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ABSTRACT 

The governing equations describing multiphase flow with multicomponent solute transport 
may be cast in a number of forms. While mathematically equivalent, the numerical models 
based on each formulation differ in flexibility and efficiency. The set-iterative compositional 
formulation, a mathematical formulation that separates the solution of the phase-balance 
equations from the species balance is described herein. A mathematical model based on this 
formulation describes the flow of two mobile phases. Each phase may transport multiple 
chemical components. Mass exchange between phases is expressed by a linear kinetic equa- 
tion. The numerical model based on the set-iterative compositional formulation is shown to 
model non-equilibrium phase partitioning, to provide a flexible framework that may be applied 
to organic mixtures with differing numbers of components and to yield a more efficient solution 
in comparison with models arising from standard compositional formulations. 

INTRODUCTION 

Remediation of groundwater systems contaminated by organic chemicals 
has become a national priority due to the potentially adverse health effects of 
these pollutants and to their widespread use. Tools employed in the study of 
the movement and fate of  non-aqueous-phase organic liquids include math- 
ematical models. Mathematical simulations allow researchers to test hypo- 
theses, and may lead to a greater understanding of the phenomena governing 
multiphase flow and transport. Often the mathematical equations describing 
flow of phases and transport of components within a phase must be solved 
numerically. In this case, the mathematical formulation of the governing 
equations greatly influences the efficiency and accuracy of the final 
numerical model. 

A number of numerical models have been developed to simulate multiphase 
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flow with mass transport in the subsurface. The objectives of this paper are to 
introduce a numerical model that addresses problems identified with previous 
modeling efforts, to examine the mathematical formulation of the numerical 
model and to discuss the performance of the model for several test problems. 
The presented numerical model is based upon a computationally decoupled 
formulation of the governing equations and is referred to herein as the set- 
iterative compositional formulation. Other formulations of the governing 
equations, which have appeared in .the literature, are described and compared 
with the set-iterative compositional model in terms of model flexibility, ease of 
implementation and efficiency. 

BACKGROUND 

A rigorous mathematical description of multiphase flow in the subsurface is 
based upon mass-balance equations for each component present in the sys- 
tem. The mass-balance equation for a species i in a phase c~ may be written as 
(Hassanizadeh and Gray, 1979): 

0 
o-St + + = + (1) 

where i = species (i --- 1, ..., Ns; with Ns = number of species in the o~ phase); 
p~ = density of the a phase [M L-3]; e~ = volume fraction of the a phase 
(dimensionless); wE = mass fraction of species i in the a phase (dimension- 
less); v ~ = velocity of the a phase [L T-l]; ~ / =  non-advective flux of species i 
in the a phase [M T -1 L-Z]; E ~ / z  source term arising from mass exchange 
between phases [M T -1 L-3]; and a s = external source of phase a [M T -~ 
L-3].  

The first term in this expression represents the accumulation of component i 
in the c~ phase. Advective transport of i is described by the second term. The 
third term accounts for the transport of i in the c~ phase due to non-advective 
mechanisms. The right-hand side of Eq. 1 accounts for component mass 
change in the o~ phase due to mass exchange with the other phases present 
in the system and the gain or loss of mass in the c~ phase due to external 
sources and sinks. 

Darcy's law, modified to account for multiphase flow, is generally used to 
express the phase velocity as a function of phase pressure and elevation head 
(Bear, 1972): 

In this equation, k = intrinsic permeability tensor of the porous medium [L2]; 
krc ~ = relative permeability of the c~ phase (dimensionless); # ~ =  dynamic 
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viscosity of the a phase [M L -1 T-l]; P~ = pressure of the a phase [M L -1 
T-2]; and g = gravity acceleration vector [L T-2]. 

The non-advective flux of a species in a given phase is represented by a 
Fickian form (Bear, 1972): 

= - p  caD i ~0.)  i (3) 

For a one-dimensional domain, D~ may be expressed as: 

D~ = omae+ a '~ l¢ l  (4) 

while in two or three dimensions, for an isotropic medium, D~ becomes: 

o~ Gt 

D~ = O mae+ a t  lv'~li~mn + (a~ - a t )  v , , v ,  
iv l (5) 

where D mc~e= effective molecular diffusion coefficient [L 2 T 1]; am= 
dispersivity of the c~ phase [L]; a~ = longitudinal dispersivity of the ct phase 
[L]; at  = transverse dispersivity of the c~ phase [L]; ~mn = Kronecker delta; 
V~n = magnitude of velocity of the c~ phase in the m direction [L T-l]; and 
Iv l = magnitude of the velocity of the c~ phase [L T-l]. 

An important constitutive relationship that is used to close the equation set 
for all multiphase flow models is the relationship between capillary pressure, 
which is defined as the pressure difference between two contiguous fluids, and 
fluid saturation. Although this relationship may exhibit hysteresis, for simpli- 
city, the formulations described in this paper use a single-valued capillary 
pressure-saturation function. A constitutive expression is also required to 
describe relative permeability. A number of models have been developed 
that predict the relationship between saturation and relative permeability 
based upon capillary pressure-saturation information (Mualem, 1976; van 
Genuchten, 1980; Parker et al., 1987b). The particular forms used for these 
constitutive relationships in the simulations described herein are summarized 
in Appendices A-C.  

Another important aspect of multiphase, multicomponent transport mod- 
els is the exchange of mass between phases. This mass exchange is generally 
assumed to have no effect on the physical properties of the water phase. An 
organic or gas phase, however, is usually modeled with properties dependent 
on phase composition. The correlations used to estimate phase properties from 
composition are described by Abriola and Pinder (1985a), and Kaluarachchi 
and Parker (1990). The actual mass exchange may be modeled by assuming 
local equilibrium or by employing a mass-transfer expression. If local equi- 
librium between the phases is assumed the following relationships hold: 

a..,~ = K~i ~a.,~ (6) 
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where/~/J~ = equilibrium coefficient between the (~ and/3 phases (dimension- 
less). 

The equilibrium coefficients may be calculated using solubility and vapor 
pressure data. 

Kinetically controlled mass exchange between phases is often described by a 
simple linear driving force expression in the form (Treybal, 1980): 

~ = ~79(~" _ ~ )  (7) 

where ~7' = mass fraction of species i in the o~ phase that is in equilibrium 
with the mass fracUon of i m the/3 phase; and k i = lumped mass-exchange 
coefficient [M Y -1 L-S]. 

