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Abstract-An analysis of the collisional transition between the lower atmosphere and the 
collisionless exosphere is carried out based upon an integral formulation of the Boltzmarm 
equation. This investigation utilizes a collision model which is a combination of Lorentz-gas 
and relaxation collision models. The results of this analysis indicate that intermolecular 
collisions act in two ways to affect the atmosphere. First, there is a critical layer, similar to 
the apparent photospheric surface of the Sun, from which the material escaping from the planet 
originates. This layer is determined by collision suffered by particles moving on orbits which 
skim tangentially by the planet. Secondly, collisions reduce the vertical flux of material in a 
manner analogous to the diffusion processes which occur in the lower atmosphere. 

1. INTBODUCTION 

A planetary atmosphere is naturally stratified into two broad regions: a lower 
continuum stratum within which intermolecular collisions prevail, and an upper stratum in 
which the atmospheric gases behave as a classical Knudsen gas. This differentiation results 
from the decrease of the collision frequency with height above the planetary surface. In the 
upper stratum particles moving with speeds in excess of the escape velocity can escape 
from the planetary gravitational field. Since material is escaping from the atmosphere and, 
conversely, being gained from the surrounding ambium, the state of a planetary atmosphere 
is obviously time-dependent. These facts were apparent to WaterstoC2) in 1846 when he 
presented his controversial paper on the kinetic theory of gases. Since that time, numerous 
investigations have been carried out in an attempt to clarify the nature of the escape process 
and to determine quantitatively the rate at which material is being lost.(1-17) 

Many of those early investigations,(1-11*14) and recent studies of the exosphere as 
well,(1s-28) are based on the concept of a critical level above which the atmosphere is considered 
collisionless and below which the atmosphere is treated as isothermal and collision- 
dominated. Under these circumstances the distribution function in the lower atmosphere 
takes the form given by Jeanso4) 

h*(r*, V*) = Ni*(/li*/n)S’2 exp [-_Bi*(V*$ + V8*2(r* - R*)/r*R*)] (1) 

where Ni* is the number density of the ith species at r* = R*, fii* = m,*/2kT* the inverse 
of the most probable particle speed squared, V,* is the escape speed at r* = R*, and R* 
is a reference distance from the center of the planet. Here the star is used to indicate 
dimensional quantities. 

If a critical level, rcr*, is assumed above which the collision frequency is zero and below 
which the atmosphere is collision-dominated, one finds that the distribution function given 
by Jeanso’) implies an escape flux 

3* = 2r0,*BN,*(7r//?,*)1’2 (1 + Bi* Vd*2R*/r*) exp (-pi* Ve*s) (2) 

a result obviously dependent upon the height of the critical level. This indeterminacy has 
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been alleviated in many ways, but the most frequent assumption employed is to choose as 
the critical level the point at which a particle moving upward has a probability of l/e of 
escape without suffering a collision.(12) 

Although the critical level model of the exosphere, which assumes a finite discontinuity 
in the collision frequency, offers a simple, convenient scheme for estimating the escape 
flux, it obviously does not represent the actual transition to the exosphere in which the 
collision frequency must be a continuous function of altitude. The inconsistencies of the 
critical level model were recognized by Milned2) and Jones,os) who improved the model 
by introducing a variable critical level which depended upon the zenith angle of a particle 
trajectory. 

Recently Byutner (16m17) further improved the model by considering in an approximate 
fashion the effect of distortions to the distribution function in the transition region. 
However, neither Byutner, Jones, nor Milne has attempted a self-consistent analysis based 
upon the kinetic theory; rather these theories, as does all previous work, rely upon apriori 
assumptions about the collisional processes which must determine the distribution function 
and consequently the escape flux within a transition region between the collision-dominated 
lower atmosphere and the collisionless exosphere. 

To achieve a rational analysis of the escape flux and the transition to a collisionless 
exosphere, the present study proceeds from a set of self-consistent integral equations, 
deduced from the Boltzmann equation, governing the kinetic processes of the neutral 
particles situated near the lower boundary of the exosphere. On the basis of these equations 
the escape fluxes of separate major and minor constituent gases are evaluated. 

2. INTEGRAL. EQUATIONS 

Consider a spherically symmetric atmosphere of neutral particles surrounding a planet. 
The velocity distribution function, fi*, is assumed to be a sufficient representation of the 
microscopic state of the gas. The function fi*(r*, V*)dr*dV* represents the number of 
molecules of species i in the element of volume dr*dV* surrounding the point r*, V* in the 
phase space, or ,u-space. Further, it is assumed that molecules experience only binary 
collisions and that the external forces acting upon a particle are conservative. Under these 
circumstances the distribution function for the ith species of gas must satisfy the Boltzmann 
equation 

* 
* V*.g 

1 ag afi* 
* ---.- 

mi* ar* av* = F If [f,*(vt*‘>Jf*W$*‘) -f,*(vi*YjW,*>l 

x g*Z*(g, x) d!2 dVi* (3) 

where the summation ofj includes all possible collisions suffered by the ith species. Here 
V* is the velocity of a particle, m, * the molecular mass of the ith species, v* the force 
potential, g* the relative velocity between colliding particles, IV,* - V,*), x is the angle 
of deviation of the relative velocity vector caused by a collision, Z the differential collision 
cross section and the prime ( )’ denotes conditions after a collision. The reader is referred 
to reference@) for an extensive discussion of the Boltzmann equation for neutral particles. 

The boundary conditions applicable to the non-ionized gases in the exosphere can be 
specified as follows : 

(a) at r* = R* h*(r*, V*) = Ft*(lV() p z 0 (4) 

(b) as r* + co ft*(r*, V*) + 0 PC0 
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where p = r* l V*/(Jr* 1 1 V* I). The first condition states that at some level R* the distribu- 
tion function is known. This is realized at low levels where the collision frequency is high 
and consequently the distribution function is very nearly Maxwellian. The distribution 
function at this base level can be taken to be the local Maxwellian function 

F,*(I v* I) = Ni*(/9i*/7r)a’B exp (-/$*Y*8) (5) 

The second condition of (4) is somewhat more restrictive, because it implies that the planet 
is completely isolated so that no material is injected into the exosphere from the surrounding 
ambium. Although this is not generally the situation, one can neglect the cross- 
coupling between incoming particles and escaping particles as a tirst approximation. The 
only additional information required is a knowledge of the potential force acting on the 
particles. For a spherically symmetric planet, the Newtonian gravitational potential is 
given by the relation 

tp*(r*) = -G*M,,*m,*/lr*l (6) 

where G* is the universal gravitational constant, and MO* is the mass of the planet and 
atmosphere below the level r * = R*. In this formulation the mass of material comprising 
the exosphere is assumed to have no significant effect upon the gravitational potential. 

