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ABSTRACT

THE STABILITY OF a geological two-layer system composed of a frictional material layer of finite thickness,
called the overburden, resting on a viscous half-space of lower density is investigated. The salient features
of this study are a realistic description of the stiffness of the overburden and its state of (in situ) prestress.
and the usc of the viscosity of the substratum to define a characteristic time for the stability analysis. A
general variational formulation for the linearized, non-selfadjoint stability problem is presented, followed
by asymptotic analyses for the cases of large and small perturbation wavelengths and by an analytical
solution in the absence of gravity. Results obtained by a finite-element method are compared with the
analytical and asymptotic predictions ; they permit the detection of various modes of instability : interface-
and beam-type modes in the compressive range of deformation, and neck-type modes in the tensile range.
It is found that the system’s stability is not only governed by geometry and density contrast. as expected
from the conclusions of earlier studies on viscous and viscoelastic models, but is also scnsitive to the state
of in siiu stress. A complete parametric study reveals that the overburden material cohesion and work-
hardening properties have more influence on stability than the friction angle. Furthermore, it is found that
critical stresses at neutral stability predicted by deformation theory, which is an appropriate model for
studying the initiation of faulting in rocks, are smaller in magnitude than those obtained by the cor-
responding {low theory with a smooth yield surface. Implications of this work for the interpretation
of various laboratory analogue model experiments pertaining to geological two-layer systems arc also
discussed.

1. INTRODUCTION

A VARIETY OF PROBLEMS leads to the question of the precise conditions under which
an initially plane interface between two layers of different properties may be desta-
bilized by layer-parallel stresses, counteracted or aided in their effect by body forces.
An example that has been of particular interest to geologists and geophysicists has to
do with density-stratified two-layer systems in a gravitational field [see, for example,
RAMBERG (1981) and references quoted therein]. Earlier theoretical studies of this
problem have mostly been concerned with the Rayleigh -Taylor model of two super-
imposed viscous fluid half-spaces, in which gravity provides the only destabilizing
force. In the classical stability analysis of this problem (TAYLOR, 1950; CHAN-
DRASEKHAR, 1961 ; DANES, 1964 ; SELIG, 1965) the initial growth of a small interfacial
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perturbation is considered. Although all wavelengths are found to satisfy the linearized
perturbation equations, the presence of viscosity implies the existence of a dominant
wavelength that possesses the fastest growing amplitude and that is therefore expected
to characterize the evolution of the system. However, an essential limitation of fluid-
dynamic models of interfacial stability has been their inability to account for the
effects of layer stiffness and the role of anisotropic and nonhydrostatic states of stress.
An alternative approach to the problem of surface as well as interfacial instability in
laterally compressed layered media was pioneered by Biot, who introduced viscoelastic
constitutive models (B1oT and OnE, 1965 : B1oT, 1966) and who also treated the onset
of interfacial instability as a bifurcation problem (BioT, 1963a.b,c: 1965). A similar
approach was adopted by Dorris and NEMAT-Nassir (1980) for a problem with a
geometry similar to the one considered here: a layer of infinite extent and finite
thickness resting on a semi-infinite substratum. However, they modelled the materials
in these two regions as elastic or strain-rate-independent elastoplastic with symmetric
moduh and disregarded any gradient in in situ stress.

In a recent paper by TrRIANTAFYLLIDIS and LEHNER (1993) Biot’s analysis was
extended by considering the combined effects of gravity and nonhomogeneous states
of initial stress on the interfacial instability of two half-spaces. In that work the
stability of interfacial disturbances of arbitrary wavelength is characterized by means
of a perturbation analysis of the system’s linearized equations of motion, the time
scale for the system being provided by inertia. The stability problem is formulated as
a linear (with respect to the square of the stability exponent) eigenvalue problem.
A perturbation is considered unstable if its amplitude increases with time and is
characterized by a positive value for the square of the stability exponent; periodic
perturbations of constant amplitude correspond to a negative value for the square
ol the stability exponent and are considered stable (given that no time-dependent
dissipation mechanism exists in the model). Finaily, perturbations that have a zero
stubility exponent exhibit neutral stability. The corresponding time-independent per-
turbation modes are shown to be identical to the eigenmodes obtained from a bifur-
cation analysis of the rate-independent incremental equilibrium equations of the
system. quantitatively establishing the connection between the bifurcation and stab-
tlity formulations of the problem.

Being mainly concerned with the extension of the Taylor model to hetero-
gencously stressed media, TRIANTAFYLLIDIS and LEHNER (1993) adopted two simpli-
fying assumptions that limit the application of their work to the study of realistic
geological problems. The first assumption, which permitted an analytical solution to
the problem, was that the top layer, also termed the overburden, could be taken to be
infinitely thick. The second assumption imposed a major symmetry on the incremental
moduli of the overburden. limiting their approach to a rather restrictive class of
constitutive responses. This constitutive symmetry implied the self-adjoint nature of
the eigenvalue problem associated with the linearized stability calculations, which
always resulted in real eigenvalues (recall that these eigenvalues coincide with the
squares of the stability exponents). The incremental response of geomaterials does
not exhibit such constitutive symmetries on account of the frictional nature of their
dcformation. An immediate consequence of the absence of symmetry is that the
linearized stability operator is not self-adjoint, which raises the possibility of complex
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eigenvalues. Moreover, if the characteristic time of the problem is related to inertia,
all eigenvalues are squares of the stability exponents and thus flutter-type instabilities
are implied when complex eigenvalues are found. Such instabilities, which have not
been observed in geological contexts, were mentioned in earlier work by Rick (1976),
NEEDLEMAN (1979) and, more recently, by CHAU and RuDNICKI (1989) and LORET
and HARIRECHE (1991).

The present study addresses the two important issues circumvented by TRIANTA-
FYLLIDIS and LEHNER (1993) by generalizing their approach to allow a finite over-
burden as well as frictional, cohesive-type constitutive responses. This new geometry
together with an appropriate description of the in situ stress gradient in the over-
burden yields a realistic model relevant to the study of layered geological systems
and their analogue experiments. Furthermore, the adoption for the first time of a
frictional, cohesive-type constitutive model for the overburden will permit the
simultaneous study of the onset of folding and faulting in layered geological systems.
One of the applications of the present work is the study of the formation and evolution
of sedimentary basins.

The paper is organized as follows : Section 2 is devoted to the general formulation
of the problem. The novel feature here is that the layers’ viscosity and not their inertia
provides the time scale relevant for stability. The resulting eigenvalue problem is linear
in terms of the stability exponent with a possibility of flutter instability every time a
complex eigenvalue with positive real part is found. Finding the stability exponent is
considerably simplified (and on the conservative side), since the instantaneous elastic
modauli of the bottom layer are disregarded. In addition, the finite size of the over-
burden makes it possible to account for the effect of erosion and deposition on the
top surface of the overburden, which is important for the geological setting of the
problem. The erosion condition proposed by BioT and OpE (1965) (named by them
the “redistribution” condition), is adopted. Owing to the finite thickness of the
overburden, no analytical solution for the layer stability problem is possible for
arbitrary thicknesses and in situ stress states. However, one obtains useful asymptotic
results for the cases of perturbations with long and short wavelengths compared to
the overburden thickness and these results are presented in Section 3. The same section
contains the analytical solution that is obtained in the absence of gravity. Results of
the numerical, analytical and asymptotic calculations for two types of constitutive
laws for pressure-sensitive elastic—plastic geomaterials, one with a smooth yield surface
(termed flow-theory model) and another with vertex effects (termed deformation-
theory model) are presented in Section 4. The main finding, discussed in the final
section (Section 5), is the sensitivity of the results to the constitutive properties of the
overburden. Another outcome of the calculations is that the stability exponent is
always found to be real: a flutter instability is thereby excluded. The concluding
section also contains a discussion of laboratory experiments designed as analogue
models of geological two-layer systems and suggestions for future work.

2. MODEL, FORMULATION

The first part of this section is devoted to the formulation of the stability problem
for a wide class of constitutive models of the overburden. In the second part we choose



34 N. Trianraryioms and Y. M, Leroy

two specific constitutive equations for the overburden, namely, those expressing the
flow and deformation versions of Rudnicki-Rice's model. The second part also
includes a description of the in sifu stress and the condition of strong ellipticity, whose
violation signals the onset of faulting and the limit of validity of our stability analysis.

2.1, Formulation of the stability problem

In considering the lincarized stability problem for an overburden of thickness H
resting atop a semi-infinite substratum, one has to investigate the initial behaviour of
the system when subjected, at time 7 = 0. to a perturbation of an infinitesimally small
amplitude & and arbitrary mode shape about the equilibrium state of interest. The
stability investigation is based upon the study of the system’s equations of equilibrium,
in their rate form. For reasons explained in the Introduction, the inertial terms are
disregarded.

In the interest of simplicity. only the plane-strain version of the problem will be
analysed here. Material points in the solid are identified by their reference Cartesian
coordinates X, in a total Lagrangian formulation or by their current Cartesian coor-
dinates v, in an updated Lagrangian formulation. Note that x; = X+ u,, where v, are
the corresponding components of the displacement vector from the reference to the
current configuration. An updated Lagrangian description of the equations of motion
15 adopted in which the reference configuration is taken to coincide with the current
configuration at time ¢ = 0, thus modelling the onset of the perturbation from the
prestressed equilibrium state whose stability is under investigation.

As shown in Fig. I, the reference configuration of the planar interface between
the finite layer and the half-space is taken at v, = 0, with gravity acting in the
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Fii. 1. Geometry of the problem and initial stress distribution. A layer of pressure-sensitive solid, the
overburden, rests on a substratum of viscous fluid. The overburden sustains its own weight and a tectonic

stress distribution characterized by the stress magnitude parameter ¢, the gradient parameters &, and & 5.
and the stress orientation angle ¢.
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—x, direction. Material constants associated with the finite layer are marked by a
superscript (*) (for “above™), while a superscript (°) {for “*below™) denotes the material
constants associated with the semi-infinite substratum.

The rate form of the equations of equilibrium and of the boundary and interface
conditions for the system are written as

[I;, =0 VYx,el—x, +owf[, Vx,e]—w, H],
M,]=0. [i]=0 ¥Yxel-o,+a], x,=0,

ngj:S;)glé'_)éjz V.\‘;E}""f};q +O::{9 R :H§ (;}

where I1;, g; ¢. s and &, are respectively the components of the first Piola—Kirchhoff
stress tensor, the mass density of the overburden, the acceleration of gravity, a scalar
that has a value of either 0 or | and the Kronecker delta symbol. Differentiations
with respect to time and spatial coordinate are denoted by a dot and a comma,
respectively. The double brackets | | are defined as the difference between the values
of the quantity of interest on the two sides of the interface. The first equation (1); is
the incremental equilibrium satisfied at interior points of the two regions considered.
The second equation, (1),, accounts for traction continuity along the matenal inter-
face. while the third one. (1);. expresses the perfect bonding condition at the same
interface. Finally, the fourth equation, (1},, accounts for the top surface boundary
condition at the overburden. The case s = | corresponds to an “erosion” or “redis-
tribution” condition, according to which any asperity in the top surface is either
eroded away if the vertical incremental displacement is positive or filled with sediments
of the same material density if this displacement is negative. This redistribution
condition. proposed by BioT and OpE (1965). is translated into the mixed boundary
condition (1), by prescribing the normal component of the traction to equal the
lithostatic pressure of the missing or extra material. Thus, for s = 1 it is assumed that
the characteristic time for erosion or deposition is short compared with the relaxation
time of the viscoelastic material in the half-space. For s = 0 the converse is true: the
characteristic time for erosion or deposition in the overburden is long compared with
the relaxation time of the viscoelastic material in the half-space, and (1), corresponds
to a traction-free top surface for the overburden.
The system of equations {1} is complemented by the constitutive equations for the
two solids:
a
T, = Ly, Yxel—o, +oof, Vx,e0, H],
b b
fI,, = Lty + Myl Vxiel—x,+ocl, Vxe]—oo, 0]. (2)

The overburden is idealized as a rate-independent elastoplastic material. The cor-
HY

responding incremental moduli L,,, depend, in general, on a number of material
parameters, the current stress state and a set of internal variables that need not be
specified further at this point. Geomechanically relevant constitutive models will be
considered explicitly later in this section, Note, nevertheless, that frictional materials

will be considered for the overburden and that the moduli L, will not possess the
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1 a
major symmetry: L, # L, (i.e. the components of the stress-rate tensor I1,; will not
be derivable from a potential function of the deformation gradient rate F;). The
lower half-space is idealized as a nonlinear viscoelastic or viscoplastic material with
b b

incremental moduli L,;,, and instantaneous viscosities M, ; these depend in general
on a number of material parameters, the current stress state and a set of internal
variables. Specific forms of this incremental response will be given below in this section
and their physical relevance to the stability investigation at hand will be discussed in
detail in Section 4. Note again that the only characteristic time of the problem is the
relaxation time of the material in the substratum.

Having established the necessary governing cquations for the system, we now focus
attention on the lincarized stability analysis of the problem. Consider the system
studied to be at equilibrium and sustaining a given state of prestress, which is assumed
to be orthotropic with respect to the coordinate system presented in Fig. 1. The
question of how such a state of prestress was achieved through geological times is left
open in this paper. All field quantities for the perturbed system are written as a sum
of their corresponding unperturbed or fundamental vatues, which are time independent
and marked by the superscript ("), and a time-dependent perturbation which is
expanded in a power scries with respect to the amplitude ¢ of the initial perturbation
of the system at time 7 = 0. The stress and displacement fields of the perturbed system
thus take the form

0

I, (v, Xan 1) = TT,(x . x) 4ol (0, o 1) 4+ €,
ui(xy. x5, 1) = ﬁﬁi(xlaxbf)‘*‘(m(gz)- (3)

Following the standard hypothesis adopted in linearized stability analyses, it is
assumed that the ¢'(¢7) terms are negligible over the time interval of interest and that
the first-order terms adequately characterize the initial evolution of the system. The
coeflicients in the system of the hinearized equations of motion, derived by introducing
(3) into (1) and (2), are independent of time since the moduli in (2) are functions of
the time-independent unperturbed state. Consequently, the solutions for the first-

order perturbation stresses I1,; and displacements #, have the following structure :
ﬁ,-,(.\‘l,.\'z,l) = exp (A1) I,(x,.xy) and #,(v,.x2. 0 = exp (At) (X, x5), (4)

in which the stability exponent /. is in general a complex number. The two time-
independent functions #,{x,, v,) and [:I,,(.\"l, x-) are the sought eigenmodes and their
amplitude remains undetermined by this lincar ability analysis. Substituting (4) into
(3) and then introducing the result into the equilibrium and constitutive equations (1)
and (2). one obtains

(L,,,\,z?,j\v)_,:o Yy el-o.+o, Vx,el0, H],

b b
(L + My )ig] ;=0 Vyel—o, +oo, Vx,e]—o0,0];

b b
Lyt = (Lisgy4 2M )t ““:] =0 Vxel—ow. +owof,

a

X
o .
Lyl = spgi~d;, Vx el—oc, 40, X,

0,
H. (5)
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b b
Note that the time- mdependent moduh L,,A,, Ly, My, are fully determined by the

knowledge of the prestress H,, = a,,, where o,; denote the components of the Cauchy
stress, and the internal variables that are necessary to define the constitutive response
of the two materials. These variables will be introduced explicitly at a later stage in
this paper.

The above system should be complemented by a decay condition for the mode
away from the interface :

lim 4 = ,],im u,;=0. (6)

Xa— e

The interpretation of this condition is that the displacement and the strain at great
depth are not changed by the infinitesimal perturbation of the top layer.

In the linear approximation, the stability of the system is governed by the real
part of the parameter £ which was introduced in (4). Accordingly, if a 4 is found with
a positive real part the equilibrium state of the system is unstable. Conversely, if all
solutions of the stability problem require the real part of the parameter 4 to be
negative, the system is said to be stable in the linearized sense, for, according to (4),
the perturbation then remains bounded.

