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1. INTRODUCTION 

In a recent paper, Kisynski [I] h as studied the solutions of the abstract 
Cauchy problem 

cd’(t) + x’(t) + Ax(t) = 0, x(O) = x0 , x’(0) = x1 , U-1) 

where t 3 0, E > 0 is a small parameter and A is a nonnegative self-adjoint 
(not necessarily bounded) operator in a Hilbert space H. With the aid of the 
functional calculus of the operator A, he has shown that the solutions of (1.1) 
converge, as E -+ 0, to the solution of the unperturbed Cauchy problem 

x’(t) + Ax(t) = 0, x(0) = x0 . (14 

The purpose of this paper is twofold. First we shall extend Kisynski’s 
result to third order equations. More precisely, we shall show that if the 
initial data is taken from a suitable dense subset of H, then the solutions of 
the Cauchy problem 

dyt) + x’(t) + Ax(t) = 0, 40) = x0 9 x’(0) = x1 , x”(0) = x2 , 

U-3) 

where t > 0, E > 0 is a small parameter, and A is a nonnegative self-adjoint 
(not necessarily bounded) operator in H, converge, as E + 0, to the solution 
of (1.2). While we borrow Kisynski’s idea of using the functional calculus 
of the operator A in order to construct a solution of (1.3), our approach is 
different from Kisynski’s in that we do not employ the techniques of the 
theory of semigroups. Secondly, we shall show that, in general, one cannot 
expect higher order perturbations of (1.2) to converge to a solution of (1.2). 
To this end, we shall show the following: If H = R, , the real line, there is no 
dense subset D C R, for which the solutions of the Cauchy problem 

d’(t) + x’(t) + Ax(t) = 0, xyo) = xi ) i = 0, 1, 2,3, (1.4) 

* This research was supported in part by a National Science Foundation research 
contract number 06063. 

105 



106 SMOLLEK 

where E > 0 is a small parameter, X is a positive real number, and xi E D, 
converge as E + 0 to the solution of the associated unperturbed Cauchy 
problem 

x’(t) + Ax(t) = 0, x(0) = x0 . (1.5) 

2. THEPROBLEM (1.3) WHEN H = R, 

Before considering (1.3) in the general case, it is necessary to consider (1.3) 
in the case where H = R, , the real line. Thus we consider the Cauchy pro- 
blem 

<X”‘(t) + x’(t) + Ax(t) = 0, 

x(O) = x0 9 x’(0) = x1 ) x”(0) = x2 (2.1) 

where t > 0, E > 0, and X 3 0. By considering the equivalent system of 
first order equations, we obtain for the solution of this problem, the formulas 

x(t) = Soo(4 E, A) x0 + SOl(C 6,X) Xl + so&, E, A) x2 

x’(t) = $J(t, <I A) x0 + & E, A) Xl + %z(t, E, A) x2 

x"(t) = %Q(t, 6, 4 x0 + S21(4 ET 4 Xl + %z(t, E, 4 x2, (2.2) 

where the sii(t, E, A) are defined by 

The main idea in the proof of the convergence of solutions of (1.3) and (2.1) 
in the general case of an abstract Hilbert space or in the particular case 
H = R, is to obtain favorable estimates on the sij’s. In our third order case, 
in contrast to the one in [ 11, we do not have the energy inequalities and there- 
fore we need to write out explicitly the solution of (2.1) and obtain our esti- 
mates on the Q’S from this. To this end, we consider the associated poly- 
nomial 

f(m) =fJm) = en3 + m + A. (2.4) 

Using Descartes rule of signs, we see that this polynomial has one negative 
root 0 = 19, , and the complex roots a f ib = a, f ib, , 6 > 0. It follows 
from Hurwitz’ theorem [2, Theorem 1.51 that as E ---f 0, 0 -+ - A. Moreover, 
since 
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we see that 0 = 0 + 2a, and h/c = - B(a2 + b2) so that a -+X/2 and b ---f CC 
as E + 0. Furthermore, since a + ib is a root of the polynomial (2.4), we 
obtain from the imaginary part off(a + ib) = 0 that cb2 = 3ea2 + 1. There- 
fore, b2 > l/c, -A/&=~~+b~~b~>l/~, so that ha-6 and 
0 < a = - e/2 < A/2. 

Now let the solution of (2.1) be written as 

x(t) = xc(t) = cleet + c2eat cos bt + c3eat sin bt, 

where Ci = cit. The initial conditions yield 

x0 = Cl + c2 + c3 

x1 = ec, + UC,! + bc3 

x2 = e2c, + (~2 - b2) c2 + 2abc, . 