Before developing the formal solution to equation (3) for the distribution function it is 
convenient to decompose the collision term as follows: 

ai* = Z: JJ fi*(vi*‘)fj*(v_4*‘)g*1*(g*, X) dszn,* (7) 
j 

and 
yi* = F .fS fjWj*)g*z*(g*9 Xl dfJ &j* (‘3) 

These terms may be treated separately so long as one adheres to the concept that a collision 
is an isolated event. For this to be true, the effective range of intermolecular interaction 
must be much smaller than the mean distance between particles. This concept, although 
implicit in the binary collision assumption, is not rigorously satisfied by most molecular 
models. This condition is of minor importance if the collision term is not separated.@@ 
However, when correctly defined, the quantity Ye* is the collision frequency for a given 
particle with all encountering particles. The first integral, ui*, represents the net number 
of particles “produced” per second per unit volume of phase space due to collisions. Actu- 
ally this process is not a production but a transfer of particles from one section of phase 
space to another due to thecollisionalprocess. These two quantities have physically meaning- 
ful definitions, and the collision frequency in particular is a most important parameter in 
transitional problems. In such problems it is especially useful to separate these terms rather 
than to mask their individual effects in combination. This is clear if one considers that the 
combined collision term is zero for both the collision-dominated and the collisionless 
cases, while in these extremes the collision frequency must vary by orders of magnitude. 

In order to simplify the succeeding analysis, the following non-dimensional parameters 
will be introduced 

v = v*/v,* ai = o,*R*V,*~/N~* V,* = (2G*Mo*/R*)f~a 

r = r*/R* vi = vi*R*IV,* At = 2/i%*v,* (9) 

fi =h* V,*s/Ni* fp = y*/v**s p = r* * v*/ir*i Iv*1 
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In terms of these coordinates and parameters the basic formulation of the problem becomes 

% 
“5% 

where the distribution functionj,, is subject to the boundary conditions 

(a) at y = 1 jXr, V) = I;,(V) lu 2 0 

(b) asr+co fi(r,V)+O Y<O 

Equation (10) can be treated formally by the method of characteristics.(3) 
characteristic equations in this case are: 

dr -2r2 dV dp d_fi -= 
VP iu = [V//A - 1/2Vr2](1 - j,s) = (Oi - v&) 

Equations (12) admit the following three independent integrals 

E = i(V2 - l/r) 

J2 = r2V2(1 - p2) 

_I&, VI) =.m v> exP [+~J$) dp] -s,:($) exP [+I:($) dt] 4 

(10) 

(10 
The 

(12) 

(13) 

where the integrations are carried out along paths of constant E and J in the phase space. 
It should be noted here that E is the non-dimensional total energy of a particle and J its 
non-dimensional angular momentum. In order to simplify the analysis E and J will be 
introduced as primary variables replacing V and ,u. Note that in the inverse transformations 

V = (2E + I/+/” 

,u = &[l - Jz/(r2(2E + l/r))]li2 (14) 

,u is not uniquely defined in terms of the new coordinates. This difficulty is circumvented 
by splitting the distribution function such that 

fi =fi+ +h- 
where (15) 

fi =A+ for p > 0 and h = fi- for ,u < 0 

In terms of this designation offi, one may formally solve the last equation of (13) for 
j; as follows: 

fi* (r, E, J2) =fi(*) (rI, E, J2) exp [- rQl” 41 

and 

where 

Qi’ (p, E, J”> = 

L Jr1 

+ll$-‘exp [-[Q{*)dE] dp’ 

vi[p, (2E + l/p)l12, 31 (1 - J2/p2(2E + ll~V’~l 
(2E + l/p - J2/p2)lJ2 

Pi* (p, E, J”) = 
%[P, (2E + l/p)lj2, III (1 - J2/p2(2E + l/p))1/2] 

(2E + l/p - J2/p2)l12 

oi = oi(r, V, ,u) and vj = v&, V, p) 

(16) 

(17) 

(18) 
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This form forf, is not complete because the integrals in equation (16) are not completely 
specified. The integration is to be carried out along paths of constant E and P. These paths 
are easily recognized as being the paths that a particle would follow if there were no 
collisions. That is, the two integrals E and Ja are the energy and angular momentum of a 
particle with velocity V and direction p ; thus a path of constant E, Ja is identical to the path 
followed by a point mass moving in the planetary gravitational field. The quantity E is 
the total energy, which is negative for trapped particles. One important property of the 
motion of a particle in an attracting central force field is the existence of bound orbits,(3a) or 
closed characteristics. The extreme values of r at which the closed characteristics have 
minima or maxima are the points at which ,D = 0. At these points the direction of integra- 
tion in equation (16) must be changed, and Q* and P+ change to the corresponding Qr and 
PF, depending upon the sign of p after the change in direction; hence the (&-I) in 
equation (16). 

A second difficulty results from the necessity to know at which boundary, if any, the 
characteristic originates, so that bounding values off,@,, V) may be determined. However 
once the extreme values of r are known for a given characteristic it is an elementary task 
to determine which characteristics originate at the planetary surface and which originate at 
infinity. The only remaining problem is to determine the limiting values of r on a given 
characteristic where E and 52 are constant. This is easily accomplished by setting ,u = 0 
in equation (14) and solving for the values of r. 

1. ForE>O 

2. For E = 0 

3. For E < 0 

r = rs = -(1/4E)(l - d/(1 + 8EP)) 

r = rp = J2 

r = r, = -(1/4E)(l + 1/(1 + SEJ2)) 

r = rs = -(1/4E)(l - 2/(1 + 8EJa)) 

(1% 

(20) 

(21) 

where r, is the maximum, sometimes referred to as apogee distance, and r, is the minimum, 
called the perigee distance. Notice that cases 1 and 2 represent unbounded characteristics 
which have a single minimum and no maximum, Case 3 represents completely bounded 
paths with rp 2 r 5 r,. When the path penetrates the sphere r = 1, re < 1, or in terms 
of E, Ja 

E r J=/2 - 4 

Furthermore, since ,U is a real quantity 

(22) 

E > J8/2ra - &r (23) 

This information is summarized in Fig. 1, with the labels I and II referring to open and 
closed characteristics respectively, the subscripts a and b referring to cases having minimum 
radius r, < 1 and r, > 1 respectively. The shaded region represents characteristics which 
originate at the planetary surface. Figure 2 is a schematic diagram of these various charac- 
teristic paths. 

It is interesting to note that in regions I$ and 1, the characteristic paths are bounded 
and reach neither of the boundaries. In the past, the study of these bound or satellite 
orbits has been made difficult by the lack of a meaningful boundary condition. However 
the above-mentioned difficulty does not present itself when a collisional analysis such as 



1190 P. B. HAYS and V. C. LIU 

FIG. 1, CHARACTERISTIC LIMITS IN THE E, P PLANE. 

FIG. 2. TYPICAL CHARACTERIsTlC PATHS, WHICH ARE IDENTICAL TO THE TRAJECTORY 

PARTICLE IN A VACUUM. 