The calculation of the stability parameter A is greatly simplified by the additional,
and physically reasonable, requirements of material orthotropy with respect to the
adopted coordinate system and of translational invariance of the governing equations

with respect to the x,-direction. Consequently, since there is no shear prestress
0
(0,» = ¢, = 0), the normal-to-shear coupling components of the moduli L,,,, M,

entering the constitutive equations (2) are zero:
Liya=L 5= lell =Ly = Lysny=Losn= Lzlzz = lezz =0.

Similar relations hold for the moduli M,,,. In addition, the problem’s translational
invariance in x, implies that: 83,,-/8x, = 0L;;,/0x, = ¢M,,/0x, = 0. The superscript
("), indicating evaluation of field quantities at ¢ = 0, is hereafter omitted as superfiu-
ous, since all moduli and stresses entering the formulation of the linearized stability
problem are evaluated at 7 = 0.

In view of the xl-invariance of the coeflicients L, and M, in (5), the Fourier
transform U,(w,x,) = Fu(x,,x1);x, > 0], —1Uxw,x5) = F[li(x),X3):x, = w]
is applied to reduce the system (5) to a set of ordinary differential equations. Conse-
quently,

—’ Ny Ui+ 0N 10 Us s+ o(N i Us) s+ (N U

12).2
o V.’» “‘*‘\J,H,
— "Ny Uy =Ny 15 Uy —@0(Nos U 2+ (Naaaa Usp) 2 = } N ]

a

I/A/(Y7) ng, € [0, H]
Xy, 4) = 7
1//\/(‘( ) :/A/(r")+/M”l‘l(x7) V“VT’_E]_@,O] ( )
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are the Fourier-transformed equations (5}, and (5),. The Fourier transformation of
the interface conditions (5);, the boundary conditions (5), and the decay conditions
(6) in the substrate yields:

CON R Us+ Ny Ut =0, [UT=0
il(!),"\/jll | lr'| — )’\’3333(;’1_3ﬂ = 0. ‘J-L L‘ == 0 o=

ON U+ Ny Uy =0
. . o= H:
N Uy = Nooon Uy = —spg U )

li)m U, = lim' U.. =10 (8)

v Ve

The new variable ¢ = x-/H is now introduced for convenience (sce Fig. 1. In view
of the x,-dependence of the coeflicients in the eigenvalue problem given by (7) and
{8), a numerical (i.e. a finite-element) method will be employed for its solution.

The weak form of (7) and (8), which forms the starting point for the numerical
calculations, is now obtained by respectively multiplying the first and the second
differential equation in (7) by the arbitrary functions dU (&) and SU,(¢) and sub-
sequently integrating by parts in {0, 1] while accounting for the interface and boundary
conditions (8) :

' N PAt L’) I B N U )50
J“ £ 532‘(0[_{ d;— s¥Y iz 1} (?}H dk: < HZI“)H du‘j it "I‘ i

A 1 dUu, v L’> 1 do‘u-ng v 1 de,JrV U)w 4
(‘ 3:::”H de AR RSN wH  dé : zmmH d¢ NapppUa jols 1 dg

l 4 . ] l d(j] )
T wH)? | 20U, N Ni2pUs JoU
(wH)?[‘(ng)U")b'] ,+((.»H)[_<N“‘«)H de ”‘“'"L“)‘('

o av. .\
’*“(x’\’::::(')h, KE “:'\2:11(/’|>0L’:1m“ = 0. (9)

A word of caution is in order at this point, since wH always appears in the denominator
of the various terms in (9). The case wH = 0. which corresponds to the highly
restrictive case of perturbations that are independent of position along the x,-direc-
tion. is casily analysed dircctly from (5} and (6). This particular problem, however,
is so degencrate that it leaves the stability exponent 7 indeterminate. It will henceforth
be assumed. without loss of generality, that wH # 0.

To simplify (9). it is desirable to eliminate the derivative of the eigenmode U,
evaluated on the substratum side ol the interface. Notice that dU,/d¢ must be related
to U, at the interface (2 = 0 ) by the governing cquations for the viscous substratum
(£ < 0). This relation can be obtained as follows. From the linear governing equations
for U, in the half-space (7) and the conditions of decay for U; and its gradient U, , in
{8} «. one deduces (TRIANTAFYLLIDIS and LEANER, 1993) that the desired cigenmode
U{(&) for the substratum takes the form:
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j Viexp (s wHE), E<0, Re(z,) > 0. (10)

3
The constants ¥, and z, satisfy the following linear algebraic system [resulting from
the substitution of (10) into (8)]:

Cilz YV, =0,

I

) s dN,5,, . .
Ci(cn A =NHRO0 Az + o (0 Az, —Ny(0 L4
oH dé
. . . ) dNys» )
Cia(202) = (N2 20 LAY+ N 2200 LAz + H d“ 0 .4);
. . l dN""lI .
C"? :»..1 = — 312 WA AR L A)) D, — o LA) L
2122 A) (N2121(0 L A)+Naa (07, 4))z, wH  dc (07, 4)
. N dNsss, . .
Caa(z,,7) = Noaan(0 L A)z + wH dCJi (0 .2)z—Na2(0 L 2). (1)

The linear system (11) has a nontrivial solution for the V; if its determinant vanishes,
a condition that gives z, as the two roots with positive real part of the following
fourth-order polynomial in z,:

Det [Ci(z,. 2)] = 0. (12)
We note from the linear system (11) thatf

2 % Ci(z,, 4)
Vo=,V v = — C‘i(_ e (13)
120~z

Using (10) again, we relate the components of the eigenmode U, and their derivatives
x

at ¢ =0 to the constants V;:

2 x 1 dy,
U0 )= V., 0)= Viz,. 14
,();,Hd,()Z_ (14)
After elimination of these constants, we find the desired relation between the U; and
their first derivatives with respect to &, evaluated at £ =0 . to be

AUy SRRy gy T 0.0,

(UH dé "IVZ_II Vo

LAl oy o 0+ T 0 ) (15
wH dé =, o, b0 L EO), )

+ The appearance of the same Greek index more than once does not imply summation.
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With these new results, the interfacial term in the variational statement {9) now takes
the form:

! 1 dU N o1dsU 1 dU, N
f [(fvlzzl : '+N1:x2U:) \—!+<"N||:2 - ~‘|'N:11101)3)L”1
1)

wH dé wH d& wH dE

I dU, I doU, | | dU, .
WA SRR ‘——1'17 7 . - E 200 . ’Vw 3 'w J IR d;
+(V““‘(1)H d¢ N“”(‘)(r)h’ d¢ +(N"“(uH daz ”’b->‘ U'} :

ats o
1y 22

1 a - 1 1
. e Y r, 'Y,, Niss - - J
((OH)Q[S(;)‘(}H)LLGL_};"+(QH[( S U,

, ., L
+(N13:1:: :A +N|:\:>U:>5U1+<(N122:j1 -‘7'17"2“N2211>U1
2T 72

i

+Nng:?”_f”‘UJéUJ =0, (16)
S0

IR
o

o2 I

Note that the stability parameter « enters (16) implicitly at the { = 0" interface
term in a complicated fashion through the functions z, and 7,. as may be seen from
(10)-(12). Solving (16) for the stability parameter « therefore remains difficult unless
further simplifying assumptions are made. This is the aim of the remainder of this
section.

To begin with, we disregard the instantaneous stiffness of the substratum, thereby
idealizing it as an incompressibie viscous fluid. This simplification is valid for per-
turbations that are slow enough as to allow complete relaxation of any nonhydrostatic
stresses in the substratum. Assuming that the st&bslratumhis isotropic and sustains a
hydrostatic prestress, the values of the moduli L;,, and M, entering the definition
(7y of N, are then:

K b
oy = (—p+pQgHd,
b @ b P
L= (P*{?é)ﬁH(\’m‘);n
b b

M= M[(Oz/\<);'z+()fif\)ff<)+ > @f,-(),u]- (7
¢

b b h
in which M and (M/{+2M/3) are the shear and the bulk viscosities of the half-space,
respectively. Introducing (17) into the fourth-order polynomial in z, (12), we obtain

b
@—n&&@“’ymgf;ww~ﬂ=& (18)
@ IM+LQAM + pgH)

Hence, the desired roots of (18) with positive real part are found to be:
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pgH
=1 =140 e (19)
2{wH)YIM

for { « 1, i.e. for nearly incompressible behaviour of the viscous substratum.

With this result, and the corresponding expressions for the 7, defined in (13) in
terms of the z,, we use (17) to modify the interface terms of the variational formulation
(16). After some rather involved but straightforward algebra, the stability functional
in the limiting case of { —» 0 for the incompressible isotropic viscous substratum is
obtained:

: I 1 dUI-}—L U I doU,
. 1220 Qe 1202 ) dE

Lo 9%y o) DY AU e s, | ae
+ | La22> f_ Ll dé + 221 e 22Uz > | 4ag

1 dU, .
+ —LIIZZU)H e +L,,U, JoU,

b
I e ) e
—_ e 2 5 — , SU { SU-
(wH)z[g(ng)UhéU‘:L1+(UH|jng(UI0U~+U'OUI)+ wH U,o _:I

i= =0

1
+A'|iU]6U]+U25U2J :O, (20)
oH

¢=0
b
where the definition A = 2AM has been introduced. For simplicity the superscript (*)
a4
for the incremental moduli L,,, is omitted in (20), as it is in the rest of this paper.
Notice from (20) that the stability problem of a rate-independent layer of finite
thickness resting on a viscous, isotropic and incompressible infinite substratum has
been formulated as a linear eigenvaluiproblem for the stability exponent A. Moreover,

the fact that the eigenvalue A(= 2AM) appears only in terms that are evaluated on
the interface (¢ = 0) results in an attractively simple method to calculate A (as an
eigenvalue of a 2 x 2 matrix), as is outlined in Subsection 4.1.

2.2. Constitutive model, in situ stress and condition of strong ellipticity

Having established the general variational formulation for the stability of a finite-
thickness layer resting on an incompressible viscous fluid, we now need to specify the
constitutive properties of the overburden and the state of prestress existing in the
system. We also set up the strong ellipticity condition that determines the limit of
validity of our stability analysis.

The general structure of the incremental moduli L, introduced in (2) is

L= L ii—3(040,+0640,) + (0,0, —0,/0,). (21)

The incremental moduli &, relate the Jaumann rate %,-, of the Kirchhoff stress to
the rate-of-deformation tensor Dy,: %,;, = ¥.1.Dy. The constitutive response of the
overburden is assumed to be that of a frictional geomaterial model of the type
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introduced by RubpNIcKI and Rick (1975). Their model, based upon flow theory with
a smooth yield surface, yields the following expression for the modult &, ;:

[G(o;it)+ KO, NG ay,/T) + 1Koy

J)ﬂ\/w/\ = (1((),-,\(),/+(),/()//\)+ <K‘~ 3G>O,-,-Ok/‘ /I( )+G+;1/§K

(22)

where G and K are, respectively, the elastic shear and bulk moduli of the material, f3
the dilatancy parameter, u the friction coefficient ; and « a scalar that has a value of 0
or |. Because we have chosen an isotropic hardening model. the hardening cocflicient
frin (22) is related solely to the equivalent shear stress 7. The isotropic yield function
depends on a single internal variable that is identified with the accumulated plastic
strain " and 1s written as F(o,;,,7") = t+up— /(") < 0. The equivalent shear stress t
and the equivalent pressure p arc related to the stresses o;; by

12
(' __ Okk ;o S 23
t=\,0,0,] . p= . O = 05— POy (23)

The value of the coefficient z in (22) depends on the usual loading (F = 0. F = 0 for
which » = l)/unloading (F =0, F<0 or F<0 for which » =0) conditions. In
addition, the haldcnmg cocthicient /1 is related to the radius of the elastic domain in
stress space /(o) by
df q

h= an (24)
The function f(;") can be determined from the knowledge of the material’s uniaxial
stress—strain curve. Specific choices of uniaxial stress strain curves will be made for
the subsequent numerical calculations.

The moduli (22) of the isotropic flow theory imply an unrealistically stiff response
to sudden changes in the loading path in the plastic domain. This deficiency is the
reason that the flow theory model overpredicts the critical load for the localization of
deformation. To remedy this shortcoming. RupNickr and RICE (1975) also proposed
a deformation-theory version of (22) whose incremental moduli are given by :

: . 2 .
i/);ﬁ', = G(‘(<5,,\<5,,+(5,,()//\)+ <Kd4 ,{Gd> 0,0k
G oD+ BKSG (T + KO,
/ld( )+Gd+[ld/fd[<d

1 1 | 1 1 i 1 1 1
R T
G G h K K (Uw—h I h h

L 1_1<l h -s)
A A A A & t

where the hardening coefficient /1 is still given by (24) and the secant coefficient /i, is
given in terms of the accumulated plastic strain +” by
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b= " (26)

P

The reader interested in the derivations of the deformation and flow-theory moduli
of Rudnicki—Rice’s model is referred to the original work (RUDNICKI and RICE, 1975).
The expressions for the incremental moduli in terms of the existing prestress state in
the overburden and its material constants have been recorded here only for com-
pleteness of the presentation.

We now specify the state of prestress in the finite layer (¢ [0, 1]) in terms of the
four parameters o, ¢, k, and k:

011(E) = 0ycos (@) +hk pgHE, (&) = pgH(E—1),

:3(8) = oy sin (@) +k \pgHE. 27)

The first parameter, g, characterizes the magnitude of the in-plane stresses in the
overburden at the interface level. The second parameter, ¢, defines the orientation of
these stresses with respect to the coordinate system adopted. Finally, the remaining
two parameters, k, and k,, provide information on the prestress gradient in the
overburden along the x, and x; directions, respectively. In geological applications the
values of these stress gradient parameters lie in the interval [0, 1].

In the stability analysis based on (20) attention is restricted to (sufficiently smooth)
global-type modes #,. Hence, one must verify that the stress state in the overburden
is such that initiation of any local type of instability in the form of a shear band, i.e.
faulting, is precluded. Consequently, the stability calculations will apply only to those
stress states that satisfy the strong ellipticity condition for all the points in the
overburden, namely (see RICE, 1976),

Ly (Smnnem; >0, YmoneR'(Jm|f = |n]| =1), Y&e[0.1]. (28)

A condition equivalent to (28) requires that the matrix L, ,(&)n;n, be positive
definite for all three-dimensional unit vectors m, i.e. ¥neR*. After some straight-
forward manipulations, this yields the following inequalities that have to be satisfied
by L, (&) in the interval [0, 1]:

L&), Li22(8), Laiia(8), Lina(é) >0,
(L1 + Ly s EN(Lany () + L2211 (E) S UL 2 (O Loy (EN'
(L (DL (EN']. (29)

Whenever these conditions, which depend on the imposed stress state on the layer,
are satisfied, the appearance of a shear-band-type instability is excluded. The neutral
stability curves presented in Section 4 terminate at points where (29) is first violated,
thus signaling the onset of faulting as the dominant type of instability.

It should also be repeated at this point that the statement of the stability problem
(20). (21). (27) and ellipticity conditions (28) is valid for a wide class of constitutive
relations, as long as these can be cast in the incremental form (2). The present choice
of the incremental moduli, in accord with the models proposed by Rudnicki and Rice,
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does not restrict the generality of the formulation of the stability problem given in
this section.

3. SpeciaL CASES

The results of our study are presented in the form of stability diagrams depicting
stable and unstable regions in a plot of dimensionless wave number (wH) versus a
dimensionless stress (a,/G). The curves separating stable from unstable regions mark
the dimensionless critical wave number at neutral stability (wH), as a function of
the stress state imposed on the finite layer. In the absence of gravity, these curves are
found analytically. In the presence of gravity, two such stability diagrams have to be
presented for each given set of material properties in the overburden. The necessity of
introducing two diagrams will become clear during the presentation of the asymptotic
analyses and is essentially due 1o the presence of a gradient in in situ stress. The first
diagram corresponds to a given layer thickness, i.e. to a fixed dimensionless quantity
ApgH!G, and provides the critical wavelength L. = 2nH/(wH), corresponding to a
known stress state in the layer. The second diagram provides the critical height of the
layer H, = (wH) /o, which 1s the height required for the stability transition of the
finite layer at a given perturbation wavelength L = 2n/m. i.¢. for a fixed dimensionless
quantity Apg/Gw, corresponding to a known stress state in the layer. Henceforth,

Ap = /) - }; denotes the density difference between the overburden and the substratum.

