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The dynamics of inviscid multicomponent fluids may be modelled by
the Euler equations, augmented by one (or more) additional species
equation{s}). Attempts to compute solutions for extended Euler models
in conservation form, show strong oscitlations and other computational
inaccuracies near material interfaces. These are due to erroneous
pressure fluctuations generated by the conservative wave model. This
problem does not occur in single component computations and arises
only in the presence of several species. A nonconservative (primitive)
Euler formulation is proposed, which results in complete elimination of
the oscillations. The numerical algorithm uses small viscous perturba-
tions to remove leading order conservation errors and is conservative to
the order of numerical approximation. Numerical experiments show
clean menotonic solution profiles, with acceptably small conservation
error for shocks of weak to moderate strengths,  © 1994 Academic Press, Inc.

1. INTRODUCTION

The dynamics of compressible inviscid fluids may be
modelled by the Euler equations. These are nonlinear
hyperbolic partial differential equations {PDEs), describing
the conservation of mass, momentum, and energy. If the
fluid consists of several components, species equations are
added which describe the conservation of the species.

A cornerstone in the computation of solutions to hyper-
bolic conservation laws is that the conservation form of the
equations provides the best flow description. In practice,
while this may be true for flows dominated by strong
shocks, it may not be the case for flows dominated by other
flow phenomena. For example, attempting to compute mul-
ticomponent fluid dynamics via extended Euler models in
conservation form gives rise to oscillations and other com-
putational inaccuracies near material interfaces [ 1, 11, 127].
These are not the common oscillations associated with high
order numerical schemes, They are present already in firss-
order calculations and are,hard to eliminate by going to
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higher order schemes. They are produced by the best
available numerical schemes, including Godunov, Roe,
Osher, and van Leer. I the interface happens to separale
between reactive and nonreactive gas components, clearly
such oscillations lead to incorrect energy balance. In such
cases, one may be prepared to sacrifice strict conservation
in favour of a better description of the dominant flow
phenomena and to write the equations in nonconservative
{primitive } form.

Indeed, the choice of the primitive set of variables that
includes density, velocity, and pressure provides a model
better suited for computations of propagating material
fronts and results in clean and monotonic solution profiles.
In fact, near material interfaces the governing equations
reduce to linear advection of density (temperature)
gradients and thus, although nonconservative, the model
becomes exact and does not induce any conservation errors
(see also [8]). Near shocks, however, conservation errors
are committed and the primitive model is pgenerally
unsatisfactory. Computed solutions, although oscillation-
free near material fronts, give physicaily inconsistent shocks
which do not satisfy the shock jump conditions.

A viscous perturbation technique has been derived by the
author [10], based on an idea in [22], which removes the
leading order conservation errors and results in a “nearly”
conservative model, which is conservative to the order of
the numerical approximation in smooth parts of the solu-
tions. Inside the numerical shock transition, the conserva-
tion errors, althoug greatly reduced, are still O(1) and so
they do not vanish under mesh refinement. This 15 In
agreement with Hou and Le Fioch [9], who show that
nonconservative schemes converge to weak solutions of
conservation laws with source terms that do not vanish near
shocks. :

Using a nonconservative flow description may not be the
only way to eliminate the oscillations near propagating
material fronts. Another possibility is to use extrapolation
techniques similar to the ones proposed in [4], where con-
servation laws with stiff source terms are shown to produce
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wrong shock speeds. Extrapolation techniques are also used
in shock reconstruction by subcell resolution [ 7]. The main
difficulty with such techniques is identifying the direction of
extrapolation. These techniques are fine for one-dimen-
sional computations, but their extension to higher space
dimensions is not trivial. Another strategy is to use a
genuinely nonconservtive algorithm throughout the flow
field and to revert to a conservative scheme near shocks. In
[6,9], it is shown that such hybrid scheme converge to
correct weak solutions. However, switching strategies and
extensions to higher dimensions are, again, not easy.
Moreover, they may end up defeating the purpose of going
nonconservative, namely the clean capturing of propagating
material fronts.

The genuinely primitve algorithm used in this paper has
been tested extensively in [10]. It was found to produce
acceptably small conservation errors for shocks of weak to
moderate strengths. It thus allows wave computation in
multispecies flows which are both oscillation-free near
material fronts and have only small conservation errors.