These three equations enable us to explicitly compute the sij’s and straight- 
forward calculations yield 

%o(t~ E, A) = (a r2 Bf2 “; b2 eet 

+ eat (a~8,~~b2 [ 
cos bt + Ca2 - b2) 0 - a@ ~iin bt 

qa - ey + b3 I 

sod4 c9 4 = (a Ie,f”, b” eet (2.5) 

+ eat [ (a - ;; + b2 COS bt + 
82 + b” - a2 

b(a _ e)2 + b3 sin bt I 

so2(t, Es x) = ta _ ei2 + &. est 

+ eat (a -B)el+ b2 [ 
a-0 cos bt + b(a _ e)2 + b3 sin bt I 

LEMMA 2.1. The following estimates on the sij(t, E, A) are valid for fixed 
E>O,t>O,X>o: 

! soo(t, h, A) 1 < 1 + e(A/P)t [Us + h d/E (1 + z E)] (2.6) 

(2.7) 

! S02(4 c, A) I < E -I- l e(A/2Jt [I + %A 61. (2.8) 
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Furthermore, the following equations are also valid for the sij(t, E, A): 

%o(~, E, A) = --h Soz(f, c, A), c h(h E, 4 = Qo(4 EY A) - f $)e(4 E, (I), 

J12(4 6, A) = SOl(4 El A), 
-A 

%a(4 6, A) = ~ E Sl2(4 EPA), 

S2,(4 E, 4 = ~lO(~, E, A) - 1 Sl2(4 E, A), E 

.$,(G E, A) = %,(C c, A). (2.9) 

PROOF. Since 6’ < 0, a = - 012 and b2 > l/e, we have at once that 

a2 j.. b2 

(a _ e)2 + b2 e7t G ’ and 
e2 - 2aB 

< 28” < 2h4 
(a - 42 + b" ' b" ' ' 

Furthermore 

1 (u2 - b’L) 0 1 = - e 1 n2 - 62 1 G - qa2 + 62) = 2 ’ E 

so that we get 

(a” - bz) e - UB” 
b(u - Q2 + b3 

< (A I c) + (A3 I 2) < h z/y + A” 
’ h” ’ 7 E 6, 

from which (2.6) follows. Also 

) 82 + 6” - a2 i < B” + b” + a2 < $” + b”, 

so that 

8” + 62 - a2 

b(u - 8)” $ bs 
d (5X2 / 4) $- b2 

b3 
&p+dT, 

from which (2.7) follows. The proof of (2.8) is similar. 
Finally, (2.9) follows from the equations 

g (22;;) = (jlc “,. [) (i;z;;) 

soo~ol~02 

= slo~ll%2 

( I( 

0 1 0 

0 0 1, (2.10) 

%0~21~22 - A/c -l/c 0 1 

which in turn follows from (2.3). The proof of the lemma is complete. 
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We note that the first equation in (2.2) along with (2.7) and (2.8) shows 
that x(t) converges to the solution x,(t) = x,, exp (- th) of (1.5) as E -+ 0. 
This follows since we have the estimate 

I soo(t, E, A) - e-tA 1 < / (a “‘&T ,z eet - e-th j 

+ e(A12)t 
[ 
2hc + h dF (1 + ;e)] . (2.11) 

The second term on the right clearly converges to zero as c -+ 0 and since 
0+--X and 

lim 
.a + b” 

E+O (u - /3)2 + b” = 1, 

we see that the first term on the right likewise converges to zero. 

3. THE PROBLEM (1.3) IN ABSTRACT HILBERT SPACE 

We shall now consider the Problem (1.3) in any Hilbert space H with 
norm Ij . /I . Since A is a nonnegative self-adjoint (not necessarily bounded) 
operator in H, there is a resolution of the identity {EA} such that A has the 
spectral representation 

A=J?d&. 
0 

We shall next use the functional calculus of the operator A. For fixed E > 0, 
t 3 0, we define the operator Sij(t, l ) on H by 

St&, c) = r^; St&, E, A) alq , i,j = 0, 1, 2, (3-l) 

where the sij(t, E, A) are defined by (2.3). If we let D denote the (dense) 
domain of the operator exp (AZ), then our estimates (2.6) through (2.8) along 
with (2.9) imply that D is contained in the domain of Sij(t, l ) for every 
i,j=o, 1,2. 

For x0, x1 , and xs in D, we put 

x,(t) = x(t) = Soo(t, 4 x0 + SOl(4 c) Xl + Soz(t, c) x2 1 (3.2) 

and we see, from (2.6) through (2.8), that x(t) is in the domain of A for every 
t 3 0, and E > 0. We are now in a position to state the main theorem. 

THEOREM 3.1. Let x(t) be defined as in (3.2) where x0 , x2 , x1 are in. D. 
Then x(t) is the unique solution of the Cauchy problem (1.3) and x(t) converges 
to the solution of (1.2) as E + 0. 
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In order to prove this theorem we first establish three lemmas. 