Although the calculation of the above-mentioned stability diagrams is based on a
numerical technique. i.e. a finite-element discretization of the stability functional in
(20), a number of special cases can be solved analytically, thus providing valuable
insight into the problem as well as an independent verification of the numerical results.
The asymptotic results are derived for the two possible limiting cases for
the wavelength of the disturbance with respect to the layer’s thickness, namely, the
long-wavelength limit (vH — 0) and the short-wavelength limit (wH — o). Each
limit is studied for the two different stability calculations, one for the fixed over-
burden layer height (ApgH/G = const) and the other for the fixed wavelength dis-
turbance (Apg/Ga = const). Finally, the stability results in the absence of gravity
(ApgH /G = Apg/Go = 0), which can be found analytically, arc also presented in this
section.

Readers interested primarily in the numerical results of this investigation can find
the main conclusions of this section in Subsection 3.4 and then proceed directly to
Section 4.

3.1. Long-wavelength limit (0H — 0)

The investigation of the stability of our geological structure to long-wavelength
perturbations yields the stability exponent along the horizontal axis of the (wH)
versus (o,/G) plots presented in the next section. We also construct an asymptotic
expression for the neutral stability curves for the case of constant Apg/Gw. The
combined knowledge of the neutral stability curves and the stability exponent along
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the horizonal axis (wH — 0) permit the identification of the stability regions of the
graphs. The asymptotic expansion of the neutral stability curves, simplified for the
special case of a linear elastic response of the overburden, is discussed and compared
with earlier results obtained by RAMBERG and STEPHANSSON (1964).

3.1.1. Fixed layer thickness (ApgH|G = const). The starting point for the stability
analysis is the variational formulation (20) of the problem, with the incremental
moduli of the overburden L, given by (21)-(26) and the corresponding stresses by
(27). For simplicity, the small parameter ¢ = wH is introduced, which permits (20)
to be rewritten as

T 14U, )idéU; 1 dU, )
e de abp o e N 7 7
L KL”& R i S G T A

' 1 dU, 1 dsU 1 dU .
+(L2222 )_“Lzanx) ; ‘""‘”:’2“ +(L2P1 8 dt:r +Lon U )OU’_’:{d‘S

1 a *.1 i ] "

i=1

A
An inspection of (30) suggests the following asymptotic expansions for U,, U> and A
in terms of g:
9 H
Ui, e) = U(&) +eUO)+ (),

A 28“‘/\»[*{"/\0—{‘81&;‘*‘(9(53). (3‘)
Note that the stress components and the incremental moduli depend on the vertical
position ¢ in the overburden [see (21)—(27)]; however, they are independent of the
dimensionless parameter ¢.

Various choices are possible to fix the amplitude of the eigenmode U, ; the following
normalization condition is assumed :

L
\{ {{ii{7}+{[ gw]{iﬁ'—i {32}

Substitution of the asymptotic expressions (31} into (30), subsequent expansion in
terms of ascending powers of ¢ and grouping of terms of the same order in ¢ results
in the following expression for the term of lowest order :

0
déU dU,\déU a 0
Ce): f [(L d¢> déw(L g) déz]dé [spgrwzwz]w

0 0 0
]

Upon integration of (33) by parts, and in view of the arbitrariness of §U{&) and



66 N. TriaNtaryrLLipis and Y. M. LEroy

Ol ($). one arrives at two two-point boundary-value problems. The first of the two.

corresponding to oU (<), 1s

0 )
| 10U, (& dL
L L@ 0 veeny o LU
dé dé dé
{) {)
du iU 0
Loy 00 =00 Z=1: Ly "=A U, Z=0. (34)
ds ds

The constant ¢ has to cqual zero, since L--,(Z) differs from zero [the overburden is
8]
assumed to be in the elliptic range. sec (29)]. Consequently. one finds that U, (&) is a
]
constant, denoted here by U7, and the complete solution of (34) reads
0 ) O
U =U,. ¥ief{0.1]: A U, =0. (39)
The sccond two-point value problem, corresponding to 0L 1() in (33), is

i 1U.(< 1U- (&
_ (,[LM«Z(:)( ()J =0. vie[0.l] <= Lz:::(‘:)( ’() =

ds

d ",1 M 0 ) d(/_ |>Y )
- : _(qu+/\ DU.. =0, (36)

P~
o
|
-
=
<
o
I
Il
h.
I
™
I
I

9]
The differential equation (36), implies that dU~(3)/dé = ¢/L~-~(E). Note that
L.,., differs from zero in view of the ellipticity condition (29). while the two

boundal\ conditions (36)-, dictate the \Llluu of the constant ¢ to be spc/HL () =
3

pql[+/\ HU-(0). Upon integration of dl ‘d& over the interval [0, 1]. one obtains

dl ( ¢ ) 1 | boode
S LA VEe0 ] o — - T =0,
1 Lo22(S) pgH  pgH+A , L5055(0)

0 b "

Ly = — Uy VEel0. 1] (pgH+A )Us= 0. (37)
Stability depends on the sign of the real part of A |, which we now determine. For
the casce in which matenal in the overburden is heavier than that in the substream

a b . . . . N .
{p > p).onc distinguishes, according to the results in (35) and (37). the following two

CAsSCs .

. 4

. NS .
=t =00 T e L el

a Q@ : 1 b

} A | = I:([)‘(]H) ! “[ sz‘iz(k)d«. *[).C/l‘[
] 0 [l )

=00 =0, U(&H=0, vie[O.l]: A | =0, (38)

0
where ¢ is nonzero if there is erosion (s = 1), otherwise U/, % 0. The physical interpret-
ation of the above stability result is straightforward. When erosion is accounted lor
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(s = 1), the stability to long-wavelength peturbations depends on the stress state in
the top layer, as can be seen from (38). From (21) and (27), it is known that the

modulus L,y5, = 37352+;‘)gH(1 —&); and since £ 5,,,(&) > ;)gHé for the constitu-

tive models considered here, one easily verifies that ;)gH_[(') L>25.(8)dé < 1. This line
of reasoning leads to the conclusion that A_, > ApgH > 0. The other possibility
given in (35) 1s that A_, = 0 and thus justifies the choice made in (38).

We conclude that the layer of finite thickness, for the case of erosion on its top
surface, is unstable with respect to long-wavelength perturbations regardless of the
prevailing stress state. This situation is easily interpreted as the well-known instability

of an interface between two fluids if the heavier (of density ;)) lies on top of the lighter

b
one (of density p).
In the absence of erosion on the top surface (s = 0), one sees from (38) that A | =

The second possibility indicated in (37) (A | = —};gH < 0) implies a smaller real
part for A |, thus explaining the choice made in (38). The determination of the
overburden stability will therefore require finding the first nonzero term in the expan-
sion of A in (31).. To this end, one notices from the structure of (30) that the odd
terms in the ¢ expansion of U, and the even terms in the ¢ expansions of U, and of A
are 7€ro:
2kl 2k

Ui () =U(Q) = Ay =0, VkeN. (39)
The first term that could provide information on the stability of our system with
respect to long-wavelength perturbations and in the absence of erosion is thus A . We
now proceed to its determination. From the inclusion of (39) in the asymptotic
expansions (31) and their subsequent substitution into (30), one obtains for the next-
order term

1
o dU, o NdoU, | .. o 0 p 1
Ce ). Lasas dé — L. Uy e dé+ | (pgHU,+pgHU>)0U, =0.
Ji & > E=0

(40)
Upon integration of (40) by parts, and in view of the arbitrariness of dU,(&), one
obtains the following differential equation and boundary conditions:

l
d dU,(&) 0
— Losan(E) =077 — Loy (€ =0. Véel0.1]:
del: 2222(¢) de __1|(C)U1} 0 ¢el0.1]
1
du, 0
LZ:ZZ \,_'_Lﬁ‘v”Ul—O, E:l
dc
d(lj‘v 0 a 0 b 1
Liaas dé_ — Ly Uy =pgHU, +pgHU,, ¢=0. (41)
After simplification, these equations read :
! Qa
. dUA(E) LY . ! oo
Lon@ 2 Lai@U =0, veep s GO = =40, @)
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Continuing in a similar way with the ¢(1) term of the asymptotic expansion of (30),
we obtain

> |
! du, doU dU,
(((I)ZJ [(lez g +L; 17U> dvl (*anﬂ i +L11||L 5U|]di
0 < ¢ dé

a 1 0
+[(ngU2+AlU1)5U1] =0, (43)

&{=0

which in view of the arbitrariness of dU (&) gives, upon integration by parts,

I
d ., dU(©) § _dUA(©)
_dé[me(C.) ra’g +L52(8) U(é)} [le(g) iE +Lm](é)U =0,
véel0,1];
dU, ! 3
Lisy o +L-U.=0, E=1;
dé
dlzj 0
L s, +mel~»quU~+A U, &=0 (44)

The above system is of the form —df/d&+g = 0 for &[0, 1], with f(0) = ¢ and
f(1) = b. To permit a solution, the function g(¢) and the scalars ¢ and b have to
satisfy the compatibility condition ff) g(&)dé = b—ua. Consequently, from (44) and

(42), one obtains
! Ly vLss )
A, =f(ng>—J (Lm.~ ne “')dq, (45)
0

p

0
if one uses the fact that U, differs from zero [see (38)] for s = 0.

We have in (45) an expression for the leading term of the asymptotic development
(31),, whose sign determines the stability of our system with respect to long-wave-
length perturbations in the absence of crosion. A physical interpretation of the integral
in (45) can be given for the case of plane-strain uniform stretching of the overburden
under plane-stress conditions (i.e. IT., = 0). In such a case (2), gives IT,, = Eu,,.in
which E, = L,,;—L,,22L+2,,/L1»- is the tangent modulus relating the first Piola
Kirchhoff stress rate to the corresponding strain rate in the direction of stretching.
This modulus is in fact the integrand of (45). For the uniform stretching case at hand,
the integral (L], E, dé&) in the right-hand side of (45) thus represents the slope of the
force displacement response of the layer. Obviously. in the absence of gravity. stability
is ensured for positive slope. jf, E, d¢ > 0, as one can see from (45). We thus conclude
that, in the absence of erosion (s = 0), as long as the slope of the force-displacement
curve for the plane-stress uniaxial stretching of the layer is larger than the lithostatic

a b . .
pressure at the interface [for (p/p) = 1]. the overburden is stable with respect to long-
wavelength perturbations.
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3.1.2. Perturbation with fixed wavelength (Apg/Gw = const). Again, the starting
point for the analysis is the variational formulation (20) with the incremental moduli
for the top layer L, given by (21)~(26) and the corresponding stresses by (27). Using,
as before, the same definition for the small parameter ¢ = wH, one obtains from (20)

! 1 dU 1 doU 1dU,
j) [(Luzlg d§]+L1212U2>3 CL/:I‘F(*LHZZ8 dv_+Llll|U >5U1
! dU» 1 dsU, 1dU, B 3
zzzz —Lyp Ui )=, 7+ Laysy— — 0 + Loy Uy JoU, | dE
¢ d¢ e dé

a b
I 1 ‘
J{ 9,60, } +|:Bg(Ul(5U3+U25UI)+ 2P v,
=1 w £ W

/:(U oU,+U,oU, )J =0, (46)

i=0

which differs from (30) in its boundary terms.

The asymptotic expansions for U,, U, and A are still given by (31), with A | =0,
and the mode normalization condition (32). However, it follows from the expressions
for the in situ stress (27) that those do depend now on the small parameter ¢:

a

a”=a(,cos(<p>+akl’fc: azz=s—p—j(é—1>, an=a(.sin(<p)+ek3%é. (47)

As can be seen from the expressions (21)—(26) for L,;,, the incremental moduli are
functions of the stress state. Consequently, according to (47), they should obey the
following asymptotic expansion :

0

1
Lijw/(&.8) = Lip+ €Ly (E) + " Ly (&) + C(&Y). (48)
Notice that the £-independence of the zeroth-order term in ¢ of the stresses given in
(47) is shared by the zeroth-order term in the expansion of the incremental moduli
4]

L, in (48).

A substitution of the asymptotic expressions (31) and (48) into (46), an expansion
in terms of ascending powers of ¢ and a grouping of the terms of the same order in &
give the following results for the term of lowest order:

0 0
" 2)[‘ <z d}/l)da‘Ul (z iU)dOU}dé_o )
‘e 7): . 12217 KE +\ La22n dé d¢ (

Upon integration by parts, and in view of the arbitrariroless oféUl(()é) and dU,(&), one

obtains two two-point boundary-value problems for U,(£) and U,(&), with ¢ in the
interval {0, 1]. The two systems are particularly simple [similar to (34) and (36), but
with the boundary conditions set to zero]. Furthermore, the condition (29) of strong
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0 0
ellipticity in the overburden, which implies that the moduli 55, and L,»,- differ from
0 4]

zero, permits one to deduce from (49) that U, and U, are constants:

0 b [} i}

viel0.1]. (50)

The asymptotic expansion of (46) is continued (o the next term ¢ (¢ ') using the
results (50) :

I I
| I 0 dU, o v\ dsU, i du, 0 "\ doU, }
(e ). Ly, d: +L~nUs de +1{ Lo e L. U, de d¢

i b
) 0 ¥ 0 X il N 0 .
'* lz\' Py L”vﬁ()‘(/vj:! + |:/ g l—r”v]()L'Yj +A()((JY1 0 L’T] + (_/"j()(./’vz):l = (. (5' )
el S :

) 0

Here again. (51) yields two two-point boundary-value problems as soon as the arbi-

trariness of 0L () and 6+ (&) 1s accounted for. The first problem, corresponding Lo
oU (D). is

t
1 0 d(/ C [i] 0
- (‘, L]:;] I;,(-)+L]:]2("'j :0. VSG[OI],
dé dé

( dL]| 0 il 1l d(]/'rl 0 il 0
Ly, de +L =0 S=1: L., dz + LU= AU, Z=0. (52)

o [h
Given the fact that L., = L5, [see (21) and (47)] and that both moduli differ from
z¢ro because of the condition of strong cliipticity (29), (52) simplifies to

o 0
+ LZ = ()a v(E [0, 1] A“L"'l = ). (53)

The second two-point boundary-value problem extracted from (51) and correspond-
ing to oU- (<) reads

I
d 0 iL‘C ] 1]
N [L@:( d‘j’)L:g],U,}(). vielo.1]:

dé

|
1] d Lw 0 0 Py 0

Losss ac —L.. Uy =ys (;) U,, ¢=1:
! b
[t} dl/, 0 i} Yo 0 B
L5, ¢ . — L Uy = </: +A|)>U3~ ¢ =0 (54)
< ¢

This 1s further simplified to
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L a b
0 dU,(¢ 0 0 0 ) 0
L C I S veelo.1]: (=57 + 9 4A,jus=0.
dé w W

o)
(55)

As before, stability depends on the sign of the largest possible real part of A,
obtained from (53) and (55). For a substratum lighter than the overburden (/l) > ;)

two cases are distinguished depending on the erosion condition in a way that is
analogous to the derivation of (38):

Agg
w

) 0] 0
=1:U0(5) =0, Uy(Q)=U, VEel01]; A=
(56)
0 o [}
s=0: U0 =U,, U =0, Vie[0.1]: A,=0.