The lumped mass-exchange coefficient is a function of the fluids, the 
velocity of the fluids, the exchanging species and the interfacial area available 
for exchange. Both the available interfacial area and the fluid velocities are 
strong functions of the porous-medium characteristics. The potential impor- 
tance of rate-limited mass exchange between entrapped non-aqueous-phase 
liquids and water in the subsurface has been explored by many researchers 
(see, e.g., Powers et al., 1991, 1992; Brusseau, 1992). 

In addition to these basic governing equations, several constraints are 
imposed on the system by definition: 

N~ 

i=1 

S O + S w + Sg = 1 (9) 

where So, s w, Sg = fluid saturation of the organic, water and gas phase, 
respectively. 

The total mass gained or lost by a phase due to mass exchange with other 
phases may be expressed as: 

N~ 
(lO) 

i=1 

If the species are not transformed by chemical reaction or biodegradation, 
each species is conserved over the system: 

up 
E E ~ i  : 0  (11) 
c~=l 

where Np = the number of phases present. 
The governing equations (Eqs. 1-11) describing multiphase flow with 

multicomponent transport are coupled non-linear partial differential 
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equations that do not admit general analytical solution. The efficiency and 
accuracy of numerical approximations to these governing equations are 
strongly influenced by the selected formulation. Three formulations that 
have been presented in the literature are reviewed below. All formulations 
include constitutive relationships, partitioning relationships, mass exchange, 
and Darcy's and Fick's laws as described above. For each formulation any 
appropriate numerical technique may be applied to approximate the govern- 
ing equations. Each formulation, however, results in a different iterative 
procedure for solution of the discretized equations. 

Simultaneous formulation 

In a simultaneous formulation, governing equations relating the capillary 
pressure between the fluids, the fluid saturations, and the mass fraction of 
components within each phase are described through a single set of equations. 
Within the equation set, the capillary pressure and mass fractions are used as 
the primary variables. Fluid saturation is expressed as a function of capillary 
pressure through a constitutive relationship. Thus, saturation, capillary 
pressure and mass fraction are approximated simultaneously. The simul- 
taneous formulation may be the most computationally burdensome of the 
formulations discussed since all variables are approximated in a single step. 
Examples of the simultaneous solution method may be found in Abriola and 
Pinder (1985a, b), and Sleep and Sykes (1990). Abriola (1984) used this type of 
formulation to describe the motion of two mobile phases in the subsurface. A 
two-component organic phase is modeled. One component is allowed to 
partition and be transported in the water and (static) air phases. Three 
governing partial differential equations were used to describe the system: a 
water-phase mass balance, a species mass balance on the inert organic com- 
ponent and a species mass balance on the volatile organic component. Results 
from this model will be used in the following sections as representative of the 
simultaneous approach. 

Adaptive IMPES formulation 

One modification to the simultaneous formulation arises when the coupling 
between the fluid saturations and capillary pressures is lagged by one solution 
step. In the implicit pressure-explicit saturation (IMPES) formulation, the 
general balance equations are combined to eliminate the saturation 
unknowns via Eq. 10. The assumption that the capillary pressure between 
the phases remains constant over a time step allows the equations to be 
written in terms of one unknown phase pressure. After this pressure is deter- 
mined, one of the phase mass-balance equations may then be used to explicitly 
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determine the phase saturation. Once the new phase saturation is determined, 
the capillary pressure between the phases is updated through the use of the 
appropriate constitutive relationship. While this formulation yields a small 
matrix problem for the pressure and an efficient explicit determination of the 
secondary unknowns, its efficiency may be limited by convergence behavior 
that restricts the model to small time steps (Forsyth and Sammon, 1986). 

To take advantage of the efficiency of the IMPES formulation while retain- 
ing the stability of the simultaneous formulation, Forsyth and Sammon (1986) 
propose an adaptive implicit procedure. The governing equations are solved 
in a simultaneous fashion in regions of the domain where the IMPES form 
would be unstable. The efficient IMPES method is used in the remainder of 
the domain. The method is developed for a three-phase "black-oil" simulator 
(Forsyth and Sammon, 1986), and is extended by Forsyth (1988) to a two- 
mobile-phase compositional model. This formulation only considers a single- 
component organic phase, but the computational advantages offered by this 
approach warrant its description herein. The basic governing equations 
resemble those derived by Abriola (1984). The criteria used to determine if 
a block may be considered an IMPES block and the manner in which the 
Jacobian matrix is evaluated are described by Forsyth and Sammon (1986), 
and the impact of mass exchange on stability is evaluated by Forsyth (1988). 
Forsyth (1988) determined that once mass is allowed to exchange between 
phases, most of the cell blocks require simultaneous solution. In addition to 
the adaptive implicit approach, a variable substitution technique is implemen- 
ted into the numerical model to allow for a zero saturation of the organic 
phase (Forsyth, 1988). The variable substitution circumvents the requirement 
of the simultaneous formulations that the organic phase must exist through- 
out the domain and prevents smearing of the organic-phase saturation front 
arising from the introduction of an artificial amount of organic in the domain. 

One disadvantage of the formulations presented above is that the number of 
species comprising the organic phase in each formulation is fixed. While these 
formulations may be extended to consider multicomponent mixtures, such a 
procedure might not produce a practical model. The equation set resulting 
from a simultaneous formulation becomes quite large, and the resulting 
numerical model will be computationally expensive. The adaptive IMPES 
formulation works well for a single-component organic, but as more 
components are introduced to the problem, additional mass-balance 
equations must be written for each component. Thus, the total number of 
unknowns increases and the efficiency resulting from the IMPES procedure 
is reduced. Again the equation set becomes large, leading to a computationally 
expensive model. Additionally, for many interacting components, 
general algorithms for the variable substitution procedure may be difficult to 
formulate. 
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Computationally decoupled formulation 

An alternative formulation may be developed if equations describing the 
movement of the bulk phases are separated from those describing the trans- 
port of components within the phases. This formulation produces two sets of 
non-linear partial differential equations. These sets are weakly coupled by 
compositionally dependent fluid properties and by mass-exchange terms. In 
general, an iterative scheme is required to account for this coupling between 
equation sets. This type of formulation may be called a computationally 
decoupled formulation (Kaluarachchi and Parker, 1990). In the hydrology 
literature, models based on a computationally decoupled formulation were 
proposed by Falta and Javendel (1987), Parker et al. (1987a), and Reeves and 
Abriola (1988). Kaluarachchi and Parker (1990), and Katyal et al. (1991) 
presented modified versions of the model proposed earlier by Parker et al. 
(1987a). Ryan and Cohen (1991) also used a computationally decoupled 
formulation for a one-dimensional front-tracking algorithm. The formula- 
tion presented in this paper may also be classified as a computationally 
decoupled formulation. 

