 

Proof. See Haddad and Berustein (1994). [] 

Next, we provide further simplification of the set ~ for the 
case in which F is symmetric and M is positive definite. 

/.,emma 4.2. Let F e S ' 0  and M e  P'%. Then F M - ~ F < - F  if 
and only if 0 <-- F -< M. 

Proof. See Haddad and Berustein (1991b, 1994). [] 

Thus, in the case in which F is symmetric and M is positive 
definite the set 3~ defined, by (22) becomes 

~s ~= {F • 5'%:O<-F <-M}. (24) 

Note that if F in ~ is constrained to have the diagonal 
structure diag [F~, F2 . . . . .  F , J ,  then 0-< F~ --- M~, i --- 
1 . . . . .  too, where M = diag [M~, M 2 . . . . .  M,~j.  More gene- 
rally, F may have repeated elements and/or blocks on the 
diagonal of the form diag [F~, F~, Ft, 1:2 . . . . .  Fm~ ~. Finally, in 
accordance with our assumption in Section 2 that 0 • ~,/, we 

shall assume that 0 e ~.  Also for convenience we always 
assume M e ~. 

For the structure of ~,/ satisfying (21), the parameter- 
dependent bound O(-, .) satisfying (18) can now be given a 
concrete form. However, since the elements AA in ~/ are 
parameterized by the elements F in ~ ,  for convenience in 
the following results we shall write Po(F) in place of Po(AA). 
We now introduce a key definition that will be used in 
subsequent developments. 

Definition 4.1. Let N e R  m°xm°. Then • and N are 
compatible if FTN is symmetric for all F • ~ .  Furthermore, 

and N are strongly compatible if, in addition, FTN is 
nonnegative-definite for all F • ~. 

For the remainder of this paper we assume for simplicity that 
M is positive definite. In this case it follows from Lemma 4.1 
that there exists/~ • S"0 such that FTN <- 1~ for all F • ~. 

Proposition 4.2. Let N • R ' ' °×"° be such that ~: and N are 
compatible, and let ~r=_N" denote the set of P •  N n such 
that 

X &  {p  • N n :M -I  - NCoBo + (M - t  - NCoBo) T 
T T T - Bo Co PCoBo - Bo PBo > 0}. (25) 

Then the functions 

~ q ) ( e )  -~ ( A  - I ) T c T ~ C o ( A  - -  1) 

+ (Co + B'~C'~I~CoA + NCoA 

-- BTCTI~Co - NCo + B~PA)  T 

• [ (M- '  - NCoBo) + ( M - I  _ NCoBo)T 

- BTCTI~CoBo - BTpBo] - '  

• (Co + BroCTol~Co A + NCoA 

- -  B T c T I ~ c o  - NCo + B~PA),  (26) 

Po( F) = CT FT NCo, (27) 

satisfy (7) with q/given by (21). 

Proof. Since by (25) M - 1 - N C o B o + ( M - I - N C o B o )  T -  
T BoColzCoBo- B~PBo is positive-definite for all P • ) f  and, 

by (22), F + F T - 2 F T M - t F  is nonnegative-definite, it 
follows that 

0 < [(Co + BTCTo~CoA + NCoA - BTcT~co  -- NCo + BTpA)  

- [(M-i _ NCoBo) + ( M - I  _ NCoBo)T 
T T T T - Bo C o # C o B o -  Bo PBo]FCo] 

• [(M -I - NCoBo) + (M -I  - NCoBo) T 

- B~CT#CoBo-  BTpBo]- '  

• [(Co + BToCT#CoA + NCoA 

- BoCTol~Co - N C o  + B~PA)  

- [ (M- '  - NCoBo) + ( M - '  - NCoBo) T 

T T - -  B~PBo]FCo] - Bo Co pCoBo 

+ (A - l )Tc~t ,  Co(A -- 1) -- (A - I )Tc~ ,Co(A  - 1) 