OF A 

the present study is used. Under these circumstances r, may be set equal to r and the 
integration carried out around the entire path. The result is a compatibility condition which 
determines ft. This relation for fi may be obtained from equation (16) by setting r, = r 
and solving for fi as follows: 

ft(r, E,P) = ‘pi (*I exp (- #‘Qi(*) dt) dp 

1 - exp (-$%A* dE) (24) 

The equation for fi* may now be written specifically for the various regions. 
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1. In region I,* 

and 

fi+(r, E, Je) = F,(E) exp (-lQi+dt) +pi+exp(-lQi+@)dp (25) 

fi-(r , E, 52> = jWa, E, 52) exp (-[Qi &) +pi-exp (-gQi-&) dp (26) 

This region is commonly referred to as the ballistic component. 

2. In region I,* 

6’(~,gm=exp(rl:Q~~~~)~*S:P.“exp(*lQ~~P)dp 

+Pi-exp[-lQ-dF+~(Qt: “-)ds]dp)) (27) 

This region is the satellite component, which has no definite boundary condition. 

3. In region II,* 

fi+(r, E, Ja) = Fi (E) exp (7lQi+ dp) +p*+ exp (-lQ,+ @) 4 (28) 
and 

fi-(r, E, J2) = lrn exp( -I'n;dS)dp Pi- (29) 

This region is the ballistic component, which can escape from the planet, andfi- is the 
return flux determined entirely by collisions. 

4. In region II,* 

fi-(r, E,52) = *P.- S, z exP (-l'Qi-dE)dp (30) 

and 

fi+(r, E, 52) = fi-(r,, E, Ja) exp (-ilQ,+dE) +if’i+exp(-lQi+dt)dp (31) 

This component is determined entirely by collisions and is absent in the collisionless 
solution. 

The physical significance of these integral relations forf, can readily be seen by rewriting 
the general relation (16) in terms of the distances along the characteristics 

where s is the path length measured from the boundary at r = r,, and where Z(S) = V(.S)/Y&) 
is the free path between collisions in an isotropic medium with collision frequency Y&S) for 

a particle moving with velocity V(s). In equation (32) the quantity exp is the 
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probability that a particle will travel the distance s without suffering a collision.oa) Thus, 
the first term on the right-hand side of equation (32) accounts for the number of particles 
on the characteristic at s’ = 0 which ultimately reach s. The second term accounts for the 
number of particles which, due to collisions, are deflected onto the characteristic and ultima- 
tely reach s. Here, the effects of chemical reactions and ionization are assumed to be small 
compared with molecular collisions. 

3. LIMITING SOLUTIONS 

The integral equations developed in the preceding section admit two limiting solutions 
corresponding to the completely collision-dominated situation and its collisionless counter- 
part. It is useful to develop these limiting situations before proceeding to the more complex 
cases. 

(a) Collision-dominated solution 

When the collision frequency becomes extremely large or the mean free path sufficiently 
small one can write equation (32) in the following form: 

fi(s, E, J2) = I;i(E) exp (-l&‘/l) + l(o;/rJ $ exp ( - ~:ds”ll) h’ (33) 

thus fi + U;(S)/V,(S) as I(S) + 0 

a, - vif = 0 (34) 

But this is the condition for the distribution to be Maxwellian.04) The solution in this 
situation is 

fi(r, E, J”) = I;i(E) = (A~/T?~~) exp [-A,2(2E + l)] 

or in terms of the conventional velocity coordinates 

fi(r, V) = (4t/1T”/2) exp [--A:( V2 + 1 - l/r)] (35) 

This, of course, is the limiting case where transport fluxes vanish. In this situation the 
number density has the value 

n,(r) = exp [-A:(1 - l/r)] (36) 

which identifies with the density of the isothermal atmosphere obtained from the hydro- 
static equations. This solution represents the lower atmosphere where the collisions are 
frequent. The presence of transport fluxes and radiation processes tend to deviate the 
molecular distribution from the ideal locally Maxwellian state. 

(b) Collisionless solution 

In the other extreme, where the collision frequency is zero above the boundary level, one 
obtains the collisionless solution as given by Aamodt and Case.(27) When a, = vi = 0 
equations (25)-(30) reduce to 

I 

0 in II,-, II,* 

fi(r, E, P) = F,(E) in I=*_, II,+ (37) 

undefined in I,* 
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Here the solution was taken to be Maxwellian at T = 1. This solution has commonly been 
taken as a satisfactory model for the exosphere and has been used extensively to determine 
the escape flux. The number density in the collisionless case can be evaluated from the 
distribution function (37) if an appropriate assumption is made concerning the undefined 
satellite components in regions I,*. Here it is assumed that the satellite orbits are not 
populated in agreement with the assumptions of Aamodt and Case.(27) Thus one finds 

ni = (l/2) exp [-JIF(l - l/r)] (1 + erf (A&//r) 

- d/(1 - l/r3 [l + erf (A,/& + 1))l exp [-di2/r(r + I>1 (38) 

+ (2~~44(~r))(2/(1 - l/r) - 1) exp [-ANrl) 

where erf(x) = (2/d7r) 
s 

’ exp (- t2) dt. 
0 

(c) Comparison of limiting results 

The distribution functions for the two limiting solutions are closely related since the 
collisionless solution is equal to the collision-dominated solution except for particles which 
have escaped and those on the satellite orbits, for which the distribution function is assumed 
to be zero. Near the base level the differences between these limits are small when one 
considers the macroscopic properties of the atmosphere. For instance, the number densi- 
ties of the two solutions differ as follows near the base level 

%.D. - %.L 

%.D 

= $ zi (2.AJd(m-)) exp (- At/r) 

for Ji > 1 and r s 1. These variations grow as the altitude above the boundary level is 
increased until the two solutions exhibit widely varying number densities as r + 00. The 
collisionless solution tends to zero as r + co, while the collision-dominated solution tends 
to a constant number density. This same behaviour is exhibited by the other macroscopic 
properties of the atmosphere except for the escape flux, which is zero for the collision- 
dominated solution. The loss of material in the collisionless case can be expressed in terms 
of the escape flux 

fli = 4nr24r)4(r) = 21Q.4, + l/Ji) exp (-A;) (3% 

For reference, this flux is presented in Fig. 3. The collision-dominated solution presented 
here has excluded the possibility of transport fluxes, however this is not physically realistic, 
and indeed Bate@ and Bates and Patterson K+US) have shown that for light-weight gases 
such as hydrogen the upward flux of material caused by escape has a profound effect upon 
the number density of these constituents within the lower atmosphere. The number density 
may be reduced by an order of magnitude for hydrogen in the Earth’s atmosphere due to 
material being removed more rapidly by escape than it can be replenished by diffusion from 
below. 

Thus, although these two limiting solutions appear similar in terms of macroscopic 
properties near the transition level, it is to be expected that the coupling between the lower 
and upper atmosphere in the transition region will profoundly affect both the thermosphere 
and exosphere. What is needed is a model which spans the collisional transition region and 
which includes a detailed examination of the collision processes. 
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FIG. 3. ESCAPE FLUX PREDICTED BY THE COLLISIONLESS THEORY. 