The outline of this paper is as follows. In Section 2, we
describe various extensions of the single component Euler
model to multicomponents, both in conservation and in
primitive form. A brief description of the viscous perturba-
tion numerical algorithm of 10] is also given. Section 3
contains simple wave analysis of the various models and
points out several wave modeiling differences between the
conservative and the primitive formulations. In Section 4,
the approximate Riemann solver for the extended Euler
models 15 described, based on Roe’s local linearization.
Section 5 analyzes the various models with respect to their
capability to model propagating material interfaces.
Section 6 presents numerical evidence in support of the
claim that the nonconservative flow description does a
better job in modelling propagating material interfaces.

2. MODELS FOR MULTISPECIES FLOW PROBLEMS

The following discussion in specialized, although not
lirnited, to two component flows in one space dimension.
We use p, 1, p, £, H=(E+ p)/p and a to denote density,
velocity, pressure, total energy, total enthalpy per unit mass,
and the speed of sound; / denotes the internal energy per
unit mass; C, and C, are the specific heats at constant
pressure/volume, respectively. In the case of ideal gases,
i= p/p(y— 1} and a’ = yp/p, where y is the ratio of specific
heats and is constant for each species. In this notation, the
single component Euler equations in conservation form are

p pu
pu | +1 pui+p) =0, {1
E/, pufl /.

where for ideal gases,

p=(—INE—3pu’) (2)
and v is constant. For later reference, we denote by W =
(p, pu, E)7 the vector of dependent flow variables and by
F(W) = (pu, pu* + p, puH)" the vector of flux functions.

The above set of conservation laws may also be written in
nonconservation form. In particular, if we use p, 1, and p as
dependent variables, the Euler equations in primitive form
are

P u p 0N\/p
uf+|0 wu p7"u) =0 (3)
p 0w u /\p/.

£

The two systems (1) and (3) are equivalent in smooth parts
of the flow, but they are generally not equivalent if shock
waves are formed. Indeed, beyond the time of shock
formation, solutions to (1) are extended as weak solutions,
using the conservation propertics of the system, while weak
solutions to (3) need to be defined first. Recently, a number
of papers have appeared concerning the theory of weak
solutions for genuinely nonconservative hyperbolic systems.
This theory is of special interest in applications where the
governing equations are genuinely nonconservative and for
which the existing theory has to be extended (see [9] and
references cited therein). The present paper deals with a
different aspect of solutions to nonconservative hyperbolic
systems. The equations of interest are the gas dynamics
equations. They derive from conservative principles and
thus possess weak solutions that are well defined and well
understood. For modelling purposes which are expiained
later, we prefer to convert the system into a nonconservative
form. The weak solutions we seek are still the ones dictated
by the conservation principle. Thus, the question we ask is
not what the correct weak solution of (3) is, but rather can
we use (3) and still obtain the weak solutions of (1).

We now discuss extensions of the single component Euler
model to the two-component case, where the two com-
ponents are assumed to be two ideal gases with different y
values. In the reactive case, where the gases differ in their
heat release constants, the extensions follow in complete
analogy [2]. A common approach in the computation of
two (or more) component flows [1, 11, 12, 207 is to define
the concentration of one of the species, say species one, to
be Y, describing the fraction of the mass due to species one.
The concentration of species two is, accordingly, 1 — Y. If
the species do not mix, then initially ¥ is a piecewise con-
stant function which is either 0 or 1 everywhere, where ¥ =1
(¥ =0) implies that the “mixture” is composed of species
one (two) only. Since the model assumes no chemical reac-
tion or diffusion, ¥ remains constant along streamlines,
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being passively convected by the fluid and satisfies the
species equation

Y, +uY. =0 (4)

Equation (4) may be combined with the continuity
equation (1}, to form a species conseration equation,

(pY), + (puY),=0.

The pressure of the mixture is still computed from (2) but y
now depends on the composition of the mixture

YC, 3+ (- Y) Cura
T Ty, ~(1-1)C,

(5)

In the non-mixing case, since analytically Y is either G or 1,
y is either y, or y,. Computationaily, numerical diffusion
induced by the numerical scheme will cause smearing in Y.
Intermediate values of 0 < ¥'< I then represent a mixture
of the gas components, which is also reflected in the
computation of y in (5).

Instead of using the mass fraction ¥, one may use the
quantity y itseif to identify the species. Like ¥, y is a state
variable which remains constant along streamlines; hence it
satisfies

},[ + II}IY = 0!

or in conservation form,

(Py)+ (puy), =0.