+ CTo[F + F T _ 2FTM- 'F]Co 

= f~o(P) - CToFT(Co + BTcTI~Co A + NCo A 

- B~cTIACo - NCo + BTpA)  

- (C O + BToCTpCo A + NCo A - BTCTpCo 

_ N C  ° + BToPA)TFCo + cToFT[(M - 1 _ NCoBo) 

+ (M -1 _ NCoBo) T - BToCTI~coB o -- BTpBo]FCo 

- (A - I ) T c ~ C o ( A  - I) + CT[F + F T - 2FTM - ~F]Co 

f f i  t'~o(p) - C~oF~B~oCT~CoA - C~oFTNC~A 

+ C~oF~B~C~o~Co + C~F~NCo- C~p~B~p~ 

-- A T CToI~CoBoPC o - A T CToNT FCo 

+ ~oopCoBoFC o + CTNTFCo -- ATpBoFCo 

- C~oFTNCoBoFCo - C~FTB~CTNTFCo 
T T T T T T - C~oF BoCoPCoBoFCo - CoF BoPBoPCo 

- (A - I)CTopCo(A - 1). (28) 
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- A T Next, setting Po=Col~Co and noting ~ - > P ~ ( F ) ,  (28) 
becomes 

0 <- ~o(P) - [AATpA + A T p A A  + A A T P A A ]  

- [(A + AA)Tpo(A + AA) + [ P o -  Po(F)] 

- Po(F) - aaT[/5o - P~,(F)] - [15o - P0(F)]AA 

- ATIPo - Po(F)] - [/So - Po(F)]A 

= f~o(e) - [AATpA + A T p A A  + A A r p A A ]  

- [(A + AA)T[/5o - Po(F)](A + A A )  

+ [/~o - eo(F)] - AAT[po - Po(F)] 

- [tSo - Po(F)IAA - ATIPo - Po(F)] 

- [t5o - Po(F)]A + (A + AA)Tpo(F)(A + z.~4) - Po(e)], 

or, equivalently, 

0 -< [(,4 - I )  + AA]T[Po - Po(F)]I(A - 1) + aA! <- t~o(p) 

- [AATpA +ATpAA + AATpAA] 

- [(A + AA)Tpo(F)(A + A A )  - Po(F)], 

which proves (7) with ~d given by (21). [] 

Next, using Theorem 3.1 and Proposition 4.2 we have the 
following immediate result. 

Theorem 4.1. Let N e R "°×m° be such ~ and N are strongly 
compatible. • Fur thermore ,  suppose there exists a 
nonnegative-definite matrix P satisfying (25) and 

P = ATpA + (A - 1)TC~#Co(A - 1) 

+ (Co + B ~ C ~ C o A  + NCoA 

- B~cToltCo - NCo + B~PA)  T 

• [(M-a _ NCoBo) + ( M - i  _ NCoBo)T 

x "r _ B~PBo]- i - B o  C o  #CoBo 

• (C O + BToCTol~CoA + NCoA 

- sToCo'l~Co -- NCo + B~PA)  + R. (29) 

Then 

(A + AA, E) is detectable,  AA e ~d, (30) 

if and only if 

A + AA is asymptotically stable, AA ~ ~/. (31) 

In this case, 

J (q/ )  -< tr [(P + C'~l~Co)V]. (32) 

Proof. The result is a direct specialization of Theorem 3.1 
using Proposition 4.2. We only note that Po(AA) now has the 
form Po(F)= C~FTNCo. Since, by assumption, FTN >-0 for 
all F e ,~, it follows that P + Po(F) is nonnegative-definite for 
all F e ~ as required by Theorem 3.1. Finally, (32) is an 
immediate consequence of (14) with/50 = C~l~Co. [] 

Remark 4.1. The condition that F r N  = NTF, F ~ 3;, repre- 
sents an intimate relationship between the matrix N and the 
structure of ~:. It is easy to see that there always exists such 
a matrix N. For example, if F = Folmo, where F o e R, then N 
can be an arbitrary nonnegative-definite matrix. Alterna- 
tively, if N = Nol,,o, then F may be nondiagonal.  Of  course, 
F and N may have more intricate structure,  for example,  
they may be block diagonal with commuting blocks situated 
on the diagonal. 