4. ESCAPE OF A MINOR CONSTITUENT GAS 

It has been suggested that the assumption of quiescence and the neglect of the collisional 
transition between the lower and upper atmosphere have serious consequences on the present 
theories of atmospheric escape. In order to pursue this question, the escape of a minor 
constituent gas will be considered in detail. The formalism necessary for this examination 
was developed above, however a molecular collision model must be postulated in order to 
proceed. 

(a> The relaxed Lorentz-gas collision model 

In the past, three general techniques have been used to simulate mathematically the 
effects of collisions. First, the relatively exact formulation of the binary collision integrals 
combined with an intermolecular force law can be used to relate the collisional production 
and loss to the distribution function. This is of course the preferred choice, but the com- 
plexity of this approach has serious disadvantages in involved problems like that of atmos- 
pheric escape. The second approach is the simple choice of postulating the collisional 
effects apriori, neglecting entirely the coupling with the actual distribution function. Jane@) 
and Bytuner used this method with limited success, and although their results are useful 
in a limited sense, the method cannot be used either to obtain the effects of upward motion, 
or to relate the changes in the collisional production to the changes in the distribution 
function resulting from the loss of material by escape. These effects must be considered for 
the minor constituent gases with low molecular weight. The third alternative is to use an 
approximate collision term, in the spirit of the ’ Krook s fse) relaxation model, which is a 
compromise between these two extremes. However, such a model must be chosen with 
extreme care in order to be as exact as possible without being so cumbersome,as to make the 
analysis intractable. 
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In developing a kinetic model appropriate for the study of the escape of a light-weight 
minor constituent gas we begin with:a’review of the properties of the classical Lore&-gas. 
This hypothetical gas represents the’situation in which nl/nB < 1 and mi/mB ---+ 0, that is, 
where a minor gas is diffusing through a background of i&nitely massive scatters. Under 
these circumstances a collision changes the direction in which a molecule is moving, but 
never changes its speed. This is illustrated by the collision integrals for hard spherical 
molecules satisfying the Lorentz-gas limits, where the collision frequency is 

and the production is 

+l 0, = (vJ2) 
s 

_-l fi(r, 6 P) dp 

where diB* is the collision diameter and the subscript B refers to the background gas. Here 
all directions of motion are equally probable after a collision, but the speed is unchanged. 
Thus if this kinetic model were employed in the escape problem the effects of collisions 
would be confmed to that portion of the distribution function where molecules have speeds 
in excess of the escape velocity. However, in the real atmosphere, the mass ratio may be 
small but is always non-zero; thus collisions do change the speed of a particle and con- 
sequently, after sufficient time distortions to the distribution function, will spread to all 
regions of the velocity space. 

A real gas of non-zero mass will exhibit two relaxation times: first, a rapid relaxation 
of the anisotrophies in the distribution function in the order of a single collision time; this 
rapid angular relaxation is followed by a gradual decay of the residual isotropic distortion 
to the local Maxwellian state in a time which depends upon the ratios of the mass of the 
relaxing gas to that of the background gas. This problem is important in the theory of 
weakly ionized gases, cs7) where the slow relaxation to the Maxwellian state can be realized 
by adding a correction term to the Lorentz-gas production. This correction term is similar 
to Krook’s single relaxation time collision modeP) used in ordinary rarefied gas dynamics. 
The addition of a smoothing influence, such as the relaxation model, causes the distribution 
of molecular velocities to approach the Maxwellian state as required, while still exhibiting 
the rapid smoothing of the Lorentz gas. 

A similar model can be used to study the escape of a minor constituent gas of low 
molecular weight. That is, a relaxed Lorentz-gas molecular model can be postulated which 
has the following functional form: 

vI = r(diB*%jB*(r)R*)V, (40) 
and 

ui = viFi(E) 
1 
(1 - $(1/2) 

s 
+ Y;(G E, /W’iU91 dp + CJ 

I 
(41) 

-1 

where q is a parameter related to the isotropic relaxation of the minor gas. This form for 
the collision operator is a compromise between the Lorentz-gas modeP7) where 17 = 0 and 
a purely relaxation model (SW where 7 = 1. Notice that the Lorentz gas collision frequency 
vi, has been retained since the escape velocity is usually very large compared to the thermal 
speed. 

The physical meaning of the parameter q and the logic behind this particular functional 
form for u( can be understood from the following simple illustration. Consider the temporal 
change of the non-Maxwellian distribution function in a homogeneous gas which has the 
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modified Lorentz-gas collision model postulated in equations (40) and (41). The distribution 
function depends only upon time and velocity, thus satisfying the unsteady Boltzmann 
equation 

% 

- = ui - v& 
at 

Introduce the function 

-%% 0 = (l/2) 
s 

+’ y;Cc 4 A/~iWI + (43) 
-1 

and integrate equation (42) over ,D to obtain the moment equation 

- = Vi[(l - r)9 + ?j - 91 at 

This equation has the solution 

L?(E, t) = 1 + (_Y(E, 0) - l)e-Qql 

indicating that (v&l may be interpreted as the time constant for relaxation of the isotropic 
distortions of the distribution function of the local Maxwellian Fi(E). Thus, l/q is a measure 
of the average number of collisions required for a distortion of the distribution function 
from Maxwellian to be reduced by a factor l/e. Here, the relaxation rate is independent of 
the velocity of the particles being considered and 7 is called the average relaxation rate 
parameter. 

(b) Average relaxation rate parameter (hard spherical molecules) 

The relaxed Lorentz-gas kinetic model is complete only when the relaxation rate 
parameter 7 is known. This parameter forms the connection between the mathematical 
model proposed here and the gas mixture that the model is to simulate. However, at this 
point one is faced with a rather delicate decision: Because the average relaxation rate 
parameter has not been defined precisely, the definition of this parameter represents a 
critical step in bridging the gap between the theoretical model and the physical reality that 
this model is to represent. In order to resolve this indeterminacy, we decided to combine 
the exact definition of o, from equation (7) with the approximation (41) and average over the 
region of velocity space of interest to determine 7; that is, to equate the two equations and 
to average them such that 

(45) 

where the bracket () indicates the integral over the velocity space for all velocities larger than 
the escape speed. This definition for 11 insures that the total number of particles produced 
by collisions with speed greater than the escape speed will be correctly represented by the 
approximate collision model proposed here. We further decided that for the present applica- 
tion a representative value of 7 could be obtained by evaluating the collisional production 
operator for a specific distribution function which incorporates the main features associated 
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with the exosphere. In particular, an equilibrium Maxwellian distribution truncated at the 
escape velocity is chosen 

fi(r, E, p) = Fi(oE) ; >’ ; 

Combining the distribution function with the definition for 7 chosen above yields the 
relation 

CO 2n n 

sss 
a,V2 sin 8 d 6 da dV 

r = lm Ozrr “, 

sss 

(47) 
viFi(E) V2 sin 8 d 0 da dV 

1 0 0 

where oi is obtained by evaluating equation (7) wheref, is defined by (45) andf, = FB the 
equilibrium Maxwellian distribution function for the background gas. For a minor consti- 
tuent gas composed of hard spherical molecules, equation (7) is linearly dependent uponf* 
and can be partially integrated to give the relation 

ci = [(d,B*2~~*(R)R*)Y(E)/~~l~~~_~~(V~~) exp I-ulu,z(Q + Vi cos v)lQ-l dQ 

(48) 
where 

L, = .fP’@) 

Q = (hi + +3)/2~&‘i’ - Vi) 

~0s v = Q . V,/(lQI Ivil). 