In this description, p is given by (2}, where y is locally com-
puted from the quotient y=(py)/(p). Since y is initially a
piecewise constant function, analytically it assumes either
the value y, or ¥, at all later times. Numerically, due to
diffusion, “numerical mixing” occurs, reflected by inter-
mediate values of y. In some cases, over/undershoots in y
profiles may also occur (1, 11, 127 (see also [2] for similar
phenomena in reactive flows).

In order to avoid “numerical mixing,” front-tracking
techniques may be used, If initially the species is separated
into well-defined regions, the material interfaces can then be
tracked at later times. At each point in the flow field, the
fluid component is identified and the physically correct
value of ¥ can be used. An elegant front-tracking technique,
based on the notion of function level sets, has recently been
proposed [13, 14] which is capable of handling com-
plicated topological merging and breaking. In [13], this
technique is applied to tracking propagating fronts in the
Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.
One defines a distance function, i, that measures the dis-
tance of a given fluid particle from the material interface.

Initially, iy = O at the interface itself and is either positive or
negative on either of its sides. Level sets of the function v
propagate at the local fluid velocity; hence they satisfy the
advection equation

Y, +uf, =0,
or in conservation form,
(p )+ (pfr) =0

The level set ¥ (x(¢), 1) =0 defines the propagating front at
all later times. The equation of state,

P =) —1(E—1o1°), (6)

now changes discontinuously across the front, separating
the species:

I 0
v(¢)={? v (7)

Y2, '10>0

We summarize below the four extended Euler models con-
sidered in this paper. The solution of a typical Riemann
problem for the extended models is illustrated in Fig. 1. The
following extended Euler system is referred to as Model I,

P pu
2
pu pu+p
=0, b
E * puH 8)
o puy J
"

contact surface

expansion fan

/ shock wave

-
X

FIG. 1. Solution of a typical Riemann problem for the two species
extended Euler models (8)(11): A forward facing shock wave followed
by a contact discontinuity separating the two flow components and a
backward facing rarefaction wave. Note that y changes only across the
material front.
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where p is calculated by (2). The lollowing extended Euler
system is referred to as Model 11,

P pu
3
o pu-+p
=0, 9
E + puH ®)
/. puy /.

where p and y are calculated from (6) and (7). The following
extended Euler system is referred to as Model ITI,

p u p 0\ /p
—1
u + O u p O u ~0 (10}
P 0 vp u Ofjp
/o \NO 0 0 wuf\y/,

with p given by (2). Finally, the following system is referred
to as Model 1V,

p u p 0 0\ /p
u 0 u p=t Ol u
n =0 (11)
P O w u Ofip
v/ N0 0 0w/,

with p and () computed from (6) and (7).

Consistency Correction Terms for Models IIT and IV

The primitive formulation (3) generally yields inconsis-
tent weak solutions due to conservation errors. In [10], we
showed that shock jump conditions of primitive systems
depend not only on the lelt and right states but also on the
viscous path connecting the two. Consistent weak solutions
can thus be obtained only if the equations are integrated
over a consistent viscous shock profile. In [10], we also
proposed a technique to modify primitive equations like (3)
to have weak solutions which are conststent with weak solu-
tions of (1} to the order of numerical approximation. The
modified equations include high order viscous correction
terms that account for the leading order conservation errors
and are derived following an idea first introduced in [22].
One begins by assuming that {1} 1s solved by a given conser-
vative scheme and that (3) is solved by a given primitive
scheme. One then compares the equivalent equation that
correspond to the conservative numerical scheme with that
corresponding to the primitive scheme and adds/subtracts
the necessary terms to make the latter identical to the
former. The details of the derivation are given in [10]. Here
we briefly consider one example and recall the resuits
derived in [107. We use the superscripts ( ) and ()* to
denote conservation and primitive forms, respectively.
Suppose the first-order upwind scheme [18] is used to
solve {1). Then the scheme is a first-order approximation to

(1) but it is a second-order épproximation to the equivalent
equation,
W{ + F(W)x = WI + AC(W) Wx

(AN} o

2 A

where A= At/4x denotes the mesh ratio. The terms on the
right-hand side (RHS) of (12) are the leading order terms in
the truncation error of the scheme. To leading order, these
dissipative terms determine the viscous path across the
numerical shock transition. Furthermore, this viscous path is
(numerically ) consistent since itis produced by aconservative
scheme; hence it converges to the correct solution. Assume
that (3} is also approximated by the first-order upwind
scheme. Then, similarly, the scheme is a second-order
approximation to the equivalent equation,