The physical interpretation of the above result is that the geological structure is
always unstable with respect to long-wavelength perturbations, regardless of the
prevailing in situ stress state, if the erosion condition is imposed on the top surface of
the overburden (s = 1). In the absence of erosion (s = 0), higher-order terms in the
expansion of A are needed to determine the stability of the overburden. To this end.
one has to consider the next order term in the expansion of (46):

0 dl:f] | d(ljl 0 1 d(SUl 0 dl]/7 0 o
¢(1): Ll”] df + L2, Cié +L22U, Vdcf +| —Lin» d5_+LllllU! oU,

2 i
oAU, 0 dU, o ! doU, (v dU\\. .
+<L312 dv' LZZ’Z dé L"’IILI—L’“[IU> df (Lllll d‘f‘>(\)U2] dg

b
0 1 Q0
+[<p" U+ Y U3>(5U3+A,U|(SU,J —0. (57)

=0

As expected, two systems of differential equations and boundary conditions are
associated with the terms 6U,(&) and oU,(&). The system corresponding to 6U ((E) is

dlo  du,© ! AU
—dé[L.rm d‘é“ L (O L Ud)
0 dU, © 0
+| —Lyj— +L U [=0, VEe[0, 1],
d¢
o du, 1 dU, 0 , )
LIZZI dj +L127| d, +L|’)|’?U’7‘O C: l.
I
0 dU | dU 0 ! 0 § ’
Liss d¢]+Ll”l E?C:I"_LllllljZ:AlUl* &E=0. (58)
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b

A nontrivial solution for U, has to satisfy the (,OYdeUbﬂlt) condxtlon dlscussed after
i¢]

(44). If such is the case, (58) and {55), imply thatdb jdé = (Lm” L,m}b fors =0,
and one obtains

Ay=—(L,— ‘_..‘617_:2‘.‘_ . (59)
Ly

This resuit has an interpretation similar to the one given for (45), which was
obtained for a constant value of Apg H/G. The right-hand side of (59) is the negative of
the tangent modulus E, = L, — L ::L15,(/L1;, of the uniaxial force—displacement
response. Hence, for a stress state corresponding to a displacement prior to the
maximum load. £, is positive and the geological structure is stable with respect to
long-wavelength perturbations. Conversely, negative values of E, imply instability.
The absence of an integrz}‘l on the right-hand side of (59), in contrast to (45), is due

to the ¢-independence of L,,,. Notice also the absence of gravity effects in the present
case of fixed perturbation wavelength (Apg/Gw = const), as opposed to the case of
fixed layer thickness (ApgH/G = const).

3.1.3. Neurral stability curves (Apy/Gw = const). The results obtained thus
far determine the stability of points along the wH = 0 axis in the oH vs ¢,/C
stability diagrams. Given the interest in the boundary between the stable and
unstable regions in these diagrams, i.e. the critical wavenumber (w,) curves for
ApgH/G = const or the critical height (H.) curves for Apg/Gw = const, attention
is next focussed on obtaining these curves in the region of small wH using the
asymptotic technique developed above. The case Apg/Gw = const is the easier
of the two to investigate, since the asymptotic expression for the H.-curve can be
obtained analytically.

The desired curve is found in implicit form from the requirement
Re[A(wH,6,/G. Apg/Gw)] = 0, where the stability exponent A is calculated from
{20). In all our numerical calculations, which are presented in the next section,
the boundary between the stable and unstable regions in the wH vs ¢,4/G stability dia-
grams always satisfics A = 0, i.e. the critical point never corresponds to a flutter
instability. Consequently, the critical layer thickness H,. can be found implicitly
from

Ale,0,/G, ApgiGuw) = 0. (60)

To avoid singular terms in the asymptotic expansions of H. as a function of
0,0/G and Apg/Gw, one must fix ¢ and ¢,/G and look for the ¢ and ¢,/G-depen-
dence of Apg/Gw along the curve of neutral stability A = 0. By expressing
(Apg/Gm), = f(0,/G, £) in an asymptotic expansion with respect to ¢, one obtains the
desired Lrlncc\l layer thickness for any given value of the parameter Apg/Gao.

The starting point for the asymptotic expansion of (Apg/Gw), in terms of the small
parameter ¢ = wH along the neutral stability curve (A = 0) is once again (20}, where
for convenience, the definttions ¥, = U,/e and V', = U, are now introduced :
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! av, dév dv,
,{E ‘: Ly —5 dé imzy) dz = ( Liyvoo—¢ qz +&” Liiil;!)éyi
) C <

dov dv
+(%L2222dV L7711V1>‘*“2““+“(L7 : +Lv|17V7>5V7] d‘f

e dé dé Mg
| pG Apg) ] { 56<Apg)
N A IV sp. | 1] P 2P V4 V.8V,
SSAp(Gw théV_ érl+ 6Ap G ViV, + )
b #
1 pG 'A;}g;) }
LPUARIY L syl o 61
+- é&p(G{z} | 6V, - 0 (61)

By inspection, the adopted asymptotic expansions for V; and {Apg/Ge), in terms of
& are

Vi(S,e) = V(€)+8 V(i)“w”’? () +0(°),

A
( a‘f) = efpo+e2y2 4874+ OO (62)

It follows from (27) and (62} that the overburden stresses have the following depen-
dence on g

oG
6, = gocos{p)+&k, Ew“(,§+{“(s“}

pG
52 = &7 1o(E= DO

£

Gy3 = Ggsin (@) +ek, A‘f b0+ (). (63)

In view of (21)-(26), the equations of (63) imply the following asymptotic expansion
for the incremental moduli:

8 2z 4
Ly fley= 3{;&5‘?33}&;&;{5} + g“{@fd{‘f} +0(%). {64)
Notice that the {-independence of the €(1) term in the stresses implies a singiiar

independence of the ((1) term in the expansion of the incremental moduli L;;;.

The mode normalization condition is given once again by (32), which in view

of the new yararmtrization of the eigenmode V; introduced in (61), becomes
0

fo[V2Va+2V, ¥ ]1dé = 1. For simplicity, the slightly modified normalization con-
iU

dition j(', V,V,dE = 1 will be employed in the rest of this subsection.

If one substitutes the asymptotic expressions (62) and (64) into (61), expands the
results in terms of ascending powers of ¢ and then groups the terms of the same order
in £, one gets the following results: for the €(s™7) term of (61) one obtains (49) once
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0 { 4] 0

more (with U, = 0 and U, = V», which have been 5h0wn toimply that V5 is (.Ohbtdnt).
il
The modified normalization condition yields |“ -V~ = 1 which implies that I =1
0

The next term of ¢ (1) in (61) gives. after also taking into account that dV~/d& = 0,

0 0

! o dyr, @ voNdal, 0 dr, o v o Ndol,
(l): Ly o 4LV .t Lasva 0 — LoV, P
o | dg~ dg’ d% dg

v i [}
+ 2 v +2 {V] )(51/ }df PG f’ 14 } + PG 'l" 5V:‘ =10
212 2112V 2 2 —1 9 oV 5 YoV o = U,
2121 dé 22V 2 - Ap sk a0b 2 c~| Ap 0¥ L

(65)

Upon integration of (65) by parts, and in view of the arbitrariness of dV,(&) and
0V1(&), one obtains two two-point boundary-valuc problems. The system cor-
responding to oV (&) is

4]
d 0 dl/ b4 4] {)
li‘llll l(g)"‘L]:lez}:(L Viel0.1]:

dé d¢
) 0
0 d VI 4] 0 0 Vl 0 0
Ly, i +Li V=00 =1 Ly, de L Vo=0, C=0. (66)
de <
) 0 0
Notice. however. from (21). (63) and (64) that L5, = L,,,» = i/’ma\[o() cos (¢)]/2.
The strong ellipticity condition (29) being sdtlshcd we know thal LI 2, differs from

0

zero and rewrite (66) in the simplified manner: L 1 dV jdé+ V ») =0 for £e[0,1].
The simplified expression for (66) and its solution read

d[/ :‘ o 0 . 0 .
() +V.=0 <= V(&) = —E+1V,(0). (67)

0
in which V', =1 has been used. The second problem obtained from (65) and cor-
responding to oV (&) is

0

d 0 dl 0 ] 0 dy 0 0 5
_d’:|:L23: dL( )_Lw IIV( ):| l:L:lﬂl d’:l‘i‘Lz]]:Vzil:(), VgE[O,l].

0 Tobs E=0. (68)
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The above system has a form similar to (44): —df/dé+g = 0 for £€[0,1] with
J(0) =g and f(1) = h. Similarly, to permit a solution, the function g(¢) and the
scalars « and b also have to satisty the compatibility condition j(], g(&)ydé=hH—ua.
Since the deﬁgition o(f]“the moduli (21) and the asymptotic development (63) and (64)

indicate that L, ,,— L5, = ¢, cos (¢), one obtains from the compatibility condition
and (67)

I 0 G 0
(Loyy>— me)Vﬂdg—a(,cos((p)Vw—(vp p) vo Vs
0

L Ap [ay
<= o= 4 G cos (p). (69)
sp—p

]
Consequently from (67)—(69), the fact that V', = l and the modified normalization

condition fo Vw V,d¢& = 1., which implies that [, V'y Va = 0, yield the following result
for V:(g) :

=] (el s)ho)
—'](z‘w"* 2211 ‘2”+6 + C_E 1(0)

222

V()

The next term in the expansion of (61) is

4]
) [t} dVl 2 dV| 0 2 2 0 d(SVI
(((F) Ll’”l' v L122]'d§7+LI112V2+L12l2V2 ¢

0 d[/7 0 0 .
_L]]ww" *+L||11V OV[

()qV7+,0V7)oV:|

=1

o 0 ;)G 0 2
vo(VioVo+V,yoV)+ A?()’sz‘*‘Ton)éV: =0, (71)

i=0
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0
in which the condition dV,/dZ = 0 has been exploited. Treating (71) like (65), one
obtains from (71) two systems of differential equations plus boundary conditions.
The system corresponding to 3V (&) is

0

dfo dV (i) dV 0 2 2 0
—aélilen Tas Ll”l(c) +L|212V1(5)+L1112(C)V3
0 df/,’ 6 O .
+[_L1|12 d?f)‘f'Ll]llV(Q}:Q vielo,1],
2 0
0 dv, dv, o 2 2 0
L2y, F L i AL Vot Ly V=0, =1,

dé

0 d]:/l 2 dVI 0 2 2 0 0 3
Ly, E; + Lo - dy +L12|2V2+L|212sz‘Ab’"/oV:» £E=0. (72)

Note that the above system has a structure similar to (44) and (68). We thus conclude
that a solution is possible if the following compatibility condition is satisfied :

o df/,(g) . 0G0
J [_Lllll T LHHV(C) dé = —%' 7oV (73)
] 1Y

0
If such a condition is fulfilled, and bearing in mind that V', = 1, the substitution of

(67) and (70) into (73) yields

4]
0 l L||13(§p+p)/2 L-\w«ap G
Vi(0) :’2 U R R Ap i
Llllle_') ‘Lll7"L”7ll

(74)

Consequently, one deduces from (67), (70) and (72) that

a1 0
15(): o { (L1|”+L1717)V(C)+L1| 2 V»(0)

0 C“l ‘G
+Lm.[ cV«»] = /} (75)
D

The derivation of (75) also required the result obtained from (21), (63) and (64)
namely the relation Lml(é) —I:mz(cf) = (;)G/Ap)yo(g”~ 1). Note also that the right-
2 0

hand side of (75) is completely specified, since V,(&), V,(0) and vy, are known from
(70), (74) and (69), respectively. The second system obtained from (71) and cor-
responding to oV, (&) is
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df? d;/z(f) 2 dlz/z(é) 0 22 0
~ a4 Lisss E +L15::(8) - E — Lo VI(C)_Lzzll(f)Vl(f)]

2 ()

772 L‘)[”l(g) +L7[[‘)V(f)+L’)||7(i)V’?}:O, er[(),l],

d¢

4 2 N
0 dv, 2 dv, o 2 2 0 })G 0 2 3

2202 df + Loaas dé' —Lypy Vi—Lypn/Vi=s '&;(7: VityeVy), &=1,
0 d;’> 2 (1[2/7 0 2 2 0 ;)G 0 ;G 0 2 }
Lo déi + L1 dﬁ_ Loy Vi=Loon 'V = Ap 7oVt Arp(h VatyoVs), ¢=0.

(76)

Working with (76) in the same way as with (44), (68) and (72), one finds that a
solution to (76) is possible if the following compatibility condition is satisfied :

()

o dV £ 0 : 2 0
J; [L:m df( ) L’l’l(f) LZIIZVZ(C)'FLZIIZ(é)VZ:]dé:

a b G a 2 b2 a0 G
(sp—p) Ap y2+[spVo(1)—p V2 (0)—p V,(0)] Ap 70- (77)
From (21), (63) and (64) the following equalities are established :
1
[,
0

The integral of (d .V,/dé) that appears ip (77) is calculated once (75) is substituted

into it. Note also the simplification: j(l) f/Q dé = 0, from (70). With the help of (67),
(70) and (74). the following solution for 7, is obtained from (77):

P~

sn2(8)— L ()]dé—l‘(PG/AP)(/o/z) and L,» = Loz

0 0 0 0
a b G I(Lnlle:z:’Lllzsznl

L2222
. b /0O 0 a
sp—p| Lyayi+Lyias p
[Té . >+§<1+k1>]<A VO)
LZZZZ
BRE {[Lw(sggrpg/g Lo plLas (D 4+ p)/2— Lsssp)
0 0 0 0
2222 Llll L _LIIZZL'_’]H

( a)2+ ab b 2:|}<G )2 78
N — .
p):+spp+(p) Ap o (78)

Finally, from (62), (67) and (78) we find that the following relation between
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(Apy/Gw).. »H and ¢,/G holds at neutral stability (A = 0) for small values of the
parameter ¢ = »H [up to € (¢)]:

0 4]
Apg Ap oy . Ap I Ly Lyssn—Ly5:L5,
(Gm) =(oH) [, lcos(p)+(wH) T, 16 e S

Sp—p G Sp—p Ly

i b 0 0 a
Sp— L77 +L 9 l a
(b)) e
Lasas sp—p

0 . {0 0

B a b | a b
G l:[Lllzz(~"/’+/))/2 2P L (5p+p)/2—Liyaaap]

0 0 0 0

‘1‘7LI]12L22H

1 a . ab b 1 T, .
+ 5 [(A‘p)"+Sﬂp+(p)'ﬂ< b 08 (w)) } (79)
- /) J

sp—
1]
Note that. in view of (21), (27) and (63). (64), the normalized moduli L, /G arc
functions of the normalized stress o,/G. As a result, the desired relation between ¢,/G
and mH at neutral stability (A = 0), which is implicit. can be solved for a given
Apg;Ger by any convenient means,
The above result is cons‘i’derubly simplified if the top layer responds elastically, since

in this case /G < L and L, = G10,0,,+ 0,5, +[2v/(1 —2v)]d,,6,,' . In this instance.
/ { 7 / 7 ]
(79) yiclds

Apy Ap oy . Ap |
Go ) = M) o G oStV RN T

Sp—p Sp—p
At neutral stability. that equation tells us that the critical stress, (g,).. for the onset
of buckling of an elastic beam resting atop a fluid bed is

a )}

(sp—plg 1 .G
(0,). = " wH (wH) 6(1 _1)° (80)
if we set the stress orientation angle ¢ to zero. In the absence of erosion (s = 0). we
find that (80) is equivalent to Equation (9) of the paper by RAMBERG and STEPHANSSON
(1964). Interestingly enough, these authors traced the original publication of this
result to the beginning of the century [SMoLucCHOwskI (1909); see RAMBERG and
STEPHANSSON (1964) for further reference].

The derivation of (80) for the particular case of an clastic overburden, holds for
perturbations with small wave number. The equation is thus valid only near the origin
of the stability diagrams. Nevertheless. it will prove useful in the discussion of Section
4, since the neutral stability curves in the compressive range often lie in that region
of the stability diagrams. For that reason, and in view of the simplicity of (80)
compared to (79), a brief discussion of the case of an overburden with an elastic
responsc is appropriate. In the absence of erosion (s = 0), the two terms present on
the right-hand side of (80) are negative and have a dominant contribution for either
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large or small values of wH. There thus exists an absolute-value minimum compressive
stress o,,,, which is given by

b 5
_ 3[(/9) G Y
Im(@) = = 21\ w / 3(1=v)|

If 6, > 0,,. we should expect stability in the compressive range of deformation for
any adequately small wH in view of the stability of the system to perturbations of
infinitely long wavelength, provided the redistribution condition does not apply [see
discussion after (59)]. Since this result was obtained for a fixed wave number o,
overburdens compressed by a stress larger than o, are stable regardless of their
thickness.