In general, a computationalty decoupled formulation offers advantages in 
terms of model flexibility, as any number of components may be studied 
without changing the solution of the phase-balance equations or the solution 
approach for the species-balance equations. For equivalent problems, a com- 
putationally decoupled formulation is expected to be more efficient than a 
simultaneous formulation due to the solution of smaller matrix problems. 
Unfortunately, the most straightforward iterative scheme proposed for a 
computationally decoupled model introduces error into the solution of the 
equations. The sources of these errors are described in more detail in the 
following section. Two remedies for the numerical difficulties may be 
proposed: modification of the iterative solution technique (Kaluarachchi 
and Parker, 1990) and reformulation of the species-balance equations. This 
second approach is the foundation for the set-iterative model, and is 
developed in detail below. 

MODEL F O R M U L A T I O N  

The set-iterative compositional model presented in this paper is a com- 
putationally decoupled approach based on two-sets of non-linear partial 
differential equations subject to appropriate initial and boundary con- 
ditions. The first set of equations describes the phase mass balance of two 
mobile phases in the subsurface, and is obtained by summing the general 
mass-balance equation (1) over the species present. Due to the mass fraction 
constraint (8), the mass fractions of the unknowns are eliminated from the 
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mass-balance equations in this summation. Darcy's law (2) may be substituted 
into the equations, and the equations may be written in terms of capillary 
pressure between the phases to yield: 

[ Os~ OPow Os~ OPwg ] OP a 0 
n i-OPo---- w Of ~- ~ -~  -J + ns~13~ ~ + Sc~rl~m --~ Pave 

E ~ ns~ Op ~ O~ 
c~ = o, w or g (12) 

p~ p~ O ~ O t '  

where n = porosity of matrix (dimensionless); Pave = average fluid pressure in 
the pore space [M L -1 T-z];/~c~ ~- compressibility of the c~ phase [L T 2 M-I]; 
and/3 m = compressibility of the matrix [L T 2 M -I] . 

In this paper, a two-mobile-phase formulation is used as the basis for a 
numerical model. This formulation fully describes a two-phase flow system 
such as the infiltration of an organic liquid into the saturated zone. For 
systems with more than two fluids, the application of two fluid-phase balance 
equations implies that some of the phases are either immobile or offer no 
inertial resistance to phase motion. The latter assumption is often applied 
to the soil-gas phase, since the viscosity of the gas phase is much smaller 
than the viscosity of a liquid phase (Abriola and Pinder, 1985a, b; 
Kaluarachchi and Parker, 1990). Thus, the ability to simulate the advective 
transport of volatile organic components in the gas phase is lost by this 
approach. Alternatively, one of the liquids in a three-phase regime may be 
treated as immobile. Sleep and Sykes (1990), Ryan and Cohen (1991), and 
Reeves (1993) used a two-mobile-phase formulation to study the influence of 
gas-phase mobility on the simulation of organic-phase infiltration and organic 
species transport. In these studies, the saturation of the water phase was 
assumed to be at or below residual levels. Numerical solutions for multicom- 
ponent transport in systems with three mobile phases have been discussed by 
Dorgarten and Tsang (1990), Mayer and Miller (1990), and Katyal et al. 
(1991). 

The set-iterative compositional formulation employs a kinetic expression to 
describe the mass exchange between phases. The species-balance equations are 
derived directly from the general mass-balance equation (1) with substitution 
of the linear mass-exchange description (7) for the general mass-exchange 
terms, and of Fick's law (3) for the non-advective terms: 

~ t  ~ ~ c~ ~ ~ c~ ~ c~ c~ k ~  .~* p~ns~ + p  nsav .Vw  i - -V . (ns~p  D i V w i ) + k  i wi +~c] E~ =. . i  wi , 

o~ = o, w, g (13) 
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These equations are subject to proper initial and boundary conditions, and 
one of the phase velocities must be identically zero. Similar formulations have 
been proposed by Mayer and Miller (1990), and Guarnaccia and Pinder 
(1991). The mass fraction constraint (8) holds for each phase in this formula- 
tion. There are two unknown pressures and 3Ns unknown mass fractions. 
Thus, the model equations consist of 2 phase-balance equations (12), 
3(Ns - 1) transport equations (13) and 3 mass fraction constraints (8). 

In contrast to the kinetic formulation described above, an alternative com- 
putationally decoupled formulation maybe derived by assuming equilibrium 
partitioning between the phases (Kaluarachchi and Parker, 1990; Reeves, 
1993). In this formulation, the mass-balance equation (1) is summed over 
all phases to derive a species-balance equation for each unknown chemical 
species. According to constraint (11), the source terms due to mass exchange 
between phases sum to zero in the species-balance equations. The summed 
equations, however, contain divergence of velocity terms that are difficult to 
approximate using standard finite-difference or linear finite-element tech- 
niques. These terms are typically eliminated through substitution of the 
phase-balance equation (12) into the summed species-balance equations to 
yield (Reeves and Abriola, 1988; Kaluarachchi and Parker, 1990): 

p n s , - - ~ - - f  p~ns, v~ .Va~ - V.(ns~,p D i ~743i)  = 

Z - w ~ E ~ ,  i =  1, . . . ,  N s -  1 (14) 

Only (Ns - 1) equations of this form need to be solved, as the remaining mass 
fraction can be obtained from the mass fraction constraint (8). Partitioning 
relationships (6) close the equation set. 

Note that the procedure to eliminate the divergence of velocity terms 
reintroduces source terms in the summed equations. An iterative procedure 
between the species-balance equations (14) and the general mass-balance 
equations (1) is required to determine the magnitude of these non-linear 
terms. This type of iterative solution procedure leads to numerical difficulties 
during the simulation of flow with partitioning between the phases. There are 
two sources of error. The first is discussed by Kaluarachchi and Parker (1990). 
The iterative scheme to calculate the mass-exchange terms requires derivatives 
of phase velocity and estimates of the dispersive fluxes across the boundary. If 
the flow scenario produces sharp infiltration fronts, the derivatives of velocity 
may be difficult to estimate. Errors in the iterative scheme may be larger than 
the true mass-exchange terms introducing error into the phase- and species- 
balance equations. To avoid errors resulting from the iterative scheme, 
Kaluarachchi and Parker (1990) neglected the mass-exchange terms during 
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times of high organic flow and, during the remainder of the simulation, 
corrected the computed mass-exchange terms by an independently computed 
mass-balance error. Their test used to determine whether a flow rate is "high" 
is that the velocity at a node exceeds the saturated organic conductivity at the 
node times 0.0001. 