(471 W),

W,+A"(W)WY=£( P

5 W,,). (13)

In general, the two viscous forms (12) and (13) are
different; (13} yields physically consistent shocks while (12)
does not. Let T=2W/3W be the matrix transforming the
con-erved variables W to the primitive variables W. Then,
in order to enforce consistent viscous shock profiles on the
primitive solution, the difference

At Al (ATW) N (AW,
o (M) (L8 )

is added to the RHS of Eq.(3). When the modified
equation,
~ At
W+ 47 (W)W, = =D,

is solved by the first-order upwind scheme, it now possesses
viscous shock profiles which are consistent with the order of
numerical approximation. The correction terms may be
simplified,

_TT Y 4 W,

D
A

nr'),w, (14)

and simple algebra shows that

0

1 PrtizC1 + alzu.—,P:ch + (Eui + pLﬂP:P:) Cq
o 3 — dpru;

g~ 1 {pulcs + Sucpeca
2 ( ) - 204

(15)



MULTICOMPONENT FLOW CALCULATIONS 35

where

c;=lu—al+2ul+|ju+a
c;=|u—al —2|ul+ |u+aq
cy=|u—al+|u+al

co=\|u—al—|u+al

By (15}, D contains only products of first derivatives. If time
derivatives are replaced by space derivatives using (3), it can
be easily verified that all the products in D contain either «,
or p, {or both), hence D vanishes near contact surfaces.
We shall return to this observation when we analyze the
modelling of material fronts. Models IIT and IV refer to the
primitive formulations (10) and (11) with (15) included on
the RHS. No correction 1s needed for the fourth component
in the respective models.

3. SIMPLE WAVE ANALYSIS

Models [ and IT

Because of the similarity between Models [ and IT, the
Jacobian matrices and the corresponding eigenvectors also
have very similar forms, We adopt the notation in [137] and
use the common letter ¢ to denote y in the case of Model I
and y in the case of Model Il. We also use X to denote the
specific internal energy { in Model I and #'(¥) in Model 1L

In this common notation, the Jacobain matrix for
Models I and I1is [6, 7, 9]

0 1 0 0
y—3
5w —¢X G-y -1 X
A=y
Tuj—uﬂ—ucﬁX H-(y—tu®>  yu  uX
—¢ ¢ 0 u
The eigenvectors and eigenvalues of A are
1 1
. u—a I
! H-—-ua i i
¢ ¢
a
1
0 +a
14
A o B (16)
y—-1 y
1

Ai=u—ag

Ay=u

. {17)
Ay=U

/:4:1«[“'0'.

In the above, the first and fourth wave systems are acoustic
waves, the second and third wave systems are entropy
waves. The system has a degeneracy in that the velocity u is
a double eigenvalue, and consequently the associate
cigenspace is spanned by two independent eigenvectors r,
and r;. Obviously, any combination of r, and r, is also an
gigenvector in that subspace. The above choice of r, and r,
separates between entropy changes due to a change in v and
entropy changes due to a change in temperature {density).
The only wave system that carries changes in y itself is
thus r;.

Small changes in the solution are determined by the
eigenstructure of the matrix. So, for example, all four
dependent flow variable, W = (p, pu, E, p#)T change across
an acoustic wave eventhough ¢ itself remains constant (this
is not necessarily true if a more complex equation of state is
used, see [3]). Similarly, across a contact surface, all four
dependent flow variable change, even though v and p
remain constant.

If a local flow fluctuation W =W . — W, is projected
onto the characteristic fields r,,

AW=Z Cckl'k,
k
then the local wave strengths «, are given by
= Ap — pa Au
242
= a’dp—dp
2T
’ (18)

oy =p A¢
o Ap+ pa du
A 202 7

Models IIT and IV

Here again we introduce a common notation ¢ to denote
y in model Iii and  in Model IV. In this notation the
cigenvectors of systems ITl and 1V are

p (p
—a 0
r = pa2 H] = 0 »
0 0
(19)
0 P
0 a
r;= ol r,= pd?
1 0
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with eigenvalues as given in (17). In the above, the first and
fourth wave systems are acoustic waves while the second
and third are entropy waves. The choice of r, and r, clearly
separates between entropy changes caused by temperature
changes and those caused by changes in v. Moreover, the
above eigenstructure does reflect the fact that ¢ does not
change across an acoustic front and that v and p remain
constant across an entropy wave (respective entrics in
eigenvectors are zero). This observation is crucial for the
proposed numerical algorithm and is explained in the
sections that follow. Wave strengths o, for small changes in
the solution are