Equation (48) is derived in a manner similar to that used in section 7.6 of reference t2~) to 
develop the linear Boltzmann equation collision operator. 

The collisional production, a,, can be evaluated for the limiting cases of mass ratio 
equal to 1 and mass ratio very small. The results for these two situations are: 

(a) mi/mB = 1 

(1) vi r 1 

oi = (d,,*2 NB*(R)R*)(~i3/(~~2V~)) exp (-AFV>) 

x Wi” - 9 erfJ* + (J,lz/v) exp (-d?)} (49) 
(2) vi I: 1 

a, = (diB*2NB*(R)R*)(AF/(AB2V,)) exp (-A,2V?) 

x {[Ay+ g - exp (-JlF(VF - l))] erf (AiVi) 

+ (AiVi/l/n) exp (-di”Vi2)) 
(b) m,h < 1 

(1) vi r 1 

(50) 

rsi = (diB*2 NB*(R)R*)(A,a/(.AB2Vi)) exp (-&FV,2) 

x {[d/((l - V,“)/4)” + dB2VF/2 + &I. 
x [erf (.AB( Vi + 1)/2) - erf (AB(Vi - 1)/2)] 

+ [(3Vi - l&&/4 + dB3(Vi - Q2(Vi + 1)/W exp (-J&V, + 1)2/4)/2/~ 
- [@Vi + l)J& + AB3(Vd - l)(Vi + 1)“/8] exp (--J~~(vi - 1)‘/4)/1/~} (51) 

3 
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- W K + 1)~13P + dB3(Vi - l)(Vi + 1)2/S] exp (--AB2( Vi - 1)2~4)~~~ 

- 1(3vi - l)dJ4 + dB3( Vi - 1)2( Vi + 1)/8] exp (-AB~( Vi + 1)2/4)/1/77} (52) 
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FIG. 4. RELAXATION RATE PARAMETER As A FUNCTION OF BELTS 

FOR VARIOUS GAS MIXTURES. 

The average relaxation rate parameter can be obtained directly from these relations using 
the definition provided in equation (47). For the first case where m,/mB equals I, that is 
for a minor gas of the same molecular weight as the background gas, the relaxation rate 
parameter can be obtained by direct integration: 

(a) milmB = 1 

rl = ((A? - 4) erf i + (JJv’rr) exp (~~)~~t~~2 5 4,l 

-+ (At2 - $$/(d$2 + 3) for large A?+$ (53) 

THIS result is in substantial agreement with that obtained by Byutner.(l*) Byutner’s 
analysis demonstrated as we have, that for the heavy constitutents with molecular weight 
near the mean molecular weight, the collisional production is very nearly equal to the value 
for the undis~jbuted Maxwellian condition. 

In the case of the light-weight constitutents, the average relaxation rate parameter had to 
be evaluated numerically, where the integrations over OL and p were carried out analytically 
and an jntegration on tr was performed using a simple q~adrat~e. Figum 4 shows the 
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relaxation rate parameters for the various binary gas mixtures one might expect in planetary 
atmospheres. For the terrestrial atmosphere, wbere hydras is minor constituent in an 
atomic oxygen background, relaxation occurs in between 3 and 8 collisions, depending on 
the temperature. 

(c> Evaluation of the distribution function 

The distribution function for particles with energy sticient to escape (i.e. E > 0) is 
determined by equations (28-31). In~odu~iug the relaxed Lorentz-gas collision integrals 
given in equations (40) and (41) into equations (2%311, one obtains 

where 

and 

and wbere 

and 

Q =r: &Bo2&*Cr)R*)/[l - @/d2(l - @WE + W/W3 + llpW2 (579 

Here p&p+ r, E) is that value for p which will result in a trajectory with perigee radius p for 
a particle originally at r with energy E, and r,(r* E, p) is the perigee distance for a given 
trajectory. This set ofratber formidable relations determines tbe distribution faction once 
the integral 
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is known. Thus, taking the integral of equation (54) over ,U one obtains the single integral 
equation fo 9 given below 

(59) 

Or by inverting the order of the integrations 

where : 

Y(r, E) = s OD K1 - q)-%r’, E) + ql Vr’, r) dr’ + A(r, E) (60) 
+1 

Case A. For r’ > r 

W(r’, r) = (l/2) (I”, -$ exp (-IQ dp) d,u +r”@) -$ 

Case B. For r’ 5 r 

and 

(61) 

(62) 

(63) 

Thus, the equation for 2 is a linear integral equation of the second kind and may be 
solved in the most general case using one of the many numerical techniques available.(38) 
However, before carrying out a numerical analysis of the equation it is well to consider the 
simplifications which may be applied when dealing with a planetary atmosphere. First, 
the transition region of the atmosphere of a planet such as Earth or Mars is confined to a 
very thin layer in comparison with the radius of the planet. Second, the radius, r, is not a 
natural coordinate to use to study the collisional effects. We decided that a more convenient 
parameter relating to the collisional transition would be the parameteP) 

(64) 
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which is the natural logarithm of the probability that a particle with velocity V directed 
along the radius vector will escape from the atmosphere. Notice the similarity here to the 
“optical depth” used in the radiative transfer problem 

Furthermore, since the transition from the collision-dominated region to the collisionless 
exosphere must occur in a layer, thin compared to the radius of the planet, it is assumed 
that the background gas density may be approximated by the simple exponential 

NB*(r) = N,*(R) exp [-AB*(r - l)] (65) 

Thus, for hard spherical scatterers 

y = [v+&*~N~*(R)R*)/A~~] exp [--ABS(r - l)] 

= y0 exp [-A&r - l)] (66) 
and the inverse 

r = 1 - log ty/yJ/&32 (67) 

where y,, is the value of y at r = 1. Now neglecting the square of (r - 1) compared with 
unity, the integral 

l(yl, yz, ,u) = 
s 

“Q dp = (&Z/,U)~~ exp (P){erfc (z) - erfc [Z2 - log (yz/yJ]1/2} (68) 
*I 

where 
z = [A/3/(1 - $)]‘/a (6% 

and where 
il = Aj32(2E + 1)/(4E + 1) (70) 

Notice that A, henceforth designated as the curvature parameter, can be expressed in terms 
of the scale height of the background gas, the particle’s energy, and the radius of the planet 

A = (R*/H,*)(2E + 1)/(4E + 1) (71) 

where R* and HB* are dimensional quantities. The scale height HB* has the definition 

HB* = (kT*/m,*g*) (72) 

where g* is the gravitational acceleration at the distance R*, and T* the temperature of the 
background gas. For the terrestrial atmosphere iz varies between 25 and 150 depending on 
the temperature and on the energy of the particles under discussion. 