The introduction of erosion changes this picture completely. For s = . the two
contributions on the right-hand side of (80) are of a different sign. The stress (o).
changes sign for some critical value of wH. There therefore exists no maximum in the
compressive stress, in contrast to the case in which there is no redistribution at the
top surface. The stress changes sign for the critical height:

a b
(60 =) (p—p)g\"
Ho—< E&)zl; > : 81

We have already learned [see discussion following (56)] that in the presence of erosion,
the system is unstable with respect to perturbations having a vanishing wave number.
The minimum layer thickness for stability under no lateral stress (o, = 0) 1s provided
by (81). Comparing the results obtained here for a system at neutral stability with or
without erosion, we conclude that the redistribution condition is destabilizing and has
a predominant effect on shallow overburdens.

3.2. Short-wavelength limit (wH — o)

We now turn our attention to the short-wavelength limit for constant values of
ApgH/G and Apg/wG. In the latter case, we establish a link with the analysis of
TRIANTAFYLLIDIS and LEHNER (1993), which was concerned with the interfacial insta-
bility between two half-spaces.

3.2.1. Fixed layer thickness (ApgH|G = const). The starting point for our study of
stability with respect to disturbances whose wavelength is much shorter than the
height of the overburden is again the variational formulation (20). For reasons
that will become apparent below, the corresponding Euler-Lagrange equations and
boundary conditions are needed :

d dby dU’7
—g — I}:lezu ?gv( +L1212U12:|+|:_8L"33 e +L”HU1] =0

dé dc
vEelo, 1]
d dv, dU
—¢ 4 |:8Lzzzzdé ~L321|U1:|+[8L3]3, de?l +L3]12Uz] =0
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db
Z‘IJI +L|wlw(_/1—-0

e = (83)
dU’j a N
eLyyss = —Laa Uy = espgHU,
d¢
dU o N
é:LIZZl d, '+‘l;plw(/7 *—ngUZ_*_AUl
E=0. (34)
d(j i@ b
elss 24 — Loy Uy = pgHU +(epgH+AN) U

A new definition for the small parameter, ¢ = 1/wH, has been introduced here. Notice
from (82)—(84) that the highest-order derivatives are multiplied by the small parameter
(¢ «< 1) which suggests the existence of a boundary layer in the system’s solution. The
eigenmode vector U,(&.#) is expected to decay exponentially away from the interface
(¢ = 0). since, according to (84), these are the boundary conditions that involve the
desired stability exponent A. A standard WKB asymptotic expansion [see, for
example, BENDER and OrszaG (1978)] is the analytical tool of use in this case.
According to such an expansion,

2 1o | .
Ull.e)= Y Ul.e)exp L(./;(5)*“8,)‘;(5)+fi“,f»,(€)+(‘(83))];
x| ’

0 1 2
UHEoe) = Ul +eUNE) +eUNE) + (),
A=Ayg+eA, +e AL+ C(eh). (85)

7
The boundary condition f,(0) = 0. Ve N should be added to (85) for completeness.
At this point, one should also recall the remark made in Subsection 3.1.1 according
to which, for a fixed layer thickness (ApgH/G = const), the incremental moduli in
(82)—(84) depend solely on &: L, = L, (E).
Substitution of (85) into (82) gives for the lowest order in ¢, which is the ¢*(1) term,
two sets of equations. each consisting of two equations for the two unknowns

U (&), (x = 1,2:;i=1.2). The resulting system evaluated on the interface (£ = 0) is

[»L,:z,«»(f@+L|,11<0>J?Jﬁ<0>—[(LMOHLMO)) f]U“(O)—o

[<L22,1(0)+L3m(0)> d?]U“(O)+[ I‘_177(0)<f ) + L, 15(0) j{U":(O) =0.
(86)

The corresponding ('(1) term resulting from the substitution of (85) into the boundary
condition (84) at the interface (¢ = 0) is
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: o :
Z‘,[(LIZZI(O)_CE >U1(O)+(L1212(0) P9H>U (O)]=0’

il [— <L2211(O)+;)9H> (0]1 )+ (Lzzzz(o) dEJf; —Ao> 2/3(0)] =0. (87)

The leading term A, in the expansion of the stability exponent is found frorgl (86) and
(87) as follows. Equation (86) yields the following relation between U7(0) and
0

U3(0):

_ LI?7I(0)(21) +L11,(0)
= L O + Ly (0)z,

0 0
U3(0) = y,U%(0); =12, (88)

4]
where the z,, defined as (df,/d&)(0), are the two roots with negative real part
[Re (z,) < 0] of
[ 2227(0)“91_L’I17(0)][1‘177!(0)A Lllll(o)]
+1L11220) + L1212(O)][ L2211 (0)+ Ly 2 (O)]z; = 0. (89)
The existence of roots of (89) with nonzero real part is guaranteed by the require-
ment that all points in the geological structure be in the elliptic regime [i.e. no shear
bands are permitted, see (29)]. The requirement that Re(z,) < 0 follows from (85)

and ensures the decay of the eigenmode away from the interface for £ > 0. Notice
from (88) and (85) that

> U30) = U,(0.0):

> U30) = U:0,0);

d 21— 2971 Zs
Z 2 O U3(0) = ry—l?—U(o 0+ _~U7(0 0);

U,(0,0). (90)

. dfx Zy— 4y 224
OU’O -7, —— U (0,0)+ -~

; 4z QU0 = =y ———U1(0,0) -~
Upon substitution of these results into (87), the following 2 x 2 system for U ,(0,0)
and U,(0, 0) is obtained :

Z (Sxp—Aodp) Up(0,0) = 0

=1

Z V2 — 23] Zy—2Z a
S =L @XM TT g = L (02 La(0)— pgH
V27 V2—7
_ Zy—Z _ Z¥2 217
Sz|=‘Lzzzz(0)}T AL e Lj,(0)— PyH Sy, = 222(0)*“}) "} - 29
271 271
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Equations (91) show that A, is the eigenvalue of the matrix §,; whose components
are found from L, {0). i.c. the values of the incremental moduli at the interface given
by (83) and (89). Notice that the stability with respect to short-wavelength interface
disturbances. for the constant thickness case, is independent of the density of the half-

space /I) and is not influenced by the stress gradients &, and &, in the overburden. If
both cigenvalues satisfy Re (Ay) < 0, stability with respect to short-wavelength per-
turbations is ensured.

Of interest here is the fact that for Ay = 0 the condition Det (S,,) = 0 in (91) gives
the relation that the incremental moduli have to satisfy for a stress-induced surface

buckling at £ = 0 (BioT, 1965).

3.2.2. Perturbation with fixed warelength (Apg/Go = const). As for the case of the
fixed layer thickness, the starting point for the study of the stability of an overburden
whose height is much larger than the wavelength of the perturbation is the Euler-
Lagrange equations given by (82). The new boundary conditions. valid for constant
values of Apg/Go, read

i
el ‘ LA LU =0
dé
. i=1. (92)
du, . 0Y .
eLaans e Loy Uy = o U:J
du, ) ) ) 7
“Lyas ge +LinUs = =0, U+ AU, |
) l i=0 (93)
o /;;q
“1421:1( Loty = “ff:lUle( ‘ +A>U1
dé 0]

It follows from the definition (27) of the stresses, that for fixed ), the stress state in
the layer is a function of the small parameter ¢ (¢ = 1jwH). Notice that as the layer
thickness increases (H — o), the normal stress at the interface tends to infinity

[o+:(0) = ~f>gH = —,3‘);;;‘::0) — — . ]. This singularity of the stress state at the inter-
face causes difficulties in the asymptotic stability analysis for the determination of A.
More specifically. it can be shown that a rigid body mode corresponding to an
infinitesimal rotation is the leading term in the expansion of U, as the o5, stress at
the interface approaches infinity. To correct this anomaly and to compare the
present asymptotic results for large overburden thicknesses (H - 20) to those of
TriaNTAFYLLIDIS and LEHNER (1993) for the gravitational instability of a solid-
fluid interface. the pressure in the fluid has to be changed so that a zero normal
stress at the interface is obtained. To do this, only the normal stress component
75> 0f (27) has to be altered by adding a constant. The full stress field now reads

@ a b

I, py . ! pg . . 1 Py

oy =ogc0s{@)+ kT & o= UL gy =ogsin{p)+ kT
& {13 &) & {2

<. (94)
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The substitution of (94) in (21) and the remarks made about (22) and (25) that &,
0

are bounded functions of the stresses (1.e. &, — %, as ¢ = 0 or equivalently as

G,..| = ), yield the following asymptotic expansions for the nonzero components
y g asymp p p

of the incremental moduli L;;,(&,¢):

&

| pg . O ) I } .
L=~ (\/\'1'(0 EHL (&) +ely 1 (E)+ (&),

14

& W

0 1
Ly = L8 el (8 +(e7);

0

Loy = Lﬂll(s)‘*‘fLw]](C)-{-(‘(r );

1
Lis=—. f(q<1+k e+ Lo (@ +iLs 2O+ = Ls,

1 p
tj (]—'k )C‘f’Lp‘q(L)‘f‘éprI(L)“r‘(( )

=
[

=
I

5, U o DE+ Laa(@) oL 1a(D) 4 C (2. 95

The WK B asymptotic expansions for U;and A are similar to those of (85). Substitution
of (85) and (95) into (82) gives, for the lowest order in ¢ [i.e. the (“(])”terms]. two sets

of equations, each consisting of two equations for the two unknowns U7 (&), (. = 1,2
i = 1,2). The resulting system, evaluated at & = 0, is

a 0
0 ” d x {) )
[ Lm<0)< f) 55(1—&)*&2 +L,m(0)}m(0)

+[—(21212(0)+21122(0)> f“+f(1+k )]01(0)—0

a
dO
0 0 0
| (£ +En@) 8 |70
+[—lm(0><df’) 409 aff L |20 =0 (%6)

The corresponding (“(1) term resulting from the substitution of (85) and (95) into the
boundary conditions (93) is given by
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5

o d_;; 0 0 0
Yol Lia(0) de = Ay JUI0)+ Ly5,,(0) U3(0) | =

o=

5

Q0 b
- 0 0 0 i 0
) [—L::I (0) UT(0)+ <L2:z:(0) (;i - l;q ’Ao> U’:(O)] =0, 97

=1

in which the condition ¢,,(0) = 0 is accounted for. The leading term A, in the
expansion of the stability eigenv;ilue 18 found from (96) and (97) as follows. From
(U]

(96) one gets a relation between U3 (0) and U3(0) (¢ = 1,2):

[§] O — —_
UL(0) = 5, U%(0): =, = Llﬂ](o)—, (99/20))(1 /‘ )~ +Lllll(0)‘ (98)

(Lmv(O)Jer 122000z, = (pg/20) (1 +k))

1]
where -, defined as (df,/d&)(0), are the two roots with the negative real part
(Re (z,) < 0) of the quartic in z,

0 : 0 0
[Lzzzz(o)ix: - [:;f] z,— L, I2(0):|[:L1’71(0)‘-1 + Pi( —k)z, — Ly, 1(0)}

0 0 /l)(/ 0 0
+ (L1312(0)+L11::(0))51*25(14”/\'1) (L2211(0)+L215,(0))z, | =0. (99)

The requirement Re (z,) < 0 is dictated by our interest in solutions that decay away
from the interface. However, there is no guarantee that such roots exist in the elliptic
regime of the deformation of the overburden in view of the presence of terms of the
type }Bg,f"(o in (99).

The relations (90), which are still valid in this case, are substituted into (97) to
obtain the following 2 x 2 system for U,(0,0) and U,{(0,0):

Z (S of A()Oy/f)b/f(o 0) =0,

0 i D 0 I,—= 0
Sh=Li@7 0 T S12 = Linn(0) 4+ Ly (0,
72T 72T
0 (] b
=2 D757 Py
Sy = —La(0): ’;‘l P17 L), S = 2222(0) T LT
P Rl — 7 w

(100)

From (100) it follows that A, is the eigenvalue of the matrix S,;. It is of interest to
note that, when A, = 0, the condition Det(S,;) = 0 gives the interface instability
condition found in TRIANTAFYLLIDIS and LEHNER (1993). It is also worth mentioning
that in contrast to the results (91) obtained for the fixed layer thickness, the stability

a b
of the overburden depends on both p and p as well as on the stress gradient in the
overburden & ,.
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3.3. Absence of gravity (ApgH|G = Apg/Gw = 0)

Finally, attention is turned to the stability of the geological structure when gravity
is disregarded (g = 0 and hence ApgH/G = Apg/Gw = 0). The starting point is once
again the variational statement of the stability problem (20) but this time the stresses
(27) and the incremental moduli are constant through the overburden thickness
because of the absence of gravity. The following Euler—Lagrange equations and
boundary conditions are then obtained :

1 VdU 1 du,
L[321< ) E3‘+<L1212+L1122> 7 ~—LiU =0

oH oH d&
vel0,1],
1 Y d*U, 1 dU
LZZZZ((@) déz—<L2211+L2121>wHdél_LNll(JZ:O
(101)
1 dU
ﬁ”a?' Li>,Us=0
: E=1, (102)
1 du,
lezzaﬁiér*LZZIIUl =
1 dU
1221 Hﬁdil LI’leZ’_AUl
wH d¢ E=0. (103)
1 du,
Ly>, a)T-Idé Ly Uy =AU,

The linear system of equations with constant coefficients (101) admits of the following
solution for the eigenmode U;(¢)

U&= 3. Viexp(wHzd). VEelo.1]. (104)

o=

The constants V; and z, in (104) (x = 1,2, 3,4), satisfy the following linear algebraic
system resulting from the substitution of (104) into (101):

Z Ci/'(zaz)V/’ =0;
j=1
Ciiz) = Livzi—Liy, Cia(z) = (Liaia+ L)z,
Coi(z) = —(Lyiai+Los1 )z Caa(2,) = Lansazy — Loy (105)
The linear system in (105) has a nontrivial solution for V;if and only if its determinant

vanishes—a condition that gives the z, as the four roots of the following fourth order
(biquadratic) polynomial in z,:
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[Lavaozy = Loyl s, = Lo 4+ 1o+ Ly [Laa + Loyay ]2y = 0. (106)
Notice from the linear system (105) that

* / o (z,
Vemp by = — o J 1034 (107)
(1:(—"7)

i

With the help of (107), one obtains, by substituting (104) into the boundary con-
ditions (102) and (103), the following 4 x4 homogeneous linear system for V,
(z.f=1.2.3.4):

.

Y My (MY, = 0:
1

P

M,

(Lysayz,+ Ly exp(oHz,)

M-, = (L2, — L)) exp(oHz,)

My, =L, +L v, —A:

My, =Lz, —Loany — Ay, (108)

The desired stability exponent A is found from a nontrivial solution (V, # 0) for
(108). Such a solution implics that Det [M,,(A)] = 0, which after some rather lengthy
but straightforward calculations. can be cast in the equivalent form of an easily
solvable second-order polynomial in A with known coefficients. Stability of the over-
burden is implied when both eigenvalues A have a negative real part.

3.4, Concluding remarks on the special cases

This section was devoted to the presentation of asymptotic results obtained in the
long- (wH — 0) and short- (wH — o) wavelength limit. In the former case and in the
absence of erosion, we found that the stability limit was governed by the slope of the
force--displacement response of the overburden. A slope that changes from a positive
to a negative value implies that the system goes from stable to unstable, assuming the
wavelength « of the perturbation is kept constant. Note however, that the same
asymptotic analysis conducted for a constant thickness H of the overburden yields a
slightly different result. A change from stable to unstable then occurs at a positive
value of the slope of the force—displacement response equal to, approximately, the
absolute value of the lithostatic pressure at the interface. Despite this small difference
between the two cases, we cxpect our geological structure to be stable in general with
respect to long-wavelength perturbations. as long as the in situ stresses lead to a
positive slope of the force-displacement response of the overburden. If the system’s
top surface is allowed to undergo redistribution or erosion. this picture is completely
different : the system is unstable with respect to long-wavelength perturbations regard-
less of the prevailing in situ stress condition or whether w or H are kept constant
during the asymptotic analysis.