_Ap—padu -
T 2pa?
a’Ap—Ap
t!.zi—T“
g (20)
ay=Adg
_Ap+padu
T 2pa®

4. RIEMANN SOLVER

The first two flow models are solved by an approximate
Riemann solver of Roe type [15, 16, 187, based on local
linearization of the governing equations about an average
state. The single gas component Roe’s scheme has been
extended to the multicomponent gas models by various
authors [1,2,11-13,17,20]. We describe the method
briefly and recall the results of its multicomponent exten-
sions. At each cell interface, the method seeks a local
linearization of the Jacobian matrix A(W)= A(W,, Wp),
where W, and W are the left and right states in the local
Riemann data, so that the following condition is satisfied,

AW, , W) AW =AF.

The single component Roe averages were obtained by
requiring that the local linearization satisfies [ 187,

AW =3 a,r,
¥ (21)
AF=Z ka/lkr,“

L3

with &, 4;, and r, given by (16)-(18). This umquely defines
the average state

PY=NPLPR
u*=\/ZuL+\/p_R“R
NN

H*:VPLH1.+ prHyg

NPLYA PR
1
at’=(y— 1)(1{*—5#).

Roe's Linearization for Model [

The average state is derived following a similar procedure
to the one in [1, 117]. The resuits are reported in [17] (see
also [2] for a similar derivation for reactive flows) and are
summarized below. In this model X' =i One sceks a iocal
linearization

1 1
. u* —a* . u*
I = H*uu"‘a* ] r= lu*z ]
¢* ¢*
0 1
0
. " . u*+a*
r;= I R T, =
f : 4 H* + y*a*
7*—1 o
1
. . dp—p*a* Au
Al=u*-a*, al:p—zp*z—_
I}
p a*?dp—4
ﬂz—u*, d2=_‘_22_£
a
j‘q"u*, &3=p*d¢
- . Ap+ p*a* Au
Ay=u*+a*, %=—F—-

that satisfy (21). Solving for the average state we obtain

p*=pLPr

_ Priy+~/Priig
PL"‘\/P_R

H*:\/F)_LHL+\/[)_RHR

\/.O_L"‘ Pr

i — Pric+/Prin
\/p_f—'i' Pr

Y*=\/.0_L'VL+ Pr¥r

p.[.+\/—.‘;;

a*2=(y*¥l)(H*—%u2).

u*

(22)

Observe that since », H, and 7 are linearized independently,
then in general i*#a*?/y*(y*—1), implying that the
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linearization is about a physically inconsistent average
state. For conservation, the linearized sound speed must be
worked out from H* in order to satisfy (17).

Roe’s Linearization for Model IT

For this model, X=#"(y) and y(y) is a step function.
The derivative y'(}} thus involves the d(i —0) function
which must be approximated numerically in the process
of obtaining local flow averages. The full details of this
derivation are given in [13]. Here we briefly summarize the
results. The required average state is

p*=/0LPx
u*:\/p_LuL+ Prlg
NEW T
H*=\/9_LHL*\/ZHR
NN
lll*:\/ﬁ_.r_ﬁbfu‘f'\/;;w.a
NN

a*? = (y — 1)(H*—%u*2).

An additional condition is that X * satisfies

X*p*Aw=Ap—(v*—1)A;p~1

which is used to determine X'* in terms of y*,

Ap—(y*— 1) dp/(y—1)
p* Ay )

X*= (23)

Equation (23) places a differential condition on p* which
cannot be satisfied (for details see [ 13]); hence an arbitrary
choice is made for y*,

(W= )ye+ (W—WR)VL.

W)= -

(24)

Then we use y* =v(yr*), where ¢* is given above, Here
again, conditions (21} are not satisfied consistently.

Local Linearization of Models ITI and I'V

Models III and IV are also solved by a Roe-type solver
based on a local linearization of the governing equations
about an average state. Since the models are not conser-
vative, the linearized equations are not used to construct a
Godunav-type Riemann solver [5]. Instead, the fluctuation
and signal framework [16] is used to integrate the equa-

tions. Because of the fundamental lack of conservation,
there does not seem to be a theoretical justification to use
the elaborate averages (22). In the calculation below, simple
arithmetic averages are used,

p*zmi;pk

(-5

The correction terms use point values of flow variables and
centered differencing for the derivatives. We note that in
[21], the elaborate averages (22) were reported to be
superior.