The integral equation for 3 now takes the form 

where : 

Case A. For y’ I y 

wC..v’, y) = (--l/2) (6.. II I) $ exp MY, Y’, Al dp -~~~~‘~~ $ 
0 I , 0 > ‘3 

x exp t-R.Y- y’, P) - 2R.v,, y, Al dp 
I 

Case B. For y’ < y 

w(y’, y) = V/2) IS_01 $, exp [-ZCy, y’, P)I + +/oPotV.,V,A) $, 

x exp --Iti, Y’, P) --2Q,, Y, P) II dp 

(73) 

(74) 

(75) 
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and where 

+l Jqy, A) = (l/2) 
s 

exp [--IO,, y, Al 4 (76) 
Po(YOJJA 

dy’9 y, 2) = 0% V/y)/(~ + 1% (y’/y))>“” 
and 

yp = y exp [G”/(l - p2>1 

The quantity yD is the value of y at r = rr, the perigee point. 

(77) 

(78) 

It is interesting to notice that when I + co, that is, when the planet is treated as being 
of infinite radius, the weighting function takes on a simple form and .3’ satisfies the equation 

g(IJ, 00) = (l/2) 
(1 

go Kl - ~)=%JJ’, 00) + rl[-U-ly - r'l)l 4 + exp [4yo - ~11 
0 

+ c_Yo -YM-IYO 4) (79) 

where 

-Ei(-z) = 
s 
sm [exp (-WI dt 030) 

is the exponential integral. It is interesting to note the similarity of equation (79) to the 
basic equations for scattering of light in a plane parellel atmosphere. When I + co, 
equation (79) for Z? is correct for any spatial distribution of background gas so long as the 
integral defining y is single valued. 

Once 2 is determined from these equations, the solution for the distribution function 
is easily evaluated from the following equations: 

.fxY, 29 PI = 
I;,(E) s 

o” [(l - $%y’, 4 + ql$ exp I--K..Y, Y’, ru>14’ --I<p<O 

=- s ” 
II 

W - rN.f, 4 + rl $ exp [-Q’, y, Al dy’ 

+ exp [-Qo9y, Al /%(yo9Y,~)<P<+ 1 

=- 
s 

go [(I - r)g(y’, 2) + r 1 $ exp L-Q’, y, pu>l dy’ 
II 

- s ,” Kl - T%%.JJ’, 4 + 71; exp [-Q,, y, P> - ~I.Y~, Y’, 41 

(a> Molecular escape fiux 

O<P<A_YO~Y~4 (81) 

The primary concern of this study is the escape flux. This flux is obtained from the 
distribution by multiplying the radial velocity of the particles and summing over all particles 
as follows : 

.F = 4nr2 z? = 8n2r2 I-1,2, (2~5 + V)&(E) J_T ‘$I(: ‘) @ME (82) 
I 
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In this expression the quantityfi(y, E, p)/F$(E) is determined from equation (82) for E > 0, 
but nothing has been said about the lower energy particles. The distribution function in 
this range must be known in order to complete the analysis. 

In the lower regions of the atmosphere, where collisions occur very frequently, the 
distribution function must be nearly Maxwellian and consistent with the results derived 
from the Chapman-Enskog theory. t2~) Thus, the upward flux of material caused by the 
escape of molecules is represented in the lower region by a distortion of the Maxwellian 
distribution throughout the entire velocity range from zero to the largest velocities. This 
process is the ordinary macroscopic diffusion. However, as the altitude increases such that 
particles can travel ballistically without suffering collision, a radical change must occur in 
this process. In this region of the atmosphere the distribution function for particles with 
energy less than zero (i.e. velocity less than the escape velocity) can exhibit no net outward 
motion. This results from the fact that in collisionless flow the distribution function is 
constant along a trajectory, and all trajectories for particles with E < 0 cross each height 
twice, once on leaving and once on re-entering the lower atmosphere. Consequently, the 
escape flux is entirely determined from the distribution function for E > 0 as y + 0. That is 

S = 83 lim r”(y) 
s 

co (2E + l/W@) 
s 

_;E& E, P)/F~(E)I P ‘+J dE (83) 
li+m 0 

The ratio of the escape flux determined from equation (83) to the result obtained from 
the collisionless theory is 

W*c.L. = [2~P/(J,B + l>l 
s 

m (2E + 1) exp (-2A~E)(W/~9,,) dE (84) 
0 

where 
69 

= lim 
@c., u-+0 

(85) 

is the ratio of the escape flux at a specific energy to the corresponding escape flux in the 
collisionless approximation. The flux ratio can be written in terms of 9 as follows: 

69 = lim 

~C.L., u-+0 
go [(l - v)~(Y’, 4 + 71 QJC y) dy’ 

s 1 

+2 exp [--Qo, Y, ~11 P dp (86) 
Po(u,,u,~) 

where the weighting function og has the value: 

Case A. For y’ 2 y 

e-$0’* Y) = -2 s pl,v, y ~~ P 0 , 3 
$ exp MY’, y,.dl dp 

Poduo.Y.‘I) 
+2 

s d exp [--KY, y’, PI+ W,, y, ~11 dp 
‘dy’ (87) 

PJY’,VA 

Case B. For y’ I y 

s 0 

q&Y) = 2 d exp [--R~J, y’, ,4l dp -?dy’ 

+2 s Po(Uo,U,@ d 

’ dy’ - exp I--l(y, Y’, P) + WY,, y, j-41 dp (88) 
0 
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For the planar approximation these equations may be integrated to yield the results: 
Case A. For Y’ 2 Y 

e@Y’,Y) = 2Cexp (-y’ + y) + (Y’ - yE-y’ + y)> 
Case B. For Y’ I y 

(89) 

e+Y’, Y) = 2{exp (9 + Y’) + (Y - y’)M-y + y’)) (90) 
and 

s 

1 
2 exp [--IO,, y, ,41 P 4 = (1 - y. + y) 

Po(Yo,Y.m) 

x exp (-Yo + Y) - (yo - y)aK(-yo + y). (91) 

5. RESULTS AND DISCUSSION 

The theoretical results derived above can answer a number of fundamental questions 
concerning the rate of escape of atmospheric gases and the nature of the outermost atmos- 
phere. The discussion presented here will be limited to the major constituent gas and to 
minor constituent gases of relatively low molecular weight. These two cases illustrate the 
major physical phenomena associated with the escape of atmospheric gases; in addition, 
they are the most interesting from the geophysical point of view. 