Next, we establish connections between the parameter-  
dependent  bounding function formed from (26) and the 
classical discrete-time Popov criterion (Szego, 1963; Tsypkin, 
1964; Szego and Pearson,  1964; Pearson and Gibson,  1964; 
Jury and Lee, 1964b; Narendra  and Cho,  1968; Siljak 
and Sun, 1971). Fur thermore ,  by exploiting results from 
positivity theory it is possible to guarantee the existence of a 
positive-definite solution to (29). First, however,  we present  
additional notat ion and definitions and review the discrete- 
time positive real lemma used to characterize positive 
realness in the state-space setting (Hitz and Anderson,  1969). 

Let 

denote  a state space realization of a transfer function G(z) ,  
that  is, G(z)  = C(z I  - A ) - i B  + D. The notat ion ' ~ '  denotes 
a minimal realization. Fur thermore,  an o~ymptoticaUy stable 
transfer function is a transfer function each of whose poles is 
in the open unit  disk. 

A square transfer function G(z)  is called positive real if 
(Hitz and Anderson,  1969; Siljak, 1973) (1) all poles of G(z)  
are in the closed unit disk, and (2) G ( z ) + G * ( z )  is 
nonnegative-definite for all I z l > l .  A square transfer 
function G(z)  is called strictly positive real if (Caines, 1989) 
(1) G(z )  is asymptotically stable, and (2) G(e i°) + G(e ja) is 
positive definite for all 0 e [0, 2~]. Finally, a square transfer 
function G(z)  is strongly positive real if it is strictly positive 
real and D + D T >  0, where D & G(o0). 

(discrete-time positive real lemma). G(z )  "a~ 

positive real if and only if there exist real 

Lemma 4.3 

A B 

matrices P, L, and W with P positive-definite such that 

P = ATPA + LTL, (33) 

0 = BTpA - C + w T L ,  (34) 

0 = D + D r - BTpB - w T w .  (35) 

Proof. See Hitz and Anderson  (1969). [] 

Next, suppose that D + D T - BTpB > 0 where P satisfies 
(33)-(35). Then,  since 

w T w  = D + D T -  BTpB,  (36) 

it follows that w T w  is nonsingular, and (34) implies 

WTL = - (BTpA - C). (37) 

Using (37) and noting as in Haddad and Bernstein (1993) 
that  LTL > - L T w ( w T w ) - I W T L ,  it follows from (33) that 

P >-ATpA + (BTpA - c ) T ( w T w ) - I ( B T p A  -- C), (38) 

or, since ( w T w )  - j  = (D + D T -  BTpB)  - t ,  

p >_ A T p A  + (BTpA _ C)T(D + D T _ BTpB)  - i 

• (BTpA - C). (39) 

Using the Riccati inequality version of (39) to characterize 
positive realness, we have the following result. 

Lemma 4.4. Let G(z)~-n[AAr---~]. Then the following 
L ~ J  

statements are equivalent: 
(i) A is asymptotically stable and G(z)  is strongly 

positive-real; and 
(ii) there exist positive-definite matrices P and R such that 

D + D r - BTpB > O, (40) 

p = A T p A  + (BTpA _ C)T(D + D T _ BTpB)  - t 

• (BTpA - C) + R. (41) 

Proof. The proof is similar to the proof of Lemma 4.1 for 
the continuous-t ime case given in Haddad and Bernstein 
(1991a, b) and hence is omitted. []  

Next we use Lemma 4.4 to obtain a sufficient condition for 
the existence of a solution to (29). 