These two valuable results permit one to find the stability condition along the
horizontal axis of the mH versus o, plots presented in the next section, depending on
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the exact nature of the boundary condition at the top of the overburden. However,
they do not provide information on the locus of the neutral stability curves on these
plots. Such information was obtained here, again using asymptotic methods, for long-
wavelength (wH — 0) and constant values of w. Once simplified to the case of a linear,
1sotropic responsc for the overburden, we were able to compare our results with
those obtained by RAMBERG and STEPHANSSON (1964). Note also that the combined
knowledge of the stability condition along the horizontal axis and of the neutral
stability curves makes it possible to identify the regions of stability in the wH versus
o, diagrams.

For short-wavelength perturbations (wH — o), we have obtained implicit
expressions for the neutral stability exponent that will be used in the next section to
check the validity of the finite-element approximate solution. For fixed overburden
thickness, the condition of neutral stability coincides with the interface buckling
criterion of BIioT (1965). For the case of fixed ., we were also able to establish a link
with the results of TRIANTAFYLLIDIS and LEHNER (1993). It is of note that the results
of these two different analyses for the short-wavelength limit do differ. Only in the
latter case (w fixed) did we find that the substratum density and the overburden stress
gradient parameter A had an influence on the stability criterion.

The final part of this section was devoted to the derivation of an exact analytical
result for the stability of the structural system in the absence of gravity. This exact
solution is compared with asymptotic and numerical solutions in the next section.
The interest in disregarding gravity (thereby setting Apg/Gw = ApgH/G = 0) orig-
inates from the remark that, for the physical systems of geological interest, the values
of the two dimensionless numbers Apg/Gw and ApgH /G are very small compared to
unity.

4. RESULTS AND DISCUSSION
4.1. Material parameter selection and F.E.M. procedure

The general problem formulation presented in Section 2 and the special cases
examined in Section 3 are valid for any choice of constitutive equation for the
overburden. Once a constitutive law for the top layer is selected, one determines the
incremental moduli in (20) required for the analysis of the problem in terms of the
known material constants, the stress state in the layer [see (27)] and the values of the
internal variables. The Rudnicki and Rice model adopted for the present calculations
is a finite-strain generalization—based on either flow-theory or deformation-theory —
of the pressure sensitive isotropic hardening model of Drucker and Prager. The relev-
ance of the deformation-theory version of the model to the present work has been
explained in Section 2. This model depends on a single internal variable. the accumu-
lated equivalent plastic strain 3, which determines the size of the current yield surface.
From the perspective of the present study. the Rudnicki-Rice model has two advan-
tages. It has all the required features for a realistic representation of the rate-inde-
pendent, frictional, geological material of the overburden, ¢.g. pressure sensitivity,
non-associated flow rule and stress-dependent hardening. At the same time, it main-
tains a reasonable degree of simplicity, ¢.g. isotropy, constant friction angle and plastic
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Fi1G. 2. Dependence of the isotropic yield surface radius /(") = ©+ up, on the accumulated plastic strain
27 (109). The coeflicient m is the hardening exponent (s = 1). For m = 1, the material is clastic; in the
limit of /2 tending to + =« the response 1s clastic, perfectly plastic.

dilatancy. This model was briefly described at the end of Section 2 and provides the
functional dependence of the incremental moduli on the stress state in the layer.

In the absence of friction, the uniaxial response of the overburden material was
taken to be a simple piecewise power law, the choice being partly motivated by the
possibility of comparison of the present results to those due to TRIANTAFYLLIDIS and
LEHNER (1993). The relation between the accumulated equivalent plastic strain 3" and
the radius f of the yield surface is taken to be (see Fig. 2)

= <f>f . (109)

where the hardening exponent m > I, and rt,. 3, are the yield stress and strain,
respectively, in a pure shear test (7, = G7,). Based on (109), the hardening and secant
moduli /i(7"), /1,(7) required for the determination of the incremental moduli of
the flow- and deformation-theory versions of the model [see (21)~(26)] assume the
following form in terms of the equivalent shear stress T and pressure p:

0 T+up < 1,
1 - dTP — mo . (110)
hoodf ) [IH<T+@> Tup =T,
G T, ’
0 THup < T,
] P '

=" =<1 [[{t+up\" t+up / T ) (111)
h — =" _ L
| T G |:< - > ., Nz, T+up =1,

y
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In all the results reported here, except for Fig. 11, 7, = 10’ E. The elastic properties
of the overburden were taken to be constant for all calculations, with a shear modulus
G =4.17x 10" Pa and a bulk modulus K = (4/3)G, which corresponds to a Poisson
ratio v = 0.2. The friction coefficient y is taken to be in the range [0, 1] while plastic
dilatancy is disregarded (8 = 0).

The densities of the solid overburden and the viscous half-space are taken to be

p=25x10" kg m * and /b) =2.2x10* kg m* which represent typical densities
for sediments and salt. The overburden thickness is varied from 10° to 10* m, thus
giving a range for the dimensionless parameter ApgH/G of between 7.06 x 10 ¢ and
7.06 x 10~ *. If one considers disturbances with wavelengths of up to 3 x 10* m, the
maximum value of the dimensionless parameter Apg/Gw is approximately 3.35 x 10 " *.
Of course, the values of these parameters can be higher for appropriate combinations
of lower shear moduli or higher density differences, overburden thicknesses or dis-
turbance wavelengths. Nevertheless, the above proposed values are thought to be
representative of the geological problems of interest.

The numerical calculations of the eigenvalue A that characterizes the stability of the
system are based on a finite-element discretization of the variational form of the
problem given in (20). The interval [0, 1], which is the domain of definition of the
unknown eigenmode whose components are U,(¢) and U,(&), is subdivided in N
elements. The elements can be of variable thickness. This feature is dictated by the
need for a mesh refinement near the interface (¢ = 0) to capture the exponentially
decaying interface modes. For these cases of boundary-layer-type modes associated
with high values of the dimensionless wave number (refinement is required for wH > 5
approximately), a log-type mesh refinement is employed near the boundary & = 0.
For 0 < wH < 5 a uniform mesh with N =5 elements gives the desired stability
parameter within an error estimated to be less than 107, A three node quadratic
interpolation function is used for each of the two unknown fields U,(¢) and U-(¢&),
which satisfies the C° (minimum continuity) requirement for the trial fields. A three-
point Gaussian quadrature, which integrates the element stiffness matrices exactly in
the case of constant incremental moduli, is employed in all the numerical calculations.

A particularly simple way of calculating the eigenvalue A for the discretized problem
is possible because A appears only in terms that are evaluated on the interface. The
discretized form of the eigenvalue problem in (20) is

(K], [K"]J [L] [ L]
K =0 <= =A , 112
L] [[K,,-J, ik )L o] =M Lo (12
where [U] = [U(0), U5(0)]" is the displacement vector for the ¢ = 0 interface and

[U)] is the vector containing the remaining degrees of freedom. The above partitioning
of the stiffness matrix [K] permits rewriting (112) in the form

[KU] = A[U). (K] = [K] = [K]IK] K (113)

from which A is easily found as the eigenvalue with the highest real part of the 2 x 2
matrix [K’]. The determination of the neutral stability curves in the wH vs ¢,/G
diagrams is based on a simple bisection method for solving Det [K'(wH,6,/G)] =0
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(for real A) or Tr[K'(nH.6,/G)] = 0 (for complex A), in which wH is usually held
fixed and ¢,,/G varies.

4.2, Discussion of results

The results of this study will be presented in three parts. In the first one (Figs 3-6)
the calculations are based on the flow-theory model for which we analyse the influence
of hardening and friction on the stability of the overburden. The second part (Figs
7 8) compares the flow- and deformation-theories for a material with a power-law
type uniaxial response. In the third part (Figs 9 14) the predictions are based solely
on the deformation-theory constitutive model. The influence of material parameters,
the stress ortentation angle, the stress gradient as well as the influence of the redis-
tribution condition at the free surlace are studied in this last part. For the sake of
completensss. results are presented for negative as well as positive values of the lateral
stress parameter ¢, although the validity of the Rudnicki Rice constitutive model in
tension remains an open question.

(a) Flow-theory caleulations : effects of gravity, friction and hardening. We shall
begin by comparing the stability results that are predicted by a flow-theory with
constant hardening (/1 = 0.3G) and associated flow-rule (;¢ = f = 0) in the absence
and presence of gravity, as shown respectively in Figs 3 and 4. The layout of most of
the subsequent figures will be the same as these two. The coordinates in Figs 3--6 are
the dimensionless wave number o and the dimensionless stress a,/G. The curves
plotted correspond 1o a state of neutral stability and partition the graphs into regions
of stability and instability as indicated by the minus and plus signs. respectively.
Figurc 4 and the insert in Fig. 3 are calculated for constant values of the dimensionless
numbers Apg. G or ApgH:G. As discussed at the beginning of Section 3, the neutral-
stability curve constructed for a constant ApgH:G provides the critical wave number
. (or, equivalently. the critical wavelength L. = 2n/w,) of the perturbation that is
activated at a given stress. By considering constant values of Apg: G, one actually
keeps constant the wave number of the perturbation and the corresponding neutral-
stability curve gives the critical thickness A, at which the overburden is destabilized
by a given stress.

The neutral-stability curves in the absence of gravity. which are depicted by solid
lines in Fig. 3. are calculated using the analytical solution presented in Section 3.3.
Results Tor the compressive and the tensile range of deformation are shown in Figs
3(a) and (b). respectively. The presence of several neutral-stability curves in these
graphs is due to the existence of different modes of instability for a given lateral
stress  a phenomenon often observed in the stability of nonlinear layered solids (scc.
for example. DORRIS and NEMAT-NASSER, 1980 1 TRIANTAFYLLIDIS and MaKER, 1985
ST, 1986). For simplicity, only the parts of the neutral-stability curves that provide
the smallest (in absolute value) critical stress arc depicted in subsequent figures. Notice
that the neutral-stability curves associated with the various modes merge for large
cnough values of wH. both in tension and in compression. The existence of a vertical
asymptote for these curves is expected from the limit analysis in Section 3.2 that gives
the critical stress as mff — + = [tis found that for values of wH of the order of 20
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Fig. 3. Stability diagrams and neutral-stability curves (solid lines), in the absence of gravity, in a spuace
spanned by the dimensionless wave number (»H and the dimensionless stress o, G, under (a) compression
and (b) tension. In the insert the results are compared with those obtained in the presence of gravity with
an asymptotic method for small m# (dashed lines). The diamonds in the tensile regime indicate loss of
ellipticity. These curves arc based on flow theory with a hardening parameter 1 = 0.3G and the associated
flow rule g = f = 0.

and higher, the difference between the exact value of critical stress and the one
obtained from the asymptotic analysis is negligible.

As will be noted in Fig. 3(a), in the compressive regime the solid curve (g = 0)
crosses the origin of the graph. This behaviour is to be expected since, in the absence
of gravity and for long-wavelength perturbations, the overburden behaves like a thin
column : the infinitely long column buckles for a vanishingly small applied compressive
force. The same curve also has an abrupt change in its slope, as seen in the insert. due
to the discontinuous values of the tangent moduli at the yield point of the adopted
uniaxial stress-strain curve [see (110)]. For the same reason, i.e. the beam-like behav-
iour of the overburden for long-wavelength perturbations, a finite stress is required
for destabilization of the structure in tension, as seen in Fig. 3(b). The loss of stability
under tension corresponds to a maximum force in the response of the overburden to
uniaxial plane-stress {zero stress along the x,-direction) and plane-strain (zero strain
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F1G. 4. Comparison, in the compressive regime. between results obtained in the absence of gravity

(analytical method : solid lines) and in the presence of gravity (finite-element method : dotted lines:

asymptotic analysis for wH tending to 0: dashed lines). Results are for two values of the dimensionless

numbers ApgH/G (a) and Apg:Ge (b). The values of these two numbers correspond to an overburden

thickness of 100 and 1000 m or a wave number of 2x 10" * and 2x 10 * m~ ', respectively. These curves
are based on flow theory with a constant hardening parameter i = 0.3G and p = ff = 0.

along the x;-direction), in accordance with Considéere’s principle. Further increase in
the tensile stress will induce the development of a neck-type instability. The diamonds
ending the neutral-stability curves in the same graph indicate the loss of ellipticity in
the overburden material, which corresponds to the onset of faulting (deformation
becomes localized in the form of shear bands). The stress corresponding to the loss
of ellipticity under uniaxial plane stress and plane strain tension is much larger than
the maximum force because of the relatively high hardening of the material (# = 0.3G)
and the fact that a flow theory is being used in the calculations.

Consider now the system’s response in the presence of gravity. The results in tension
are essentially indistinguishable from those presented in the absence of gravity and
were thus omitted. The sameness in behaviour can be explained by the negligibility
of the normal stress added by the weight of the overburden compared with the large
value of the axial tectonic stress o, (of the order of the modulus of elasticity in shear)
that is required to trigger the maximum force (necking) instability in tension [see Fig.
3(b)]. However, there is a significant influence of gravity in the compressive range of
deformation, as can be seen by inspection of the insert in Fig. 3(a). The dashed
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neutral-stability curves in the insert were obtained from the asymptotic analysis for
small wH and for constant values of Ap/Gw. Note that the dashed curves do not
intersect the horizontal axis as discussed in the stability analysis for the beam resting
on a fluid at the end of Section 3.1.2. The viscous substratum has a stabilizing influence
in the presence of gravity for compressive deformations: the infinitely long beam
resting on a “fluid” requires a stress of finite magnitude in order to buckle. In the rest
of this paper the minimum (in absolute value) magnitude of this stress will be denoted
by o,, and the associated wave number by (wH),,.

For a compressive stress ¢, larger than the minimum critical stress o,,, the system
is stable regardless of the overburden thickness. For stresses smaller than this mini-
mum value, there are two critical values of wH that define the range of overburden
thicknesses or disturbance wavelength for which the top layer is unstable. It is note-
worthy that, for the values of the parameters employed in these calculations, the
minimum stress o, occurs at a small value of (wH),, and thus corresponds to a “*beam-
type” mode of instability. In the rest of this paper and in the interest of simplicity, an
instability mode with a small value of wH will be referred to as a “beam™ mode of
instability. Later on, we shall also see cases for which o, occurs at a large value of
(wH),, and thus corresponds to a “‘surface-type” mode. Another general remark on
the presentation of all subsequent results is in order at this point. From here on, the
stable and unstable regions in the figures will not be identified as was done in Fig. 3.
Since all figures are topologically similar to Fig. 3, it is easy to identify the stable
regions of the graphs by keeping in mind that the origin (wH, 0,/G) = (0,0) is always
stable in the presence of gravity and in the absence of material redistribution at the
top surface (s = 0).

We continue the discussion of the influence of gravity by considering some
additional information : the results of finite-element calculations. which are plotted in
dotted lines in Fig. 4. The analytical results in the absence of gravity are represented
by solid lines, while the results of the asymptotic analysis for small wH and constant
values of Apg/Gw by dashed lines, as was done in Fig. 3. Results for fixed values of
the overburden thickness are depicted in Fig. 4(a). The two values of dimensionless
number ApgH/G correspond to layer thicknesses H of 1000 and 100 m. Note again
that the slope discontinuity of the solid curve, corresponding to the case of g = 0,
permits one to identify the transition between the elastic and elastoplastic responses
of the overburden in the (wH,0,/G) space. The finite-element results in Fig. 4(a)
show that a compressive stress in the range of the yield stress is sufficient to destabilize
a thin overburden. As the overburden thickness increases, so too does the absolute
value of the critical stress |o,,] (now well in the plastic range of the overburden
response) and the corresponding wave number ,,.

A similar trend is observed in Fig. 4(b), which corresponds to fixed values of
the perturbation’s wave number. The calculations were done for two values of the
dimensionless number Apg/Gw: 3.53x 10~ * and 3.53 x 1077, which correspond to
wave numbers w: 2x 1074 and 2x 10~* m~ ', respectively. In the former case, the
minimum critical stress ¢, equals approximately the yield stress and is reached for
(wH),, in the range [0.07,0.18], whereas the minimum critical stress is reached at
(wH),, = 0.24 for the second choice of wave number. Overburden thicknesses varying
between 35 and 90 m under a compressive lateral stress equal to the yield stress are
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thus destabilized with a perturbation wavelength of, approximately. 3.1 km. Similarly.
a mode of instability with a wavelength of 310 m is triggered if a 1200 m thick
overburden is compressed at a stress four times the yield stress. The thinner the
overburden, the smaller the compressive stress required to reach the first instability
and the longer is the first instability’s wavelength.