A second source of error is discussed by Reeves (1993). As the equilibrium 
mass partitioning coefficients for the water and gas phases are reduced, the 
summed species-balance equation approaches the species-balance equation 
for the organic phase only. If dispersion within the organic phase has not 
been considered or is very small, a hyperbolic or nearly hyperbolic equation 
results. Approximation of a hyperbolic equation by a Galerkin finite-element 
method or centered finite-difference technique leads to oscillations or over- 
shoot in the region of the front (Lapidus and Pinder, 1982). The oscillations 
will be incorporated into the estimation of the mass-exchange terms in the 
iterative solution of the species-balance equations. These incorrect mass- 
exchange terms are then passed to the phase-balance equations. Techniques 
applied to damp oscillations introduce artificial dispersion to the solution and 
the impact of this added error on the computed mass-exchange terms cannot 
be quantified or controlled. Use of the set-iterative compositional formulation 
eliminates the need for iterative calculation of the mass-exchange terms and 
the associated errors highlighted above. Mass-exchange terms are computed 
explicitly from the mass fractions via Eqs. 7 and 10. 

The set-iterative model presented herein is based on the streamline-upwind 
Petrov Galerkin finite-element method (Hughes and Brooks, 1982) to allow 
for upstream weighting of the phase- and species-balance equations. The form 
of this weighting function is: 

dNi 
Mi = Ni + p dx (15) 

where M i is the Petrov-Galerkin weighting function; Ni is the standard linear 
weighting function; and p is the Petrov-Galerkin weighting coefficient. The 
values of p used in the simulations presented in this paper are given in 
Appendices A-C.  Note that a standard Galerkin approximation is recovered 
when the Petrov-Galerkin weighting coefficient is set to zero. A consistent 
finite-element approach for the coefficients of the time derivatives is used, but 
the model has the option to lump the time derivative coefficient matrix in 
order to increase the stability of a solution. Following standard finite-element 
procedures, the integrations are performed on the local level, and Green's 
theorem is applied to the second-order term to reduce the order of 
differentiation and allow for the use of  linear elements. Integration of the 
weak form of the equations yields a set of non-linear ordinary differential 
equations that is solved by approximating the time derivative with the 
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variable-weight finite-difference method and iterating by successive 
substitution. 

In the same manner, the weak form of the species-balance equations is 
integrated to give the semi-discrete matrix equations, and a variable time 
weight finite-difference technique is used to approximate the temporal 
derivatives in the semi-discrete equations. These equations may be non- 
linear due to the mass-exchange terms and to the compositional dependence 
of terms in the coefficient matrices. In general, due to the mass-exchange 
terms, the species-balance equations are coupled. However, the coupled 
terms are lagged one iteration in the iterative procedure, and the equations 
are solved sequentially starting with the most volatile compound and proceed- 
ing to the least volatile. Sequential solution results in a set of smaller matrix 
equations requiring less computational burden for solution. 

Convergence for a primary unknown is tested by applying the constraint: 

maximumJAu I 
6~< (16) u2)1/2 

Here the maximum change in the primary variable over an iteration is normal- 
ized by a measure of the magnitude of the primary variable. The values of 
used for the species- and phase-balance equation sets for each simulation is 
given in Appendices A-C.  The set-iterative compositional algorithm is sum- 
marized in Fig. 1. 

As discussed above, when a kinetic expression is used to describe mass 
exchange, the mass-exchange terms are calculated directly and the ad hoc 
iterative solution described previously is not required. An additional benefit 
of employing a kinetic expression instead of the local equilibrium assumption 
is that the resulting numerical model may be used to explore non-equilibrium 
partitioning between phases. As expressions to describe the kinetic nature of 
mass exchange between phases in the subsurface are developed and additional 
data are measured, these may be directly included in the set-iterative composi- 
tional model. The penalty imposed by using a kinetic expression is an increase 
in computational burden. Mass-balance equations describing the transport of 
each species in each phase must be solved in place of one summed species 
mass-balance equation for each species. 

APPLICATION OF MODEL AND DISCUSSION 

Mathematical verification 

Simulations on one-dimensional and two-dimensional domains are 
presented in this section to illustrate the capabilities of the set-iterative corn- 
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Fig.  1. F l o w  chart summarizing set-iterative compositional algorithm. 
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positional formulation and to compare performance of a numerical model 
based on this formulation to one based on a simultaneous formulation. The 
first problem studied is the one-dimensional infiltration of  trichloroethylene 
into a fully saturated domain. This example is based on a problem simulated 
by Abriola (1984). Equilibrium partitioning of trichloroethylene into the 
water phase is assumed. Appendix A summarizes the physical and chemical 
data and the constitutive relationships required to describe this problem. Note 
that to simulate the infiltration of a single-component organic phase, the 
simultaneous formulation requires the introduction of an inert component. 
This inert component is assigned the same physical properties as trichloro- 
ethylene except that it is not allowed to partition to the aqueous phase. Both 
the simultaneous and set-iterative models used for this comparison require the 
establishment of organic-phase saturation throughout the domain. A small 
organic-phase saturation, So =0 .0001,  composed entirely of the inert 
component is set as the initial condition. A mixture of trichloroethylene and 
the inert component is introduced at the boundary of the domain, and the 
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partitioning coefficient for trichloroethylene is adjusted to give the proper 
concentration in the aqueous phase at the boundary. 

Two options are used for the set-iterative model. Both options employ fully 
implicit weighting of the coefficient matrices for the approximation of the 
temporal derivatives: 

(1) Option one involves the simulation of a two-component mixture 
mimicking the problem solved by the simultaneous formulation. Since there 
is no dispersion in the organic phase, upstream weighting is used in the set- 
iterative model to circumvent numerical problems. The upstream weighting 
parameter for the species-balance equations is set to A × / x / ~ .  With the low 
solubility of trichloroethylene, the numerical model experiences some oscil- 
latory behavior. Upstream weighting by the streamline-upwind technique 
helps to eliminate the unacceptable oscillations without adding a great deal 
of numerical dispersion to the result. 

(2) The second option involves solving the trichloroethylene infiltration 
problem as a single-component problem. Employing this option reduces the 
number of species transport equations solved numerically since the organic 
phase is entirely trichloroethylene. The set-iterative formulation allows for 
simulation of a single-component organic if mass exchange from the organic 
phase to the other phases is set to zero when the phase saturation is below a 
critical value. The critical saturation value used in the simulations 
presented is 0.005. For this option, the upstream weighting parameter was set 
to zero giving a standard Galerkin approximation for the species-balance 
equations. 

Results from a finite-difference model based on a simultaneous formulation 
(Abriola and Pinder, 1985b) and the two options from the set-iterative com- 
positional model are presented in Figs. 2 and 3. 