Theorem 4.2. Let ,~z) a= M_l  + [1 + (z -- 1)N]G(z) - 

~ I z - l l 2 G * ( z ) I J G ( z ) ,  where . lc.l o .f If A is 

asymptotically stable and ~3(z) is strongly positive real, then 
there exists an n × n  matrix P > 0  satisfying (29). 
Conversely, if there exists P > 0 satisfying (25) and (29) for 
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all R > 0 ,  then A is asymptotically stable and ~3(z) is 
strongly positive real. 

Proof. The  proof is an immediate consequence of Lemma 
4.4. Specifically, the existence of a positive-definite P 
satisfying (29) follows from spectral factorization theory. The 
converse follows from algebraic manipulations. For a similar 
proof see Kalman and Szego (1963). [] 

Traditionally, the classical discrete-time Popov criterion is 
stated for sector-bounded slope-restricted time-invariant 
memoryless nonlinearities. Next, we show that Theorem 4.1 
is a generalization of the discrete-time Popov criterion, as 
proposed by Szego (1963), Jury and Lee (1964a) and Pearson 
and Gibson (1964), for the case in which the sector-bounded 
nonlinearity represents linear parameter uncertainty. To do 
this we first provide a self-contained proof of the 
generalization of the discrete-time multivariable Popov 
criterion for a diagonal nonlinearity structure. Specifically, 
we define the set • characterizing a class of sector-bounded 
slope-restricted time-invariant nonlinearities. Let M 
W "°x' '° be a given positive-definite matrix and define 

{ ~ : R"0 ---, R'%: ~bT(y)[M - I~(y) _ y] _< 0, __a 

Y • Rm°, ~(Y) = [~l(Yl), t~2(Y2) . . . . .  ~)m(Ym)] T, 

¢t(y,(k + 1)) - ¢,(yi(k)) < i , m}. and 0 < y-~-.(k-+ ~ -- ~ #,, = 1 . . . .  

In the scalar case mo = 1, the sector condition characterizing 
is equivalent to the more familiar condition 

0 <- ?p(y)y <- My  2, y • R.  

For convenience in stating the multivariable generalization of 
the discrete-time Popov criterion we define #---adiag 
[/~1, #2 . . . . .  #,no] and N ~ diag [NI, N2 . . . . .  N,,o]. 

Theorem 4.3 (the discrete-time Popov  criterion). If there 
exists a nonnegative-definite diagonal matrix N such that 
M - t  + [1 + ( z  - 1 ) N I G ( z )  - ~ Iz - 112 G * ( z ) # N G ( z )  is 

strongly discrete-time positive real, where G(z)~lAr---~n[,'''-" 
t.'~-s [ ~ . J  

then the negative feedback interconnection of G ( z )  and ~(.) 
is asymptotically stable for ~(- )  • ~ .  

Proof  First note that the negative feedback interconnection 
of G ( z )  and ~(.) has the state space representation 

x ( k  + 1) = A x ( k )  - Bc~(y(k)) ,  (42) 

y ( k )  = Cx(k) .  (43) 

Next, since (z - 1)G(z)  has a minimal realization 

it follows from Lemma 4.3 and Lemma 4.4 that if M -1 + 
[1 + (z  - 1 )N]G(z)  - 12 Iz - 112 G * ( z ) # N G ( z )  is strongly 
discrete-time positive real, then there exist P, L, W with P 
positive-definite and w T w  > 0 satisfying 

P = A T p A  + L T L  + (A - I )TCT#NC(A  - l) ,  (44) 

0 = BTpA  - C + B T c T # N C A  - B 'rCT#NC 

- N C A  + N C  + WT L ,  (45) 

0 = (M -I  + N C B )  + (M -1 + N C B )  T 

- BT C T #N C B  - B T p B  - WT W.  (46) 

Next, with WTW > 0, it follows that P > 0 satisfies (44)-(46) 
if and only if there exists R > 0 such that P satisfies 