In Fig. 4(b) the finite-element results (in dotted lines) are additionally compared with
the asymptotic analysis results (in dashed lines) for small values of «wH as discussed
in Section 3.1.3. A remarkably good agreement is found between them for values of
mH up to 0.2, Interestingly enough, as the agreement between the accurate numerical
method and the approximate asymptotic method deteriorates for increasing wH, the
finite-element results tend towards the analytical predictions obtained in the absence
of gravity. Indeed. the superiority of the finite-element calculations is clear only in the
transition interval for «xH of [0.2, 3.0]. For higher values of wH. the effects of gravity
tend to be negligible compared 1o the effects of the prestress in the overburden.

The effccts of friction parameter g in the stability of the overburden are presented
in Fig. 5. The results for constant value of Apg: G, shown in Fig. 5(b), were restricted
to the compressive range ol deformation, since the corresponding results in tension
were similar to the ones presented for a constant value of ApgH/G. shown in Fig.
5{(a). When the value of i differs from the value of the dilatancy parameter fi, onc
obtains a nonsymmetric (non-sclfadjointy stability operator for the problem. thus
raising the possibility of complex cigenvalues. A result of importance that holds for
all the calculations reported in this study is that the stability cigenvalues A are always
real in the vicinity of a stability transition, Conscquently, flutter-type instabilitics
Imentioned. for example. in Rice (1976) and Neepremax (1979)] are never present
in this problem. Such mstabilities seem physically implausible anyway in the geo-
mechanical stability context of interest here, since they are characterized by an oscil-
latory evolution in time.

The general structure of the results shown in Fig. 5 is simitar to the onc presented
carlier in Figs 3 and 4. The shape of the neutral-stability curves for small «H as well
as the values of the minimum critical stress ¢, in compression again correspond to a
beam-type mode. In the case of tension, there is a maximum load and the first
instability is of a necking type, as was also observed in Figs 3 and 4. Notice the
difference between the effect of {riction in tension and in compression. Whereas the
influence of friction is minor in compression, a variation of yx from 0 to 0.6 leads to
a 50% decreuse of the tensile critical stress. This difference is due to the dominance
ol the geometric terms in compression, which are not aftected by friction. Furthermore.
an increase of the friction coeflicient feads to an increase, in absolute value, of the
minimum critical compressive stress a,,. whereas it is accompanied by a decrease of
the minimum critical stress in tension. It appears that friction stabilizes the system in
compression and destabilizes it in tension. This difference is attributed to the asym-
metric contribution of the friction coefficient on the tangent moduli, with respect to
the pressure. as revealed in (22).

In Fig. 5(b) the finite-element analysis results in the compressive range (solid curves)
are plotted together with those of the asymptotic analysis in the limit of small wH
(dashed curves). The excellent agreement for off less than 0.2, which was first men-
toned in the discusion of Fig. 4(b), is fully confirmed. Note again that rather shallow
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Fi16. 5. Influence of the friction coctlicient u. F.E.M. results for a constant value of Apg H/ G (a). Comparison
between the F.E.M. results (solid lines) and the asymptotic results for small wH (dashed lines). for a
constant value of Apg/wG (b). Note the opposite cffect of [riction in tension compared with in compression.
These results are based on flow theory with a constant hardening parameter /1 = 0.3G and f§ = 0.

overburdens (wH =~ 0.1-0.2 corresponding to H >~ 50--100 m) are destabilized for a
compressive stress of the order of the yield stress.

The investigations based on the flow-theory model are completed with the study of
the influence of the hardening parameter /i, which is presented in Fig. 6. The finite-
clement results, calculated here for a fixed overburden height, show a trend similar to
the one observed for the friction coefficient : the minimum critical compressive stress
o, is only marginally affected by the hardening parameter /7 in compression, whereas
the minimum stress for instability in tension is drastically reduced as the hardening
parameter diminishes. Again, this difference between tension and compression is
attributed to the dominance of the geometric effects in compression.

One can thus conclude that, in the context of flow-theory, the friction and hardening
parameters have little influence on the minimum critical stress a,,, in compression. The
influence of the same parameters is significant in tension, but the minimum stress for
the onset of instability is rather large (of the order of 0.1G. for realistic values of /
and ). Furthermore, when flow-theory is used (see RupNICKI and RICE, 1975), the
lirst instability is always found to be of a necking type in tension. while the initiation
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F16. 6. Influence of the hardening parameter /1. F.E.M. results for a constant value of ApgH/!G and two

values of /1 (0.03G : solid lines: 0.3G : dashed lines). This influence is important in the tensile regime but

minor in the compressive onc for small mH. since gecometric effects dominate in that range. These results
are based on flow theory with g = 0.3 and f§ = 0.

of tfaulting is found to occur at unrealistically large stresses in both tension and
compression. These results contradict the predictions of laboratory experiments on
low-cohesion materials (e.g., NETTLETON and ELKINS, 1947) and question the validity
of flow theories for modelling the stability of a brittle layer resting on a viscous
substrate. It is the aim of the folowing part of this discussion to establish a comparison
between flow and deformation theories in order to clarify this question,

(b) Comparison between flow- and deformation-theory calculations. The comparison
between the stability predictions based on flow and deformation theories is presented
in Figs 7 and 8. The results are obtained with the power-law hardening function given
in (109) and depicted in Fig. 2 for several values of the hardening exponent m. The
same hardening function will be employed in the rest of this paper. Values for m of
10 and 3 were chosen for the calculations underlying Fig. 7 and Fig. 8. respectively.
Deformation theories are known to predict lower (in absolute value) critical loads
than equivalent flow theories. i.e. theories with the same response to proportional
loading. The incremental moduli of a deformation-theory are lower in a direction
perpendicular to that of the proportional loading than the moduli of an equivalent
flow theory with a smooth yield surface. This difference explains the lower critical
loads usually predicted in stability calculations based on an equivalent deformation
theory, since a sudden deviation from proportional loading is frequently the reason
for the onset of such an instability. A reduction in stiffness in a direction perpendicular
to that of the proportional loading is also found in a class of flow theories that exhibit
a vertex at the current loading point of their yield surface. For the case of rock masses
that deform by frictional sliding along a randomly oriented set of cracks or small
faults, RubNICKI and RICE (1975) have shown the possibility of such a yield vertex
and proposed a deformation theory model as a simple way to account for this effect.
The importance of the existence of a corner at the yield surface for the prediction of
failure in rocks was also established in the above-mentioned work by showing that
the proposed deformation-theory model could capture the initiation of faulting under
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triaxial states of stress—an effect which is not predicted by flow-theory, unless an
unrealistic softening is introduced.

Figure 7 depicts the stability results for the deformation- (solid curves) and flow-
(dashed curves) theories obtained by the finite-element method in the presence of
gravity and by the analytical solution in the absence of gravity. The critical-stress
predictions of the flow-theory in tension were seven times larger than the results of
the deformation theory and have thus been omitted. Moreover, the diamond on the
horizontal axis indicates, for the case of the deformation theory, a loss of ellipticity
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F1G. 8. Influence of the stress orientation angle ¢ on the smallest (in absolute value) critical compressive

stress o, required for destabilizing the system at a constant value of Apg/Gw. Comparison between the

results of deformation and flow theories based on the asymptotic analysis for small »H. Note the agreement

between the two theories for certain stress orientations. These results are derived for a hardening exponent
m=3and p=0.3,5=0.
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which corresponds to the onscet ol faulting. Notice that the tensile stress at the loss of
cllipticity 1s only slightly larger than the tensile stress at the onset of the neck-type
instability. This result suggests that the initiation of an instability in the tensile
range of deformation cannot be triggered without faulting in the overburden. Both
experimental and field observations suggest that such is indeed the case for
multilayered systems (e.g. VENDEVILLE and JACKSON, 1992).

The ditference between the stability predictions of the two theories is also important
in compression, despite the dominant role of the geometrical effects. The minimum
critical stress o, for the deformation-theory is 50% less than that of the flow-theory,
but the corresponding instability mode is still a beam-type one. Note also the different
shape of the neutral-stability curve under compression in the case of the deformation-
theory. For a stress g, smaller than o, but larger than the stress associated with the
loss of ellipticity i the overburden (at approximately —4r, and marked by a diamond
in Fig. 7). there exists a large range of wave numbers, corresponding to various types
of modes. that destabilize the system. The conditions under which instabilities with a
large wave number correspond to the minimum, in absolute value. critical stress a,,
will be investigated below.

Concentrating on small values of wH for the case of compression and for a hard-
ening exponent 71 = 3. we have plotted in Fig. 8 the variation of ¢, as a function of
the stress orientation angle ¢, introduced in (27), on the basis of the asymptotic
analysis in Section 3.1.3. Observe the difference of a factor of 2 between the values of
7, predicted by the two theories for ¢ = —7/4. However, for stress orientations
around ¢ = —x/8. the two theories yield similar predictions. One possible explanation
is as follows. A variation in stress orientation implies a change in effective stress t and
pressure p [see (21)] and thus a modification of the value of the effective plastic strain
that controls hardening (see Fig. 2). If the permanent deformation does not clearly
exceed the elastic strain, the difference between the moduli obtained using flow and
deformation theories should be small and the predictions of the two theories should
be comparable. A second factor that could explain the small difference between the
two theories for certain stress orientations will become clear at a later stage of this
discussion.

The main conclusion drawn from the above analysis is that, according to defor-
mation-theory, geological systems in compression suffer from structural instabilities
of a beam-type prior to but not far from the initiation of faulting as lateral stresses
increase in magnitude. For the case of tension. a necking-type instability just precedes
the faulting one for relatively thin overburdens. This observation is in agrecment with
the result of Hite and HuTtcinson (1975), who find the maximum load instability
prior to loss of ellipticity in uniformly strained specimens under uniaxial planc strain
tension conditions. The aforementioned behaviour in tension ceuses to be true for
thicker layers. since in sucn a case stress gradients become important. The closencss be-
tween the onset of the first instability in folding or necking and the onset of faulting is.
of course. in agreement with ficld observations and results of laboratory experiments.

(¢) Effects of materiul parameters, stress-state and vedistribution condition. Having
established the appropriatencss of deformation theories for modelling the stability of
the layered structure at hand. we employ exclusively the deformation-theory model
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proposed at the end of Section 2 in all the subsequent calculations. The results from
our study of the influence of the overburden material properties, namely the hardening
exponent #17 and the cohesion t,. are given in Figs 9-11. The role of the in situ stress
distribution in determining the system'’s stability is discussed with reference to Figs
12-13, while the study of the erosion or redistribution condition at the top surface is
reported in Fig. 14.

The sensitivity of the stability results to the hardening exponent m for constant
values of the dimensionless numbers ApgH/G and Apg/wG are depicted in Figs 9(a)
and 9(b), respectively. This analysis is analogous to the study of the influence of the
hardening parameter /1 shown in Fig. 6 for the case of the flow-theory. Figure 9(a)
shows that the hardening exponent s influences the stress at the loss of ellipticity in
both tension and compression. For the very low hardening case of m = 10, the necking
(maximum load) instability in tension practically coincides with the initiation of
faulting (loss of ellipticity). The instability in compression on the other hand, is
triggered prior to the loss of ellipticity : the magnitude of the compressive stress o,
must be some 30% greater than g, to trigger faulting. For the higher hardening case
of m = 3. the loss of ellipticity requires a stress magnitude that differs significantly
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considered for two values of the hardening exponent m. Note that for m = 6 and for large cnough values

of Apgi! G the asymptotic analysis for large mH predicts the smallest stress |, 1. These curves were derived
for p==03and ff = 0.

from the one necessary for the onset of instability in either tension (maximum load
stress) or compression (minimum critical stress). No diamonds marking the loss of
ellipticity are shown for the case m = 3, since they lie outside the range of stress
depicted in Fig. 9(a). The same trend with regard to the hardening exponent’s effect
on the loss-of-ellipticity stress s found in Fig. 9(b). which furthermore shows the
reasonably accurate predictions of the asymptotic analysis of Section 3.1.3 for small
mH in the compressive range.

A second common feature of the two graphs of Fig. 9 is the influence of the
hardening parameter s on the shape of the neutral-stability curve when the system is
under compression. In contrast to the flow-theory results in Fig. 6, there is a large
range of the dimensionless wave numbers wH corresponding to neutrally stable modes
for values of ¢ slightly smaller than the minimum critical stress o,,. This is the case,
for example, for m = 10 in Fig. 9(a) and for m = 6 in Fig. 9(b). This feature raises
the question of whether or not a beam mode of instability, which occurs at small
values of wH, will always correspond to the lowest critical stress 6,,. To answer this
question, we have plotted in Fig. 10 the dependence of the minimum critical stress in
compression a,, predicted by the asymptotic analyses for the short-wavelength limit
{corresponding to an interface type mode) and the long-wavelength limit (cor-
responding to a beam-type mode}. as a function of the dimensionless number Ap g/ G.
For a small value of the hardening exponent (m = 3}, beam modes (long-wavelength
limit. dashed curves) always give the lowest (in absolute value) critical stress in
compression. However, for another value of the hardening parameter (m = 6). the
interfacial instabilities (short-wavelength fimit, solid curves) are triggered for smalier
absolute values of a,,. if large enough values of Apy/wG are considered. This resuli,
obtained for fixed values of the perturbation wave number w, shows that beam-type
modes of instability are dominant for shallow overburdens (wwH small), whereas thick
overburdens are destabilized in a mode reminiscent of interfacial instabilities (wH
large). The results of this calculation provide a rational basis for choosing, according
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to the material properties of the overburden, the magnitude of the top layer’s thickness
above which the assumption of infinite layer thickness can be safely adopted. This
assumption, introduced for the sake of analytical tractability by TRIANTAFYLLIDIS and
LEHNER (1993), is thus shown to be a meaningful one for overburdens with low
hardening and for values of Apg/wG beyond a certain magnitude.

In all the calculations reported so far, the stability of a rather cohesive overburden
(t,/E =10 %) has been investigated. Even though this ratio appears to be realistic for
modelling the lithosphere (SHEMENDA, 1992), one could expect lower values of that
ratio. Indeed, sand, which is used as an analogue material in laboratory experiments,
has a cohesion of only a few hundred pascals (KranTz, 1991). Furthermore, in view
of the dependence of the elastic moduli of sand on the confining pressure, we could
expect a ratio 7,/E as low as 10° *. It is thus reasonable to conclude our material-
sensitivity investigation with a study of the influence of cohesion on the stability
of the overburden. The results calculated using the finite-element method for the
compressive and tensile ranges of deformation and assuming a constant value of the
dimensionless number ApgH/G. chosen on the basis of an overburden thickness of
1000 m, are displayed separately in Figs 11(a) and (b), respectively. One of the expected
results is the shrinkage of the stability region, centred on the elastic domain, for
diminishing values of the cohesion. However, an unforeseen result, both in tension
and in compression, is the variation in the mode of instability corresponding to the
lowest magnitude of the lateral stress. Indeed, a shift of the dominant dimensionless
wave number (wH),, from 0.37 to 0.84 can be observed as the cohesion is reduced by
a factor of 10—from E x 10° *to E x 10 . That increase becomes even greater if one
reduces the cohesion further by half: (wH),, takes on a value of 1.12 for a cohesion
of 5Ex 10 °. In tension, faulting in the overburden coincides with a necking-type
instability for small values of the cohesion: for the case of more cohesive materials,
faulting requires stresses of larger magnitude than those leading to necking. These
results are similar to the ones presented in Fig. 9, which illustrates the influence of
the overburden hardening exponent » on its stability. We explain this analogy by
noting from Fig. 2 that a reduction in the cohesion 7, leads to an increase of the
normalized effective stress and equivalent plastic strain (with y, = 7,/G). For a con-
stant effective stress ¢ and pressure p, the reduction in 7, implies a displacement of
the current position on the stress-strain curve away from the origin of the graph.
From the same figure, one can see a similar effect if the value of m is increased.