5. NUMERICAL INTERFACE MODELLING

The oscillations near the material front may be explained
by a fundamental incompatibility between the conservative
simple wave models (i.e., eigenvectors) of (8) and (9) and
material interface data. Indeed, any smearing that occurs
in the comserved variables, due to numerical diffusion,
immediately generates pressure fluctuations across the
material front. These oscillations are totally erroneous; once
generated they subsequently contaminate the flow field.
Consider Riemann data that correspond to a propagating
material front, with p, = pr and u; =u,. In what follows
we show that as soon as the pressure is computed from
numerically smeared profiles of the conserved quantities, its
computed value, which should remain p= p, = pg, has an
error dp proportional to the jump in the-data, A, raised to
some power s (see Fig. 2). The erroneous pressure waves
dp = O(A)’ then infiltrate the density and velocity fields. We
now show that for Model I, s =2, and for Model 11, 5 =1,
which explains why oscillations are much more visible in the
latter case. We also show that for Models [Il and TV, dp =0;
that is, material {ronts are computed exactly, even though
the governing equations are not in conservation form (see
also [ 8] for related discussion). Finally, we show that in the
single component conservative model, dp=0; that is the
probiem of erroneous pressure fluctuations due to numeri-
cal diffusion does not exist inn the single-component Euler
model (1)
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o 0-Q Q-0 o
N
\ Q
A \
\ \
density o 0—0 O O— -
oo q © -G o
\ : Q
\ \
\ 5
energy o 0- 0 G- -0- -
2l
RN
G O-06 0 ©—-0© -0- - & -9 -

pressure

FIG. 2. A pressure fluctuation dp = O(4) causes erroneous pressure
witves near material interface, when pressure is computed from smeared
profiles of conserved flow variables. The fluctuation subsequently infiltrates
other flow variables and contaminates solution.

Model I

Consider the computational interval (j—1,j) and
assume that the initial data correspond to a stimple material
interface (no density gradient),

PrL=PpPr=p
PrL=pPr=p
(u>0)

H;=Ur=U
YL#EVr

In the exact solution, p, 1, and p remain constant and y is
(linearly) advected downstream at a constant speed u, ie.,
yix, ty=v{x —ur, 0).

For the above data o, =a,=0a,=0. Since we assume
u >0, the first-order upwind scheme gives

ar
W}"” :ngza_q, A3l'3

and by r; in (16), this yields changes in £, and (py), only.
The newly computed conserved variables are

F

P =p;

(pr)7 ' = (pu);
. {25)
At —i*
a+1l _ pn
E7™ —Ej—zu*p*?*hldy
At

(v); ' = (py)] —Ruet Ay

and, by (25), ., ;' =p/=p and 7' =u] =u Also by
(25)q,

At
yitt =yl ———u* 4y

Ax (26)

Observe that for the above data, the density square root

averaging (22) gives p* = p, u* =u, and

Tt
2

. P 1 1 )
i*=— + .
2p(wL—1 Ye—1

The new value of p is obtained using the equation of
state (2),

(27)

1
p}a-rl=(}/.;1+1__1)<E;+1_5(pu2)}z+1)
At At i* 1
= [ ;] — n i A - 2
(yj Axud} 1)(EJ-i—Axu,on)’*_1 ¥ 2pu)
= 1 Atud E" ! 2+Alu A A)
T\TRT TN Ty e e T A

1 At i
=(yr—1) (EJ" “5 (Puz)) HA_x u (Ej" ~3 puz) Ay

i*

At
+——up (yg—1) Ay

dx p*—1

T &
—_ — A 2
(Axu) p},*_l( ¥)

=p+dp.

After rearrangement, using (26) and (27), the error terms of
order 4y cancel out and we obtain

Ar At P
5 =u*———(1—u*——)-————— A
P\ T ) G g Y

For a stable scheme, u* (4t/dx) < 1, and thus dp = O(4y)?
is always positive. This erroneous pressure fluctuation can-
cels out at later time steps, as soon as a velocity divergence
arises to balance it. This velocity divergence can clearly
be seen in Figs.3 and 4, and also in the figures in
Refs. ['1, 11, 127]. The velocity increases in the downstream
direction and decreases in the upstream direction.