(a) Major constituents 

When the molecular weight of the minor constituent gas is equal to the mean molecular 
weight of the atmosphere the average relaxation rate parameter is close to unity (see Fig. 4). 
Byutner (16) has pointed out that for the escape problem the major constituent also exhibits 
nearly immediate relaxation to the Maxwellian state. One would of course expect this 
behavior from previous studies of translational relaxation in gases(30) In the atmospheric 
model postulated here this immediate relaxation to Maxwellian is represented by setting 
the average relaxation rate parameter equal to unity. As a consequence of this simplifica- 
tion one can represent the distribution function for the major constituent by a relatively 
simple expression : introducing the condition 7 = 1 into equation (81) and simplifying, 
one obtains 

I 

’ 
Z%(Yo,Y,~) <Fc < + 1 

$XY, G 1~) 
= 

F,(E) 
1 - exp [-Z(Y9, y, ZJ) - Z09, 0, ~11 0 < P < luc(yo, y, 3 (92) 

1 - exp [-Iti, 0,141 -1 <p<o 

where Z is defined by equation (68), ye is the value of y at perigee of the characteristic and 
il is the curvature parameter. Notice that this expression applies to particles with velocity 
in excess of the escape speed only. 

The ability to obtain a simple analytic solution for this example is of particular interest 
since many features of the transition zone can be uncovered which would be difficult to 
obtain numerically. Let us begin this examination of the transition region by considering 
the manner in which the distribution function changes with height and zenith angle. One 
expects the distribution function to be Maxwellian at low altitudes, i.e. large y, and to 
decrease for particles with velocity directed toward the earth as higher altitudes are con- 
sidered. This expectation is indeed correct, as the results shown in Fig. 5 illustrate. These 
data for various values of the height parameter y show the variation of the distribution 
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function with the cosine of the zenith angle (i.e. p). Notice that the distribution is initially 
Maxwellian, then exhibits a transition to a nearly discontinuous function similar to the 
collisionless solution determined from the critical level theory. It is of particular interest 
to determine the critical level which would simulate the exact solution at great heights. This 
can be done by considering the behavior off, as y + 0, where 

fib E, 1-4 
FiW 

= 1 - exp [--2Q,, 0, ~11 

The rapid change occurs where 

06 

fi /F, 

-1.0 -08 -06 -04 -02 0 02 04 06 08 IO 

I I 

(93) 

(94) 

FIG. 5. DISTRIBUTION FUNCTION FOR A MAJOR CONSTITUENT GAS WHEN THE CURVATURE 
PARAMETJlRd =, 50. 

a result which does not agree with the older heuristic theories. Recall that in an atmosphere 
where the collision frequency decreases exponentially with height, the parameter y is the 
ratio of the scale height and local mean free path. Thus the present theory indicates that 
the critical height can be chosen at the level where the mean free path length is 

l* = 22/(77R*HB(2E + 1)/(4E + 1)) (9% 

whereas the old heuristic theories chose the critical level to occur where 

I* = HB* (96) 

Consequently, the older theories predicted a critical level which occurred at a much too 
low altitude. Note that the critical level predicted by the present calculation is 

r cl. = 1 + log w(54.Yo)/~B2 (97) 

giving an error in height of the critical level for the old theories of 

Ah = log (22/(7rA))/ulv,z 

this being of the order of 250 km for the Earth. 
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The primary macroscopic quantity of interest here is the escape flux for the major 
constituent gas. One can easily determine this flux by introducing the dist~bution function 
given by equation (92) into equation (85) and in~grating. After rearrangement one obtains 

69 

=a =1+ 
s 0 

O” 4Eh2z 7;’ ’ {1-exp [--&, exp (- AB2h)]} dh 

= 1 + Y + log&--l”;;(-&J + 

where h = r 7 1, y is Euler’s constant and lo = 2y/(7rJ)y0. This result can be integrated 
over all energies using equation (84) to give the total escape flux as a function of y. and 
exospheric temperature. This integration has been carried out using a simple quadrature 

I15 y = I 3 at 600 km 

g 
_j 
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FIG. 6. THB VARIATION OF THE ESCAPE FLUX FOR A MAJOR CONSTITUBNT(ATOMIC OXYGEN IN 
THE~ARTHbATMOSPHERE)WITHBOUNDARYLEVBLFORVARIOUSlGxospHERIcTBMPERATURES. 

formula for various values of temperature in an atmosphere made up of atomic oxygen. 
The results of these computations are illustrated in Fig. 6. The escape flux is constant so 
long as the base level is deep in the lower atmosphere, but the flux changes to the collisionless 
value when the base level is chosen too high. This is of course the expected behavior. 

The escape ffux derived from the present theory is compared in Fig. 7 with the flux 
obtained from the classical critical level theory using yCr = (2d7~#n)-~_ This is the critical 
level for particle with zero energy. Observe that the results for escape flux agree very well 
using the new definition for the critical level. We thus conclude that the escape flux can be 
determined accurately for major constituents using the critical level concept if the critical 
level is defined as the level at which the mean horizontal free path has the value 

I* = 2&7rR*H,*) (99) 

One further point of interest in this development is that the results obtained by neglecting 
the curvature of the planet agree very well with the results obtained from the rigorous 
analysis. For this situation where the relaxation rate parameter is unity, the planar atmos- 
pheric model indicates that the escape flux is equal to the value given by the critical level 
theory. This is true so long as the criterion given by equation (99) is used to determine the 
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FIG. 8. A COMPARISON OF THE L FUNCTION FOR THE PLANAR ATMOSPHERE W~I VARIOUS 
SPHERICAL ATMOSPHERES. 

critical level. Second, when the mean value of the distribution function 

-%.Y, 4 = (l/2) 1-1’ IfiCy, 1, CL)Pi(~)I dp uw 

discussed in the previous section, is compared for the planar atmosphere and the curved 
atmosphere, for values of A of interest on the terrestrial planets the planar theory ade- 
quately represents the distribution function in the transition region. This comparison is 
illustrated in Fig. 8. These results strongly tempt one to conclude that the escape flux can 
be obtained in the most general case by neglecting the effects of curvature, while deter- 
mining the effective area of the planetary atmosphere from a critical level concept similar to 
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that derived above. This approach is valid when 7 = 1, and it is physically reasonable to use 
the same technique for the more complex situation where the relaxation is not instantaneous. 

(b) Minor constituents with low molecular weight 

Light-weight gases such as hydrogen and helium have high thermal speeds and consequen- 
tly they tend to escape rapidly from a planetary atmosphere. Bates and Patterson(34,36) have 
pointed out that in order to sustain the great upward fluxes demanded by thermal escape, 
one must have large gradients in the number density at low altitudes. In practice these 
high gradients decrease with altitude and generally approach the normal exponential 
behavior of a quiescent atmosphere at altitudes near the transition level where the actual 
escape occurs. The result of this dependence of the minor constituents upon the escape 
flux is far-reaching. 