Examination of the simulation results reveals that both models predict a 
sharp organic saturation front and a very sharp front for the aqueous-phase 
mass fraction of trichloroethylene. The mass fraction front does not extend a 
great deal into the domain for this situation since there is no externally 
imposed water-phase movement and the dispersive transport in the water 
phase is low. In contrast, Ryan and Cohen (1991) show contaminant 
transport fronts that extend well beyond the saturation front into an 
unsaturated domain. These fronts appear to be dominated by a 
large amount of dispersive transport in the soil-gas phase. The importance of 
dispersive transport away from the infiltrating organic liquid cannot be 
generalized, as it depends on the fluids present, the properties of the porous 
medium and the time scale of the simulations. In addition to the close 
agreement between simulation results for the two formulations, independent 
mass-balance calculations were performed to ensure that the models were 
solving the governing equations correctly. Both of the models produced 
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Fig. 2. Organic-phase saturation profiles for the infiltration of trichloroethylene into a saturated domain. 
Simulation results from the set-iterative compositional model and a model based on the simultaneous 
formulation (Abriola, 1984). 

overall mass-balance results with errors less than ±5% for the simulations 
shown. Numerical evaluation of mass-balance errors for multiphase finite- 
element and finite-difference models is discussed by Abriola and Rathfelder 
(1993). 
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Fig. 3. Mass fraction of trichloroethylene in the water-phase profiles for the infiltration of trichloroethylene 
into a saturated domain. Simulation results from the set-iterative compositional model using a single- 
component formulation and a two-component, upstream-weight technique and a model based on the 
simultaneous formulation (Abriola, 1984). 
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TABLE1 

Operations per iteration for numerical models 

Operation Set-iterative FEM Simultaneous FD 

+/-  phase balance: 54(2nn - 1) + 8(2nn - 3) + 4 112(3nn - 1) + 12(3n~ - 5) + 4 
species balance: n t . . . .  (6nn - 5) 

*/+ phase balance: 14(2nn - 1) + 6(2nn - 3) + 2 32(3nn - 1) + lO(3nn - 5) + 2 
species balance: n t . . . .  (6nn - 5) 

Trichloroethylene test with inert component ( n  n = 21, ntran s = 3): 

+/-  phase balance: 2,530 
species balance: 363 
total: 2,893 7,818 

*/+ phase balance: 810 
species balance: 363 
total: 1,173 2,566 

FEM = finite-element method; FD = finite difference; n. = number of nodes; ntran s = number 
of transport equations solved. 

Ef f ic iency  

One of  the proposed advantages of  the set-iterative compositional formu- 
lation is that this formulation yields a more efficient numerical model. The 
computat ional  effort used to solve the trichloroethylene comparison is pre- 
sented to illustrate that the set-iterative compositional model does meet this 
expectation. The simultaneous formulation is solved using a finite-difference 
method with full Newton -Raphson  iteration by Abriola (1984). Direct com- 
parison of  run times may not indicate true model performance since the 
Jacobian matrices required by the Newton-Raphson  method are com- 
putationally burdensome and the set-iterative compositional formulation 
was solved without this added expense. Additionally for equivalent sets of  
equations, the Newton -Raphson  iteration technique may allow for larger 
time steps, resulting in less total effort. Operations required to solve the 
matrix equations generated are therefore examined to assess model 
efficiency. Table 1 presents the operations required to solve the matrix 
equations arising from each formulation per iteration and the iterations 
required per time step for the trichloroethylene test problem. The number 
of  iterations required to produce the profiles shown in Figs. 2 and 3, the 
number of  nodes used in the test domain and the operation count in Table 
1 may be used to compute the total number of  operations required for the 
simulations and thereby indicate the overall efficiency of  solution for this 
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TABLE 2 

Total operations required for solution of trichloroethylene simulations 

Operation Set-iterative FEM Simultaneous FD Savings 
(%) 

Trichloroethylene test with inert component (water-, organic- and gas-phase species-balance 
equations solved; nn = 21, ntran s = 3): 

+ / - -  flOW: 5.2" 106 45- 106 87 
species: 0.6.106 
total: 5.8.106 

* /+  flow: 1.6.106 15.106 85 
species: 0.6.106 
total: 2.2.106 

Single component test (organic-phase species-balance equation not considered; nn = 21, 
ntran s = 2); 

+ / - -  flOW: 5.4" 106 45- 106 87 
species: 0.2.106 
total: 5.6.106 

* / -  flow: 1.7.106 15.106 87 
species: 0.2.106 
total: 1.9.106 

FEM = finite-element method; FD = finite difference. 

problem. Table 2 presents the total number of operations and the savings 
gained by using the set-iterative formulation. The savings reported are the 
difference between the number of iterations required by the simultaneous 
model and the set-iterative model relative to the total required by the 
simultaneous model. Note that the single-component option saves some com- 
putational effort compared to the two-component option since the organic- 
phase species-balance equation is not solved. This option should be used when 
modeling single-component organic phases since numerical difficulties 
associated with a hyperbolic transport equation discussed previously are 
also avoided. 

Table 2 supports the claim that the set-iterative formulation leads to a 
relatively efficient numerical model. Examination of the operation counts 
tabulated for the comparison trials and the operations per iteration in 
Table 1 reveals that the savings realized by the set-iterative compositional 
model are greater than anticipated from the operations per iteration esti- 
mate. The anticipated savings for the two-component option are 63% for 
additions and subtractions, and 54% for multiplications and divisions. The 
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reported savings for the simulations presented are 87% and 85%, respectively. 
The difference is due to the total number of iterations required by the models 
to produce the results shown in Figs. 2 and 3. The simultaneous finite- 
difference model required 5945 iterations to achieve the solution at 72.25 s of 
simulation time. The set-iterative compositional model required 2041 
iterations for the phase-balance equations and 1707 equations for the 
species-balance equations. Although the simultaneous formulation uses a 
Newton Raphson iteration scheme, the successive-substitution iteration 
scheme for the set-iterative formulation allowed for larger time steps. The 
required time step size for the simultaneous formulation may be smaller 
because the primary variables, capillary pressure and mass fraction, are of  
drastically different orders of magnitude. The set-iterative approach separates 
solution of these variables and appears to yield sets of matrix equations that 
are easier to solve. 