Model [T

For the same initial data, expressed in terms of the
distance function ¥,
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the only nonzero wave strength in (18) is a5, which again
yields changes in E;, and (py), only. In analogy with

Model 1, we obtain p"“—p =p and u]* i =ul=u We

also obtain

At X*
Err+l_En+_ A

TP v

At
l}'}'“=l,b;-’——u* Ad’:

Ax

where we recall that p*=p, u*=uwu, and that by (19)
and (20),

dp—(* -1} 4(p/(y—1))

= pr Ay
¥ =}’(‘,[1*)= (!lf*—l!fL)‘;RHti’* —Yr)vs
PR/ T NI TR AT
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The newly computed £ becomes

At p
EtisE'——ud|{—+—
’ B2 (?-1)

g At 1 1
= A 7 |
7T ax P\ m1 T

and the new pressure is

P =00 = DB =S e
= GW;) 1)

At ! ! 1
. pp— I S 2
x{ ! Axup(vg—l }u.—l} 2pu)

=(yyr+')—=1)
x{ p 4t p( 1 )}
Yr— 1L C4x yr—1 y.~1

Here we need to distinguish between two possible cases. If
u(di/Ax) is such that $7+' >0, then y(¥7*') =y, and
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At 1 1
n+1_ _1 Li_ o
oL ){h—l Ax (?Rgl vz.—l)}
At Yr—1
=p—— A
P A-’fup( }’L"])
At
-+ aen(E)

If u(4t/Ax) is such that Y7+ ' <0, then y(7 ') =y5 and

— 1){ p At p( 1 1 )}
_ _ _
T ye—1 Ax ye—1 y,—1
N At (=1
_(h—l)p Axup(m—l l)
p

1__
VR_I( Ax U)[?]

In either situation, 6, =0[y], where [y]=y,—7. is the
jump in the v values of the two gas components. Note that
this is different from Av which denotes the partial jump in y
in the diffused y profile. Also note that 4y which denotes the
partial jump in ¥ in the diffused y profile. Also note that Ay
is generally smaller in magnitude. Model Il thus generates
erroneous pressure waves §p which are an order of
magnitude larger than Model I. Note also that §p does not
have a definite sign (it has opposite signs in the respective
cases); hence it creates both over/undershoots in the
pressure field and, consequently, in the rest of the flow
variables.

=p—

Models IIT and IV

For the same Riemann problem, the only nonzero wave
strength is again a5, except that this time the only flow
quantity that changes is ¢, while dp, dp, and du are identi-
cally zero, as in the exact solution. The newly computed ¢
value, which is either y or i, is

t
— u* A,
Axu ¢

41 =4;
Since the propagation speed u* = u 15 exact, the numerical
scheme is in fact exact. Equations (10), (11), although non-
conservative, reduce to finear advection of ¢; thus they
become exact near the material interface and no conserva-
tion errors are committed. The same is true for data corre-
sponding to an eniropy wave caused by a temperature
gradient (6 W oc r,). In this case, the governing equations
reduce to linear advection of p at the physically correct
speed ». We also note that the viscous perturbations {15) do
not play any role near contact surfaces, since all the terms
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in (15) contain either velocity gradients or pressure
gradients {or both); hence they vanish. This is expected
since the inviscid model is exact.

The Single Component Fuler Model

To analyze the single component case, we use Model I,
but we ignore its fourth component which becomes
redundant if y, =y,. The contact surface we consider
corresponds to a temperature discontinuity, with data
Pr=Pgr. iy =g, but p, #pg. The only nonzero wave
strength is a,=Ap, yielding changes in all three flow
variables,

p;l+1 P;' 1
n+l | _ n _
(pu;n)i— L (puu)J i Ax lu2 ’
Ej Ej FU
p;+0op
dp=| (pu)! + 6(pu) (28)
E}+0E
The newly computed pressure is
1 r_?+l 2
)

Using p -+ dp to denote the new density and, similarly,
Pt =p+dp, (pu)!*'=pu+d(pu), and E}*' = E+ 6,
we obtain

(p+op)p+dpr=(y—1)
x [(E+8E)p +dp)— 3 (pu+ 8(pu))*]
=(y—~ DI(E—3pu’)p +(E~5pu*) 3p]
=(y— DUE—3pu°)p +dp)]

= plp + dp), (30

where we have used (28) to express all the fluctuations in
terms of density fluctuations dp, namely, (pu) = (1) p and
SE=(3u”) ép.

We thus obtain that dp = 0 and the problem of erroneous
pressure fluctuations does not exist in the single component
gas model. It arises only when the contact surface separates
materials of different chemical types.