Having investigated the role of the overburden material properties, we now turn
our attention to the influence of the lateral stress gradient in the top layer [see definition
in (27)]. Note that for the rest of this section the value E x 10 is once again used
for the cohesion 7,. This is the same value that has been used in deriving all the results
presented in Figs 3-10. The first item studied is the influence of the lateral stress o,
gradient k. The results depicted in Fig. 12(a) pertain to the compressive range of
deformation and to two different values of the hardening exponent m, whereas those
depicted in Fig. 12(b) are calculated for the same two values of m but correspond to
the tensile range of deformation. The results shown in Fig. 12(c) have been calculated
for m = 3 under tensile conditions but for two values of the dimensionless number
ApygH|G corresponding to overburden thicknesses of 1 and 10 km. The first two
graphs, which correspond to a shallow overburden (! km thick), show the weak



102 N, TwiaNtaryrppis and Y. M. Liroy

3.0
[apgh/G = 7.06 10|
( a ) 2.5
2.0 - Ty/E = 5 107"

Ty/E = 107" ———

oH

o 5

Ty/E =5 10
T T T T
-4 -3 -2 -1

G,/ G

304 é

— TyE = 5 107

N
o

owH
L
Py
S S S N

(b)

5 T/E = 107 =
1 - Ty = 5107
1.0+
— Tyl = 107 -

OJ Apghl/G = 7.06 101
0.0 —}4& ~d——q e T T

ox10” 2 4 6 8 10

GL)/G

Fia. T Influcnce of the cohesion t. according to the results of the FLEM. analysis and for a constant

value of ApgH:G in compression (a) and in tension (b). Note the increase in the dominant wave number

(¢ #),, in compression as the cohicsion is reduced. Loss of ellipticity (marked by diamonds) is the dominant

mode of instability in tension. for small cohesion. These resulls are based on deformation theory with a
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influcnce of the in siru stress gradient parameter &, compared with the sensitivity to
the hardening exponent. However, for a thick overburden [Fig. 12(c) and
ApgHiG = 706 x 10 *] and in the tensile range of deformation. a drastic reduction
of the critical minimum stress is observed i the in sire stress gradient is accounted
for. This trend can be explained by inspecting the two terms that compose the stress
ay (see Fulg. 1), That stress depends on the gradient & and the stress o, which is also
the lateral stress at the depth of the interface. In the presence of a stress gradient &,
the thicker the overburden. the larger the average stress g ,. Consequently, the system
is destabilized by a smaller value of ¢, if 1t has « thick overburden.

The second parameter that enters the detinition of the in siri stress in (27) is the
stress ortentation angle ¢. Its influence. which has already been discussed when we
comparcd low and deformation theortes in Fig, 8. is further explored in Fig. 13, The
resufts of the finite-element analysis are presented for various values of the angle ¢
and a constant value of the dimensionless number Ap g H /G, In the compressive regime,
depicted in Fig. 13(a). it appears that the critical stress is very much influenced by a
value of ¢ in the range of [0.7/4] but not so in the interval [-—7/4.0]. A word of
caution, however. s in order before interpreting these results quantitatively. Indeed.



Stability of a layer system 103

o -0, tpel K & |apgH/G = 7.06 107
T f

0.0+ q
-8 -6 -4 -2
Gy/1Ty
0.6 s
W Eng/G = 7.06 IO-J
(b) —
k; =1 m=6k =0
0.4
us /
3
m=3, k =1
0.2 AN
m =3,
k,=0
0.0 T T T T 1
0 2 4 6 8 10 12
O/ Ty
(¢)
0.6
k=1 k,=0-=| k=1 [«k=0
.5
ol ApgH/G = 7.06 10
T
b=
ﬁ ~—ApgH/G= 7.06 10" —
0.2
0.0 T T T 1
1.5 2.0 2.5 3.0 3.5 4.0
O, /1,

Fii. 12. Influence of the stress gradient parameter A . according to the results of the F.E.M. analysis. in
compression for two values of the hardening cxponent s (4). in tension for the same value of m (b) and
in tension for two values of ApgH/G (¢). The Jast graph illustrates the importance of the stress gradient
for thick overburdens (a value of 10 km for H corresponds to ApgH:!G = 7.06 x 10 "*). Thesc results arc

-

based on deformation theory with a hardening exponent m = 3and g = 0.3, f = 0.
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three of the five orientation angles studied. The deformation theory was considered with a hardening
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it is surprising to find that a compression in the two directions (e.g. ¢ = n/4) results
in a more stable situation than in the case of uniaxial compression (¢ = 0) or in the
case of in-plane compression and out-of-plane tension (¢ = —n/4). This paradoxical
result 1s likely to be an indicator of the limitations of our planar analysis and will only
be resolved by a complete 3-D stability analysis. [t is with this argument that we invite
the reader to reassess with caution the comparison between the predictions of the flow-
and deformation-theories for varying stress orientation angle which was presented in
Fig. 8.

The last item in our parametric study of the deformation-theory model is the
influence of the erosion or redistribution condition at the free surface. This condition
was first considered by B1oT and OpE (1965) to account for the erosion of those parts
of the top surface that are upheaved and the deposition of the eroded material in the
subsided regions. Such a condition leads to a mixed boundary condition between
traction rate and displacement rate at the top surface that is expressed by (1);. The
influence on stability of this “redistribution’ condition, as it was named by Biot and
Odé, has already been incorporated in the asymptotic analyses in Sections 3.1-3. The
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with a hardening exponent m = 3 and ¢ = 0.3, f = 0.

results on the influence of the redistribution condition on the overburden stability,
based on finite-element calculations for a constant value of the dimensionless numbers
ApgH|G and ApH/Gw, are depicted in Figs 14(a) and (b), respectively. The new
information displayed here is that, with redistribution at the top, the overburden is
always unstable for small wH, exactly as predicted from the asymptotic analysis in
Section 3.1. More precisely. if the overburden deforms elastically, the redistribution
condition favours the development of perturbation with wave number wH smaller
than approximately 0.1. Note that the critical height (wH = 0.12) for o, = 0 is the
value predicted by (81), which was obtained with the asymptotic analysis for small
values of wH and with the assumption of an elastic response of the overburden. If a
lateral compression or tension is prescribed, the results of the two stability analyses,
with and without redistribution at the top, merge for a large enough value of w#.
To summarize the findings of this last part of the discussion, it is found that the
properties of the constitutive model, namely the hardening exponent and cohesion,
play an essential role in the stability of the overburden. This influence on stability not
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only affects the mintmum critical stresses but can also influence significantly the
corresponding mode of instability. Concerning the stress distribution., one can state
that the gradient parameter is important only for thick overburdens, whercas the stress
orientation angle is important for all thicknesses. The imposition of a redistribution
condition at the top surface renders shallow overburdens unstable regardiess of the
tectonic stress distribution.

5. CONCLUSIONS

The aim of this work has been to investigate the stability of a prestressed solid
layer. composed of a cohesive frictional material, resting atop ol a viscoclastic half-
space of lower density. The novel elements introduced in this study pertain to the
choices of geometry and material properties for the overburden @ it has a finite thick-
ness and 1s modelled as a strain-rate independent. elastoplastic material. The relaxation
time of the substrate introduces a natural characteristic time into the problem, which
is used in the stability analysis.

This study is an extension of recent work by TRIANTAFYLLIDIS and LEHNER (1993),
who investigated the stability of the interface between the prestressed, infinite solid
resting atop of a fluid half-space of different density. It was found that. because of
the stiffness of the solid layer, small perturbations will always have ranges of wave-
length for which their amplitude decays. This feature, coupled with the finite thickness
of the averburden. results in the possibility of stable configurations in the present
investigation, Lo, configurations for which any small disturbance decays. This behav-
iour is of course in contrast to all previous analyses of two- or multilayered viscoelastic
solid systems based on Biot's approach {see Biot and ODE (1965) for a review]. These
analyses led to the conclusion that a density contrast alone is sufficient to ensure the
growth of any perturbation regardless ol its wavelength. For such viscoelastic models,
it was then necessary to compare the rate of growth of the fastest perturbation to the
rate of lateral extension or compression of the geological formation to identify stable
configurations.

Owing to the existence of stress gradients in the finite overburden. which are
mevitable in the presence of gravity. no general analytical solution 1o the lincarized
stability problem is possible. A straightforward finite-clement technique is thus the
numerical method of choice in all the calculations for the resulting eigenvalue problem.
An asymptotic analysis for both small and large values of the dimensionless per-
turbation wave number oH has been performed, where o is the perturbation wave
number and H the overburden thickness. The small and large values of the dimen-
sionless wave number correspond to beam- and interface-type modes. respectively.
These asymptotic analyses provide valuable insight into the behaviour of the system
as well as an excellent verification tool for the numerical algorithm. As it turns out,
the asymptotic results, together with the analytical solution for the case of zero gravity.
provide most of the information required for the range of interest of the parameters
in the problem.

The consideration of frictional materials in the present study produces asymmetric
stability operators. This asymmetry raises the possibility of complex eigenvalues,
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which correspond to flutter at the point of neutral stability. However, the existence
of such instabilities has never been detected in laboratory experiments, nor inferred
trom ficld observations. In fact, only real stability exponents are encountered in all
the calculations reported here. The reason is to be found in the spectrum of the
discretized system’s stability matrix. In the absence of friction, the stability operator
is symmetric and the stability parameters A are the two—in general distinct —real
eigenvalues of a symmetric 2 x 2 matrix. In the presence of friction, the corresponding
2 x 2 stability matrix is asymmetric but not sufficiently perturbed from its symmetric
counterpart in the absence of friction as to produce complex cigenvalues. For the
range of friction coefficients measured in the geological materials of interest, the
resulting perturbation of the initially symmetric operator leaves the two eigenvalues
A far enough from each other and hence real.

The main conclusion of this paper is the strong dependence of the stability behaviour
of the system on the details of the constitutive model adopted for the overburden.
This conclusion is in contrast with the one reached by studying viscoelastic models:
there, the geometry of the system and the density contrast determine the stability
conditions (BioT and ODpE, 1965). We have found that the friction parameter, whose
introduction destroys the symmetry of the stability operator, has less influence than
the cohesion and hardening of the overburden on the results of the stability analysis.
If the hardening or cohesion are decreased, a reduction in the magnitude of the
minimum stress for the first instability in both tension and compression is observed.
Additionally, the initiation of faulting in extension is favoured and the critical wave
number in compression increases. In some instances, this shift in the wave number
can be such that interfacial-type instabilities occur at a lower lateral stress magnitude
than the beam-mode ones. It is in such cases that the assumption of an infinitely thick
top layer, adopted by TRIANTAFYLLIDIS and LEHNER (1993), is justified.

Another consequence of the importance of the constitutive behaviour of the top
layer is reflected in the difference between the predictions of the two descriptions
of the rate-independent response of solids considered here, namely the flow- and
deformation-theory models. Deformation theories used in stability and bifurcation
analyses are known to account for the reduced stifiness normal to the proportional
loading directions found in rocks. which arises from the presence of randomly oriented
cracks or small faults (RupNICKI and RICE, 1975). The magnitude of the critical stress
at the first loss of stability is consistently smaller for deformation than for flow
theorics, in both the tensile and the compressive range of deformation. Furthermore,
concomitance of structural instability and faulting in the tensile range of deformation
is predicted by the deformation theory. This last result appears to be in agreement
with ficld observations [see VENDEVILLE and JACKSON (1992) for a discussion].

The results of BioT and OpE (19635), concerning the influence of a redistribution
condition at the top surface, have been extended here to the case of frictional materials
in the overburden. It is found that the eroston of material from uplifted regions and
its redeposition in subsiding regions render shallow overburdens always unstable.
regardless of the prevailing tectonic stress.

The present results should also contribute to a better understanding of laboratory
experiments, conceived as analogue models of geophysical two-layer systems. For
cxample, the role of hardening. as revealed by the results of our stability analysis.
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provides a deeper insight into the interpretation of some of the results obtained
recently by SHEMENDA (1992) with a two-layer model of the oceanic lithosphere. It
appears from the results presented by Shemenda that buckling is initiated in an
clastoplastic layer at a compressive stress that lies below the maximum strength of
the analogue material. Furthermore, initiation of faulting is observed only after
buckling has stared to develop. These results are similar to the predictions of the
present stability analysis.

A second type of analogue test of interest 1s provided by sand-box experiments.
Granular materials have long been recognized as excellent analogue materials for
scdiments of their ability to develop faults. Early experimental work with granular
material to model the initiation of faulting above rising salt domes includes the study
of NETTLETON and ELKINS (1947). A comprehensive review of the application of sand-
box experiments to the study of faulting is found in MANDL’s book (1988). In
experiments where the deformation is heterogeneous as a result of boundary-condition
effects, such as spatially varying sedimentation, the details of the constitutive behav-
iour of the analogue materials are likely to be unimportant in determining thé system’s
kinematic response and the position of the first set of faults. However, if the het-
erogeneous deformation results from the development of a structural instability, one
should expect the properties of the analogue material to be key parameters in the
experiments. For example. we have seen in this study that the existence of a yield
vertex was an important aspect of the material description. Sedimentary rocks accom-
modate part of the deformation by slip along smalt faults or cracks, justifying the usc
of a deformation theory in our stability analysis to model the yield vertex. The question
remains whether or not analogue materials have a similar feature. It 1s known that
sand deforms in an heterogencous manner, by isolated local failure prior to maximum
load (ARTHUR et al., 1977). Such a prefailure deformation mechanism has been
modelled as slip along distributed defects whose growth and interaction were respon-
sible for localization of the deformation and ultimate failure of the specimen (Su1 and
HoRrRI1, 1989). It remains to be determined whether such a deformation mechanism
can result in a plasticity model with a vertex at the loading point on the yield surface.
Such questions, concerning the similarity of deformation mechanisms and of nonlinear
material properties between analogue and natural materials, could become important
once experimentalists are able to determine with sufficient accuracy the stress dis-
tribution in the brittle layers of their laboratory experiments. At that time, no doubt,
they will try to compare their predictions with the in situ stress conditions in the
Earth’s crust.

Despite the simplicity of the geometry of our model, only the stability, with respect
to small perturbations, of a perfect interface between finite overburden and semi-
infinite substratum could be studied. The geological problem of interest presents a
number of features, which, although important for an accurate description of the
physical problem, have not yet been incorporated in the present study in order to
limit its analytical complexity. However, it is clear that the present study should be
extended substantially along the following lines.

First, an analysis similar to the one presented here is needed to quantify the influence
on stability of the thickness of the substrate. This influence is known to be important
for ratios of overburden to substrate thicknesses larger than 0.1, in the case of
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viscoelastic layered systems (BioT and ODE, 1965). Furthermore, this first extension
of the present work is a prerequisite before starting a series of nonlinear stability
analyses which are necessary for assessing the validity of the linearized approach
used here. This second step of post-instability modelling, obviously to be based on
numerical methods in view of the large nonlinear deformations involved, would
identify the conditions that control the evolution of the instability towards diapirs
(e.g. salt domes), or towards stable finite-amplitude disturbance (e.g. salt pillows).
Initiation of faulting in the overburden during the rise of the dome could then also
be studied numerically [see LEROY e al. (1989) for further discussion]. Finally, the
three-dimensional character of gravitational instabilities will have to be accounted
for. A 3-D linearized stability analysis will shed light on the geometry of rising domes
that vary from elongated to circular structures, when seen from the top. This 3-D
analysis is also required to pursue further the comparison between the initiation of
structural instabilities, so far modelled in 2-D, and the initiation of faulting, which
has been studied for general 3-D deformation conditions. Although the 3-D stability
of certain geological structures can be determined by superposition of 2-D results, as
was done some years ago by B1oT (1966), this approach depends on the condition of
transverse isotropy with respect to the vertical axis. This condition, of course, is ruined
as soon as one allows a difference between the in situ stress gradients in the two
horizontal directions.
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