Multicomponent chemistry 

In this section, the use of  the set-iterative formulation to model the infil- 
tration of a mult icomponent  organic mixture is demonstrated. Recall that the 
set-iterative formulation provides a more convenient framework for multi- 
component  simulations than the simultaneous formulation. The scenario 
simulated is a hypothetical column experiment where a solvent mixture is 
introduced to a vertical sand column with an imposed gradient on the water 
phase. In this simulation, two physical processes are examined: advective 
transport in the water phase and infiltration of an organic phase. The organic 
mixture is composed of three common solvents: methyl-ethyl ketone 
(2-butanone), trichloroethylene and tetrachloroethylene. Data for the 
simulations presented in this section are summarized in Appendix B. These 
simulations were performed using a fully implicit weighting for approxi- 
mation of the time derivatives, consistent mass matrices and no upstream 
weighting. 

Three different approaches to modeling transport of this organic mixture 
are considered. Mixtures I and 2 treat the organic phase as a two-component 
mixture with one inert component  and one volatile component,  as required by 
a simultaneous formulation with two components. Mixture 1 is comprised of 
trichloroethylene and an inert mixture of tetrachloroethylene and methyl- 
ethyl ketone. Mixture 2 consists of tetrachloroethylene as its inert component  
and a blend of trichloroethylene and methyl-ethyl ketone as its volatile com- 
ponent. The final mixture considers all of the components independently. The 
physical parameters for each mixture are calculated on the basis of a mixture 
containing40% trichloroethylene, 45% tetrachloroethylene and 15% methyl- 
ethyl ketone by weight. The purpose of modeling these three mixtures is to 
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examine the effect of the volatile methyl-ethyl ketone on the simulation of 
trichloroethylene transport in the moving aqueous phase. Mixtures 1 and 2 
may be solved with existing simultaneous models, but these models cannot 
capture the chemical nature of the three-component solvent mixture. 

Figs. 4 and 5 show the organic saturation fronts and the trichloroethylene 
mass fraction profiles at 6 h of simulation time. Clearly, the simulated 
behavior of trichloroethylene is altered when the full three-component mix- 
ture is modeled. In the simulations presented, the physical properties of the 
water phase are not altered by the dissolution of methyl-ethyl ketone. Thus, 
any differences in the profiles are solely due to partitioning effects. If the large 
amount of methyl-ethyl ketone changes the physical properties of the water 
phase, the differences between the modeling approaches would increase. Fig. 4 
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reveals that the saturation front for the organic phase is affected as the mass of 
methyl-ethyl ketone partitions, reducing the amount of organic-phase mass in 
the domain. As the light-component partitions from the phase, the density 
and viscosity of the phase is altered, changing the flow behavior of the phase at 
the front. Fig. 5 reveals that, because methyl-ethyl ketone is much more 
soluble than trichloroethylene, the organic mixture becomes enriched in tri- 
chloroethylene at the saturation front. Equilibrium partitioning then predicts 
an elevation in trichloroethylene concentration in the water phase due to the 
enrichment in the organic phase. This type of behavior has also been observed 
in single-phase simulations where multicomponent organic mixtures are 
allowed to partition into a moving water or gas phase (Baehr, 1987). As 
simulation time and travel distance increases, the tendency for the organic 
phase to become enriched in less volatile components will also increase, lead- 
ing to potentially high equilibrium concentrations in the water phase. The 
importance of this enrichment and subsequent elevation of trichloroethylene 
concentrations in the aqueous phase lies in the potential exposure to trichloro- 
ethylene at concentrations higher than predicted from the source mixture 
properties. 

Effect of mass-transfer rates 

All of the simulations presented in the previous sections have used a high 
value for the mass-exchange coefficient to mimic equilibrium partitioning. 
They also have been performed on one-dimensional domains. In this 
section, a two-dimensional finite-element approximation to the governing 
equations is used to show the effect of varying mass-transfer coefficients on 
the transport of trichloroethylene into a saturated domain. Linear triangular 
elements and a simple direct solver are used in the two-dimensional numerical 
model. Details of the two-dimensional approximations are presented by 
Reeves (1993). The domain characteristics and physical parameters used for 
the simulations presented in this section are summarized in Appendix C. 

Powers et al. (1991) presented a theoretical investigation of the effect of 
mass-transfer limitations on the dissolution of entrapped trichloroethylene in 
a sand aquifer. In this example simulation, trichloroethylene is introduced 
into a saturated domain and water is allowed to flow through and around 
the advancing organic body. The lumped mass-transfer coefficient required by 
the numerical model is estimated from the discussion presented by Powers et 
al. (1991). This lumped mass-transfer coefficient may be described by: 

o w  ki kf nso (17) 
H S  w 

where kf = mass-transfer coefficient [L T-l]; .4/V = area to volume ratio for 
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the organic phase [L-l]; and f =  fraction of exposed area for the organic phase 
(dimensionless). 

Following Powers et al. (1991), the exposed fraction is estimated as 0.1 and 
the area to volume ratio as 15 cm -1. The largest mass-transfer coefficient 
estimated by the authors is 9.9.10 -2 cm s -1. Setting the representative 
organic saturation as 0.1 allows calculation of the lumped mass-exchange 
coefficient through Eq. 17. The value using these parameters is 1.6.10 -2 s 1. 
To investigate the importance of this coefficient, the simulation was repeated 
with a lumped mass transfer two orders of magnitude smaller than this 
estimated value. This value is within the range of lumped mass-transfer coef- 
ficients estimated by Powers et al. (1991). Profiles for simulations with lumped 
mass-transfer coefficients equal to 1.6.10 -2 and 1.6.10 4 S-I are presented in 
Fig. 6. 

This figure, presented for a simulation time of 12 h, illustrates the impor- 
tance of the rate of mass transfer on aqueous-phase concentrations. The 
contours shown in Fig. 6 are for normalized aqueous-phase mass fractions 
of 0.2 for the two simulations. The normalization is computed relative to the 
solubility of trichloroethylene in water. For this simulation time and this pure 
organic phase, the mass transfer does not appreciably affect the mass of the 
saturation profile in the domain. The smaller value of the lumped mass- 
transfer coefficient, however, produces aqueous-phase mass fraction profiles 
containing much less trichloroethylene and exhibiting less spread of the 
organic pollutant in the vicinity of the spill. These low aqueous-phase con- 
centrations of trichloroethylene qualitatively support the observation that 
concentrations of organic solvents in the aqueous phase rarely approach 
their solubility values even if free product is present (Mackay et al., 1985). 



AN ITERATIVE COMPOSITIONAL MODEL FOR SUBSURFACE MULTIPHASE FLOW 269 

A great deal of research is presently focused on mass-transfer kinetics and 
rates for partitioning between organic pollutants and groundwater. This is an 
important issue, as it affects the interpretation of field measurements and the 
design of remediation alternatives. The set-iterative formulation presented in 
this paper may be used to simulate different kinetic expressions and can be an 
important tool in evaluating the importance of mass-transfer limitations in 
multiphase flow scenarios. 