The initial decrease in the density near the level of diffusive separation is strongly 
dependent upon the escape flux, the decrement increasing with increasing vertical flux, and 
consequently, the amount of hydrogen in the thermosphere as well as in the exosphere is 
determined by the rate at which material is lost from the atmosphere. The formalism 
necessary for an analysis of the escape of a minor constituent gas has been developed and 
can now be used to determine these rates accurately. 

The distribution function for a minor constituent gas obeys the integral equations de- 
rived above and summarized in equations (73) through (81). These equations are linear 
integral equations of the second kind and are readily solvable using standard techniques. 
In general they can be solved by assuming a set of discrete points at which the function is 
to be determined, introducing a suitable interpolation, and then carrying out the integra- 
tions to yield a set of difference equations of the form 

3,. = $ [(l - V&Y, + r]moij + Aj j = 0, 1, . . .,N (101) 
i=o 

This system of linear algebraic equations can be inverted to yield a discrete set of values 
for yi and -Lpi, which are sufficient to determine the distribution function and the escape 
flux that we require. The numerical inversions were carried out using the IBM 7090 com- 
puter to simulate the terrestrial atmosphere for the case where the curvature parameter 
tends to infinity. 

Figure 9 illustrates the results of the numerical evaluation of9 for various values of 
the relaxation rate parameter. Notice that S’ is a monotonically decreasing function of 
both y and q. This is of considerable interest since _Y is analogous to the number density, 
and a decrease below the Maxwellian value of 1 indicates an effect similar to the reduction 
of the number density due to diffusion which Bates has discussed for the thermosphere. 
The reduction of A? with decreasing 17 illustrates the increase in the resistance to any net 
motion which is a consequence of increasing the relative mass of the background scatters. 
The reduction of the number of particles present at escape velocities as height is increased 
is seen clearly in Fig. 10, which shows the variation of the distribution function with y 
when 7 = 0.25, a typical value for hydrogen in the Earth’s atmosphere. It is equally evident 
that the vertical flux of escaping material should be reduced as 7 decreases. This effect is 
illustrated in Fig. 11, which shows the variation of the escape flux with the relaxation rate 
parameter. Furthermore, the escape flux ratio tends to 1 as 7 tends to unity as one would 
expect for the planar approximation, since every collisional loss is exactly balanced by a 
corresponding gain when q = 1. 



ESCAPE 1209 

The variation of the escape flux for hydrogen and helium in the Earth’s atmosphere is 
illustrated in Fig. 12 for the range of temperatures one would expect for the terrestrial 
exosphere. The variation in the flux shown in Fig. 12 indicates that the classical collisionless 
theory gives nearly the correct variation with temperature, but that the overall level of the 
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FIG. 10. DISTRUWTION PUNC~ON FOR A MINOR CON~TITUJW (HYDROGEN IN THB JWmx*s 

AT&fOSPHERE)~?j = 0-25 FORTHEPLANARATMOSPHERB(~+ 00). 

flux is over-estimated when the resistance to vertical motion is neglected. The reduction in 
the escape flux indicated by the present theory is by no means trivial, since a decrease in 
the flnx of the order indicated in Fig. 12 will greatly increase the amount of hydrogen present 
at low levels, and will decrease the hydrogen in the outermost exosphere in direct proportion 
to the flux reduction. 
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7) ,AVEAAGE RELAXATION RATE PARAMETER 
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FIG. 12. ESCAPE FXXJX RATIO AS A FUNCTION OF EXOSPHWK! ~~~T~ 
FOR VARIOUS GAS- EXPECIEDINTHE EARTH’S ATMOSPHERE. 

6. CONCLUSION 

The classical problem of determining the rate of escape of a planetary atmosphere has 
been re-examined from the point of view of the kinetic theory of gases. This analysis, 
based upon a relaxed Lorentz-gas collision model, indicates that in the transition zone 
between the collisionless exosphere and the collision-dominated lower atmosphere, the 
molecular collisions act in two ways to effect the outermost atmosphere. First, an effective 
evaporative surface, in concept similar to the apparent photospheric surface of the sun, 
is determined by collisions of molecules moving tangential to the atmosphere. This effective 
surface or critical layer occurs where the local mean free path has the value 

I* = 24(7TR*H,*), 
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a result in disagreement with the previous heuristic theories. Second, the total amount of 
material passing through the transition region is determined by a diffusion-like process 
which is dependent upon the frequency of collisions, and the rate at which distortions in 
the distribution function from Maxwellian are destroyed by collisions. The net effect of 
collisions is to decrease the upward or escape flux of material and thus reduce the density 
of the outermost atmosphere of a planet. The reduction of the escape flux is highly depen- 
dent upon the molecular weights of the escaping and the background gases. When the 
background gas is very heavy compared to the escaping gas the escape flux is greatly 
reduced, but when the molecular weight of the escaping gas is equal to that for the back- 
ground, the escape flux is equal to that predicted by the critical level theory using the 
height criterion derived in this paper. 

These two characteristics of the thermal escape of gases are to be expected: the first 
from the rapid vertical decay of the collision frequency which has been used in the earlier 
theories to justify the critical level concept; the latter diffusion effect is of course physically 
analogous to the diffusing atmosphere introduced by Bates.tss) However, in this transition 
region one cannot treat the gases from the continuum point of view. 
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PewMe-Ha 0cHoBe mTerpanbHoI +O~M~JIH~OBKB ypaBHenus BonbTqMaHa BHJI 
cnenan aHann coyaapHor0 nepexoga MemAy HH~CHHMH CJIO~~IMII aTvoc*epzd EI Kecoy- 

AapHOti3K3OC+epOi& B 3TOMEICCJIe~OBaHEIH IIpHMeHHeTCR COyaapHaH MO~eJIb,XBJIHIO- 

qascs KOM6l,iHaI@let MoAenH “JIopeHq-ra3" c coyzapHoti Mogenbm “penawaqm”. 
Pe3yJIbTaTbI 3TOrO aHaJII13a yKa3bIBaIOT Ha TO, YTO coyFl;apewH Memgy MoneKynaMEi 

EfMeIOT ABORKOe BO3AeZtCTBMe Ha aTMOC@epy. Bo-nepsblx, CyqeCTByeT KpHTWfeCKHti 

CJIOti,CXOJ(HIJI% C BMAElMOti @OTOC+epHOti IIOBepXHOCTbIO COJlHIJa, OT KOTOpOI'O IIOpOW 

AaeTcn ycKo~b3aron@i 113 nnaHeTH MaTepmari. 3TOT CJIOti 06yCJlaBJIMBaeTCH COyaa- 

peHEleM HCIIbITbIBaeMbIM seCTaqaMH,HBEIH(y~EIMMCFI Ha op6uTax,HeCOMHX IIJIaHeTOti B 

TaHreHqllaJlbHOM HanpaBJleHHIL BO-BTO~JJX,C~~~~~~HHH coKpamaIoT BepTnKanbu& 

n0~0~ MaTepxana TaKnM me o6paaoM, K3K npoqeccn ~II@@~~HII, npoHcxonHrqne B 

HHmHElXCJIORX aTMoC+epbL 