P = A T p A  + (A - I ) T c T # N C ( A  - 1) 

+ (C  + B T c T # N c  + N C A  

- BTC T #N C A  - N C  - B T p A )  T 

• [(M -1 + N C B )  + (M -I + N C B )  T 

-- BTC T #N C B  - BTpB] - i 

• (C  + BTcTIJNC + N C A  

- BTCT#NCA - N C  - BTpA)  + R. (47) 

Next, for ~ • ¢D define the Lyapunov candidate 

m ryi(k)  
V ( x ) = x T p x + 2 ~ = I J o  dpi(o)N, do. (48) 

Note that since P is positive-definite and ~p E ~ ,  V(x)  is 
positive-definite for all nonzero x. Thus, the corresponding 
Lyapunov difference is given by 

AV(x) = xT (ATpA  -- P)x  - xTATpBdO - ¢pTBTpAx 

m fyi(k+l) 
+ dpTBTpBdp + 2 ~ I dPi(o)N i do. (49) 

i=t Jyi(k) 

Next, using the fact that 0 < cPi(Yi(k + 1)) - ~i(yi(k)) 
y ~ ( k + l ) _ y i ( k )  <#i ,  it 

follows from the mean value theorem that the last term in 
(49) is bounded from above by 

2 4~i(o)Ni d o  ~ ~'~ {2O,(yi(k))N~[yi(k + 1) 
i~l i=l 

- y~(k)l + ~iN,-[y,(k + 1) - y,(k)l ~) 

or, equivalently, 

m fyi£11 + I ) 2 ~'. dp~(a)N~ d o  <- 2dpT(y(k) )N[y(k  + 1) - y(k)] 
i ~ l  

+ [y(k + 1) - y ( k ) ] T , N I y ( k  + 1) - y (k ) ] .  

Next, since y ( k  + 1) = Cx(k  + 1) = C A x ( k ) -  CBdp(y(k))  
and y ( k  + 1 ) - y ( k )  = C ( A -  l ) x ( k ) -  C B O ( y ( k ) ) ,  using 
(47), (49) becomes 

A V ( x )  <-- --xTRx -- xT(A -- I ) T c T # C ( A  -- I)X -- xTQx  

+ ~pTNC(A - l )x  + xT(A -- I )TCTN~ - ~pTNCB~ 

-- ¢p T BT CTNdp + x r ( A  - I)T CTI, I N C ( A  - l ) x  

- xT(A -- I)TC#NCBdp - ~ T B T C T # N C ( A  - l ) x  

+ cpTBTcT#NCBdp - xTATpBtp - dpTBTpAx 

+ dpTBrpBdp, (50) 

where 

Q a= (C + B T c T # N C  + N C A  - BTCT#NCA - N C  - BTpA)  T 

• [(M -I + N C B )  + ( M - t  + NCB)T  _ B T c T # N C B  _ BTpB]-, 
• (C'l" BTCT#NC + N C A  - BTCT#NCA - N C  - BTpA) .  

Adding and subtracting 2~pTCx and 2¢VM-I~b to and from 
(50) yields 

AV(x) <-- --xTRx - - xTQx  + ~pT[c + B T C T # N C ( I  - A )  

+ N C ( A  - I) - BTpA]x  

+ xT[c+ BTCT#NC( I  - A)  + N C ( A  - I) - B'rpA]T~b 

--~T[M-I + NCB)  + ( g  -I  + N C B )  T 

- B T C r # N C B  - BTpB]dp 

+ 2~TIM-I~ -- CX] (51) 

or, equivalently, 
A V ( x )  ~ - - x T R x  -- zTz  -F 2 ~ T [ M - I ~  - -  y], (52) 

where 

z a [(M_t + N C B )  + (M -I  + N C B )  T 

- B T C T # N C B  - BTpB]  - IrZ[C + B T c ' r # N C ( I  - A )  

+ N C ( A  - I) - BTpA]x  - [(M - t  + N C B )  

+ (M -1 + N C B )  r - B T c T # N C B  - BTpB]I/2~. 