SUMMARY 

Three distinct formulations of the partial differential equations describing 
multiphase flow with multicomponent transport in the subsurface have been 
presented. Each formulation offers inherent advantages and disadvantages for 
numerical approximation. The simultaneous formulation is the most straight- 
forward and leads to a numerical approximation with less complications and 
iterative procedures. However, the matrix equations resulting from this for- 
mulation are large, and numerical models based on this formulation are not 
expected to be very efficient. The adaptive IMPES formulation address the 
inefficiencies of the simultaneous formulation by rearranging the equations to 
a multi-step solution procedure. Numerical models based on this formulation 
are expected to be more efficient due to smaller matrix equations and explicit 
evaluation of secondary unknowns. However, this approach may experience 
convergence problems due to the multi-step nature of the solution. The third 
formulation separates the problem along natural divisions by treating the fluid 
flow and species transport problems separately and iterating between the two 
equation sets. Again efficiency results from the solution of smaller equation 
sets. This computationally decoupled formulation also offers a framework for 
multicomponent extensions of a basic model without extensive reformulation 
and rewriting. Since an iterative procedure is required to determine the 
coupling between the flow and transport processes, numerical problems 
may result if the coupling becomes significant or if numerical errors mask 
the natural coupling between equation sets. 

In this paper, the set-iterative compositional formulation describing multi- 
phase flow with multicomponent transport has been introduced. Three major 
advantages of the set-iterative compositional formulation were illustrated 
through the use of simulation results. The first major advantage of this for- 
mulation is the ability to simulate non-equilibrium partitioning. A number of 
recent papers have suggested the importance of non-equilibrium partitioning 
to groundwater from non-aqueous-phase liquids. The presented model may 
be used to evaluate the impact of different kinetic expressions as they are 
proposed. The second major advantage of the model is that the formulation 
provides a flexible framework for multicomponent simulations. For mixtures 
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of organic solvents, an understanding of  these mult icomponent  effects may be 
important  to estimate aqueous-phase compositions and bulk organic-phase 
movement. Finally, the set-iterative compositional formulation leads to 
increased efficiency due to generation of  smaller matrix problems. This 
increased efficiency allows for feasible simulation of  larger, more complex 
problems. Work is continuing on this model to increase the efficiency of  the 
two-dimensional code by use of  more powerful matrix solution techniques. 
The model will be applied to study the importance of  domain heterogeneities 
on multiphase flow simulations. Results from laboratory experiments inves- 
tigating the kinetics of  mass-transfer partitioning may also be incorporated 
into the code to more fully investigate the impact of  mass transfer on simula- 
tion results. 
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APPENDIX A --  ONE-DIMENSIONAL INFILTRATION OF 
TRICHLOROETHYLENE 

The boundary conditions, initial conditions and data used for the numerical simulation of 
trichloroethylene infiltration into a one-dimensional domain are provided in Table A-1. 

APPENDIX B --  DATA FOR ONE-DIMENSIONAL SIMULATION OF 
MULTICOMPONENT MIXTURES 

Three multicomponent mixtures are considered for the hypothetical simulations. Each simu- 
lation is run on a one-dimensional, vertical domain. The initial condition, however, imposes a 
gradient of 0.005 on the water phase to induce water-phase movement down the column. The 
constitutive relationships are held constant for each simulation as are the other physical and 
numerical data required by the model. The water-phase and matrix properties are the same as 
used in the first simulation summarized in Table A-1 except where listed in Table B-I. The other 
data that are held constant for the three mixtures are listed in Table B-1. 

The three mixtures contain trichloroethylene, methyl-ethyl ketone (2-butanone) and tetra- 
chloroethylene. The mass fractions for the three organic components are 0.4, 0.15 and 0.45, 
respectively. Mixture 1 is a two-component organic phase, where the volatile phase is pure 
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T A B L E  A-1 

P a r a m e t e r s  for  o n e - d i m e n s i o n a l  T C E  s imula t ions  

P a r a m e t e r  Value  P a r a m e t e r  Value  

Domain: 
L 
Ax  
At 
Simula t ion  t ime 
T 
g 
R 

Water: 

M w 

tZw 

/3w 

pw 

P~W r 

Partitioning: 
Solubi l i ty  o f  T C E  

10 cm 
0.5 cm 
0.001 0.25 s 
72.25 s 
293.15 K 
980.665 cm s -2 
8.3157.107 dyn  

cm mo1-1 K -1 

1 8 . 0 2 g m o l  1 
1.0019.10 -2 P 
4.531.10 -11 cm 2 dyn  -I  

1.0 g c m  -3 
1.0133.106 dyn  cm -2 

1,100 p p m  
(1.5.10 -4 mol  mo1-1) 

Trichloroethylene: 
Mo 
#o 
~o 
pO 

Pr°r 

131.4 g mo1-1 
5.8-10 -3 P 
0.0 cm 2 dyn  -1 
1.4657 g cm -3 
1.0133.106 dyn  cm 2 

Air: 

Mg 28.97 g mol  1 

Matrix: 
n 
~m 
k 

0.36 
2.0.10 -1° cm 2 dyn  -1 

5.8231,10 -7 cm 2 

Dispersion and diffusion: 

O mw 

D mo 
a w 

a ° 

8.434.10 -6 cm 2 S -1  

0.0 cm 2 s -1 

0.1 cm 
0.0 cm 

Initial and boundary conditions: 

&w(X,0) 0.0 
Pwg (x, 0) hyd ros t a t i c  

~?co(X, o) o.o 
Pow(0, t) 14,610 dyn  cm -2 
Pwg(0, t) 0.0 dyn  cm -2 

~)ce ( 0 ,  t )  l .O  

OPow(L, t)/Ox 0.0 dyn  cm -3 
Pwg(L, t) 0.0 dyn  cm -2 

~?~e(L, ,) 0.0 
1(1 ahwb°w ,)(]+a~ w) brawl2 

krw - -  (I +abhnw w)bmw/2 

kro = 0.4V/}[l - (1 - gX/bmo)b~,o]2 

S 1 - -  [(S w - -  Swir)/(Ssw -- Swir) ] 

bmo 0 . 7 0 5 9  

Constitutive relationships: 

Sw z Swi r -]- Sswo Swir 
[(l.0+(~wH@"~) re'w] 

Sg 0.0001 

so 1.0 -- Sw -- Sg 

Swi r 0.306 
S~w o 0.9998 
Ssw 0.9998 
nsw 8.605 
msw 1 - l / n s w  
c~ w 0.11 

bnw 6.6 

ahw O. 108(Pow/pWg) 