6. NUMERICAL TESTS

We consider the Sod’s shock-tube problem [197], with
two different ideal gases, The initial data give the Riemann
problem

density
pressure

°o o o
=
T

19
T

0 50 100 0 50 130

gaming
—
L
T

4] 30 106 0 50 100

FIG. 3. Computation with Model I by a first-order upwind scheme.

p; =10, pr=0125
1, =00, up=00
=10, pr=0.1
vy, =14, yr= 1.2

The same problem has been considered by Larrouturou and
Fezoui [12] and by Abgrall in [1]. The results shown are
obtained by the extended Roe’s approximate Riemann
solver for first- and second-order upwind schemes.
Figures 3-4 show results obtained by Model I. A dip in the
density profile is clearly visible just ahead of the material
interface. We also observe a nonphysical step in the velocity
across the contact surface, the velocity being higher ahead
of the contact and lower behind it. This is in “agreement”
with the analysis showing that the erroneous pressure
fluctuations dp are always positive. This generates acoustic
waves which travel in both up/downstream directions,
yielding a veiocity increase downstream and a velocity

1 T 1

0.8 0.8}
=06 5 0.61
é 04 g ost
02 - 0.2}
C'0 50 100 00 50 100
1 1.45
0.8 4 1
%‘ 0.8 - g
¢ 0.4 1 & |
0.2 1 4
00 sb 100 "o sb 100

FIG. 4. Computation with Model I by a second-order upwind scheme.
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FI1G. 5. Computation with Model II by a first-order upwind scheme.

decrease upstream (Fig. 3). The pressure field itself
maintains a reasonably uniform profile across the contact
surface. Computations with a second-order upwind scheme
tend to improve results but a “hicc up” in the solution is still
visible near the contact. Similar observations were also
made in Refs. [1, 11, 127].

Figures 5-6 show results obtained by Model I1. Both
first- and second-order calculations are contaminated by
strong oscillations in ail flow variables. The randomness in
fluctuation patterns agrees with dp not having a definite
sign. The only variable that is not contaminated by oscilla-
tions i the distance function , possibly due to “in phase”
oscillations of the variables p and pg. Going to higher order
schemes tend to reduce the amplitude of the oscillations, but
they are still very visible (Fig, 6).

Figure 7 is obtained by Model IIL. The oscillations in all

FIG. 7. Computation with Model I11 by a second-order upwind scheme.

flow variables are completely eliminated, as predicted by the
simple wave analysis. Conservation errors, although not
totally removed, are of an acceptably low level. The reader
is referred to Ref. [10] for an extensive numerical study of
the level of conservation errors and the range of validity of
the proposed scheme. Results obtained by Model IV
(Fig. 8) are very similar to the ones obtained by Model IIL
This indicates that, at least for this problem, allowing 7 to
diffuse (Model ITI) has only a negligible effect on the
computed solution, over using the piecewise constant y
values (Model IV}

Convergence Tests

The spurious velocity divergence in Fig. 3 is alarming and
calls for numerical convergence tests to determine if the
error decreases and how fast. To study this, we conducted a

I 1 l— 1
0.8 08F ng 038
=06 v G6F =06 2 06
2 2 G 2
b 2 = a
5 0.4 E. Qaf B 0.4 g 04
02 0_2} 0.2 02
Y : 0 0 . 0 y
0 50 100 Q 0 50 100 ¢ 50 10G
second order upwind’ second order upwind second order upwind second order upwind
1.5 — 0.5 1y T Q0.5
08
- L 1 P
Z . zos6 -
=l ‘3 i 7 S & 1
20 1= 904
0.2
0 — 0.5 s . ‘ .
0 50 100 0 50 160 GlIl 50 100 o 50 50 100

FIG. 6. Computation
scheme,

with Model Il by a second-order upwind

FIG. 8.
scheme.

Computation with Model [V by a second-order upwind
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sequence of computations on increasingly fine meshes. For
convenience of comparison, the results are superimposed
and a close-up of the solution profiles near the material
interface is shown in Figs. 9 (first-order upwind scheme)
and Fig. 10 (second-order upwind scheme). They suggest
two things:

{a} The nonphysical velocity jump across the contact
tends to decrease with mesh refinement. The rate of

decrease, however, is extremely slow. Even without a close
inspection, a jump in velocity is still visible on the finest
1600-point mesh calculation.

(b} The undershoot in p does not vanish even on the
finest mesh. While the first-order calculations (Fig. 9) seem
stable near the contact surface, the second-order calcula-
tions (Fig. 10) clearly show an instability as the oscillation
grows with mesh refinement.

velocity
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FIG. 9. Convergence test with Model I by a first-order upwind scheme: (a) velocity profile; (b) pressure profile.
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FIG. 10. Convergence test with Model [ by a second-order upwind scheme: density profile.
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