Since R is positive-definite and ~bT[M-l~b- y] < 0, it follows 
that AV(x) is negative definite• [] 

Next, we specialize the results of Theorem 4.3 to robust 
stability with constant linear parameter uncertainty. Specifi- 
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cally, consider the system 

x(k + 1) = (A + aA)x(k),  (53) 

where AA ~ ad and ad is defined by 

@/__a {AA :AA = -BFC,  F = diag [F,, F2 . . . . .  F,,,], 

O<-Fi <-Mi, i= l . . . . .  too}. 

It now follows from Theorem 4.3 by setting ¢ (y)  = Fy -~ FCx 
that A + AA is asymptotically stable for all AA • ~. 

It has thus been shown that in the special ease that F and 
N are diagonal nonnegative-definite matrices, Theorem 4.1 
(with B0 replaced by -B0) specializes to the discrete-time 
Popov criterion when applied to linear parameter uncer- 
tainty. This is not surprising since the Lyapunov function 
(48) that establishes robust stability has the form 

V(x) = xTpx + 2 FioN i do, Yi = (Cox)i, (54) 

or, equivalently, 

V(x) = xrpx + xTCTFNCOX = x'rpx + ~ FiNIxTC'~COX 
i = 1  

(55) 

and thus, is a special case of the parameter-dependent 
Lyapunov function discussed earlier. Note that the uncertain 
parameters are not allowed to be arbitrarily time-varying, 
which is consistent with the fact that the classical 
discrete-time Popov criterion is restricted to time-invariant 
nonlinearities. 

Finally, we consider a specialization of Proposition 4.2 and 
Theorem 4.1 to the case in which N = 0 ,  /~=0, and 
2M - ~ = D o +  D~>0 .  In this case we have the following 
result. 

Proposition 4.3. Let Do • R m"x''°, and let 2¢'~_ I~1" denote the 
set of P • N" such that 

X~=(P•N":Oo+D~-R'geB,,>O}. (56) 

Then the functions 

Qo(P)=(Co+aXPA)T(Oo+OIT-a~Pao)-'(Co+a~PA), 
(57) 

Po(F)=0 (58) 

satisfy (7) with ~l/given by (21). 

Proof. The proof is an immediate consequence of Proposi- 
tion 4.2 with N = 0. 

Because of (58), the case N = O  corresponds to a 
parameter-independent f2-bound. Hence, it follows from 
Theorem 3.1 that if there exists a nonnegative-definite matrix 
P satisfying 

P = A r e A  + (C O + B~PA)T(Do + D~ - B~PBo)-' 

• (Co + B~PA) + R, (59) 

then (A + AA, E) is detectable for all AA • ~./if and only if 
A + AA is asymptotieall]( stable for all AA • ~ .  Using the 
characterization for F • 3~ o implies that 

zXA = BoFCo = n.(I + ~Oo)-'PCo, (60) 

where # + #T__ 0. 
Furthermore, it follows from Lemma 4.4 that the existence 
of a positive-definite matrix P satisfying (59) implies that 

L Co I Do J 

is strongly positive real. Hence the parameter-independent 

Q-bound (57) guarantees robust stability in the presence of 
positive real (but otherwise unknown) plant uncertainty. 
Hence, as in discrete-time H® bounded-real theory, it can be 
seen that discrete-time positive real theory is based upon yet 
another Q-bound. This is not surprising since similar remarks 
apply in the continuous-time case (Haddad and Bernstein, 
1993). 

5. Conclusion 
In this paper we developed a theory of discrete-time 

parameter-dependent Lyapunov functions. These Lyapunov 
functions were used to guarantee robust stability and 
performance for sector-bounded slope-restricted non- 
linearities which include linear parametric uncertainty as a 
special case. 
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