T C E  = t r i ch lo roe thy lene .  
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TABLE B-1 

Parameters for one-dimensional multicomponent simulations 

H.W. REEVES AND L.M. ABRIOLA 

Parameter Value Parameter 

Domain: 

L 50 cm 
Ax 0.25 cm 
At 0.1 5.0 s 
Simulation time 21,600 s 

Initial and boundary conditions: 

F'ow(X,0) 0.0 
Pwg(X, 0) head gradient 0.005 
Pow(0, t) 14,610 dyn cm -2 
P,~g(0, t) 490.3325 dyn cm -2 
OPow(L, t)/Ox 0.0 dyn cm 3 
Pwg(L, t) 0.0 dyn cm -2 

Value 

Mixture 1: 

~(x,O) o.o 
&~e (0, t) 0.4 

Mixture 2: 

o (x, O) 0.0 

~3t°ce/mek (0, t) 0.5 5 

Mixture 3: 

O(x,O) o.o 
~°ek (0, t) 0.15 
Wtc~ (0, t) 0.4 

All mixtures: 

~°(L, t) o.o 

trichloroethylene and the inert phase is a blend of tetrachloroethylene and methyl-ethyl ketone. 
Mixture 2 is a two-component organic phase, where the volatile phase is a blend of trichloro- 
ethylene and methyl-ethyl ketone and the inert phase is pure tetrachloroethylene. The solubility 
of the trichloroethylene/methyl-ethyl ketone blend is adjusted to give a water-phase mass 
fraction equal to that resulting from the partitioning of trichloroethylene from the other two 
mixtures. Finally, mixture 3 is a three-component organic phase. The molecular diffusion 
coefficients for each organic component are estimated using the Wilke-Chang correlation 
(Reid et al., 1977): 

Dab = 7.4.10 -8 (OMb)I/2T 
#bV~a. 6 (B- l )  

where Dab = diffusion coefficient of component a in solvent b (cm 2 s-l);  Mb = molecular 
weight of the solvent b (g mol-~); T = absolute temperature (K); #b = viscosity of solvent b 
(cP); Va = molal volume of solute a at normal boiling temperature (cm 3 tool-l);  and 

= association factor for solvent b. 
The association factor was set to 2.6 for the aqueous phase and 1.0 for the organic phase. The 

molal volume for the organic solutes were estimated using the La Bas additive volumes (Reid et 
al., 1977). Mixture density and viscosity are estimated assuming ideal behavior: 

1 
pO _ (B-2 )  

Pi 
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and  
N, 

#o = Z # ~  ( B -  3) 
i 1 

where w ° = mass  fract ion of  the ith componen t  in the mixture; and  x i = mole fract ion of  the ith 
c o m p o n e n t  in the mixture.  

The propert ies  of  each mixture  are summarized in Table B-2. 

T A B L E  B-2 

Physical and  chemical  propert ies  for mixture  simulat ions 

Paramete r  Value Parameter  Value 

Mixture  l: Mix ture  1: 

C o m p o n e n t  1 t r ichloroethylene C o m p o n e n t  2 

Mo 131.4 g mo1-1 M o 
#o 5"8"10-3 P #o 
30 0.0 cm 2 dyn -I /30 
pO 1.4657 g cm -3 pO 

e~ref 1.0133.106 dyn cm -2 Solubility 
Solubili ty 1,100 ppm 
Dmw 2.5.10 -6 cm 2 s -1 

D m° 6.1.10 - 6 c m  2s-1 

M E K /  
te t rachloroethylene 

125.2 g mol 1 
6.59.10 -3 P 
0.0 cm 2 dyn -~ 
1.294 g cm -3 

0 ppm 

Mixture  2: Mix ture  2: 

C o m p o n e n t  1 t r ichloroethylene/  C o m p o n e n t  2 
M E K  

Mo 107.3 g m o l i  Mo 
#o 4.82, 10 -3 P #o 
/30 0.0 cm 2 dyn -1 /30 
p° 1.198 g cm 3 pO 

Solubili ty 655 ppm Solubility 
Dmw 2.5.10 -6 cm 2 S -1  

D m° 5.1.10 6 cm 2 s-1 

te t rachloroethylene 

165.83 g tool -~ 
9 .3 .10-3p  
0.0 cm 2 dyn -1 

1.623 g cm -3 

0 ppm 

Mixture  3: Mix ture  3: 

C o m p o n e n t  1 M E K  
M o 72.1 g m o l -  i 
#o 4.2"10-3 P 
30 0.0 cm 2 dyn - l  
pO 0.805 g cm -3 

Pr°ef 1.0133"106 dyn cm -2 
Solubility 240,000 ppm 
D rnw 2.5.10 -6 cm2s 1 

O m° 5.1.10 -6 cm 2 S -1  

C o m p o n e n t  2 

C o m p o n e n t  3 

t r ichloroethylene - -  
da ta  above,  com- 
ponen t  1, mixture 1 

te t rachloroethylene - -  
da ta  above,  com- 
ponen t  2, mixture 1 

M E K  = methyl-ethyl  ketone. 
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NO FLOW OF EITHER PHR5E, NO FLUX OF COMPONENT 

- - 9  WRTER PHRSE ORRDIENT = 0.005 

Fig. C-1. Two-dimensional domain, elements and boundary conditions. 

T A B L E  C-1 

Parameters  for two-dimensional  mass-exchange s imulat ions 

Paramete r  Value 

Domain 
N u m b e r  of  nodes 
N u m b e r  of  elements 

m in imum 
max imum 
m i n i m u m  
max imum 
At  

Simulat ion time 
Dispersivities 

a( 
a7 al' 

o 
a t  

380 
684 Ax  
5.0 cm 
10.0 cm Az 
5.0 cm 
5.0 cm 
10 600 s, accelerat ion factor  = 1.4 
42,300 s 

0.5 cm 
0.05 cm 
0.5 cm 
0.05 cm 
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APPENDIX C - -  DATA FOR TWO-DIMENSIONAL SIMULATIONS TESTING MASS- 
EXCHANGE RATES 

The hypothetical domain with the applied boundary conditions and numerical grid is pre- 
sented in Fig. C-1. The imposed gradient of the piezometric head of the water phase is 0.005. 
The constitutive relationships are held constant for each simulation as are the other physical 
and numerical data required by the model. The water phase, trichloroethylene phase and matrix 
properties are the same as used in the simulations summarized in Tables B-1 and B-2 except 
where noted in Table C-1. The constitutive relationships are also the same as used for the 
previous simulations summarized in Tables A-I and B-1. The other data that are required 
for the simulations are listed in Table C-1. 
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