LEMMA 3.1. For x E D, (d/dt) Sij(t, 6) x exists and 

$ Sij(t, e) x = jr -& sij(t, E, X) dl?Ax, i, j = 0, 1, 2. (3.3) 

PROOF. We shall show that (d/dt) S&t, C) x = Slo(t, C) x. Then if we 
use (2.10), this will imply that (3.3) h o Id f s or i = j = 0. Since the proofs for 
the other cases are similar, they will be omitted. 

For x E D, and t > 0 fixed, we have 

II 

hdt + At, e) - Soo(4 e) x _ s (t c) x I2 
At 10 ) 

il 

m 
i 1 

soc,(t + At, e,h) - soo(t, E, 4 zzz 
0 At 

- slo(t, E, h)]’ d I/ E,x !I2 

= .c t’, E, A) - s,o(t, E, U2 d II 4~ II’, 

where t < t’ < t + At, using the theorem of the mean and (2.10). Now there 
is a T such that t + At < T for all At sufficiently small so that if we use (2.9) 
and (2.10) we see that 

1 slO(t’, E, h) - s,,(t, E, h) 1 < 2h + 2A+ls’r(l + +A 6) < K&” 

where KT,s is a constant depending only on T and E. Therefore, the function 
[s,,(t’, E, A) - slo(t, E, h)12 is summable with respect to the measure d Ij Enx [I2 
if At is sufficiently small. Furthermore, 

lim [s,,(t’, E, h) - s,,(t, E, X)]” = 0, 
At+0 

so that the Lebesgue dominated convergence theorem gives 

[slot t’, E, A) - slo(t, E, X)]” d II E,x /I2 = 0. 

This completes the proof. 

LEMMA 3.2. For x E D and t > 0, we have 

liie 11 S&t, e) x - exp (- tA) x II = 0 

v-7 II Sodt, c> x II = 0 

$+y II sod& e) x II = 0. 

(3.4) 

(35) 

(3.6) 
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PROOF. From (2.11) we have 

m 
<2 s I 

a2 + b2 
(a _ q2 + /)2 est - cth ’ d II EAX /I2 o 

4-2~meAt[2h~+hd~jl +;.)]2d,,E,x!,2, 
0 

Now the second integral converges to zero as E + 0 since x E D. Also the 
first integrand is bounded by 4 which is summable with respect to the 
measure d ]I EAx /I2 and as seen previously, the integrand converges pointwise 
to zero. We apply the Lebesgue dominated convergence theorem to conclude 
that the first integral likewise converges to zero as E + 0. This proves (3.4). 
Relations (3.5) and (3.6) follow at once from (2.7) and (2.8). 

For the sake of completeness we state and prove the following known 
lemma. 

LEMMA 3.3. Let B be a bounded operator in H. If x’(t) + Bx(t) = 0, 
0 < t < 00 and x(0) = 0, then x(t) = 0. 

PROOF. Choose 01 such that a: lB ) < 1 where I B ) denotes the norm 
of B. The hypotheses imply that we can write 

so that 

x(t) = jt Rx(t) dt, 
0 

sup II x(t) II G 01 I B I ozy$ II x(t) II, ogtga . ,a 

and therefore I( x(t) /I = 0, 0 < t < 01. Then writing 

x(t) = jt Bx(t) dt, 
a 

we get 11 x(t) 11 = 0, 01 < t < 2or, and so continuing in this way we see that 
x(t) = 0. 

PROOF OF THEOREM 3.1. That x(t) defined by (3.2) is a solution of (1.3) 
follows at once from (2.10) along with Lemma 3.1 by direct verification. The 
uniqueness of x(t) follows from Lemma 3.3 just as in [l]. In fact, if x(t) is a 
solution of (1.3) for x0 = xi = x2 = 0, then if we put 

A, = j” XdE, 
0 
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we have that m(t) = &x(t) satisfies (1.3) with A, replacing A and 

m(O) = y?%‘(O) = ynR(0) = 0 

so that by Lemma 3.1,y,(t) = 0, n = 1, 2, 3, ... . Hence 

x(t) = ;+z &x(t) = 0. 

Finally, since exp (- tA) x,, is the solution of (1.2), Lemma 3.2 shows that 

i+y I/ x(t) - exp (- tA) x0 lj = 0. 

We note that if we fix T > 0, then we can easily show that x(t), as defined 
by (3.2), converges to the solution of (1.3) uniformly for all t in the interval 
[0, T]. This follows since estimates analagous to (2.6) through (2.8) can be 
made to hold uniformly for t in the interval [0, T]. 

4. THE NONCONVERGENCE OF HIGHER ORDERPERTURBATIONS 

In this section, we shall show that the solutions of 

Ex’yt) + x’(t) + Xx(t) = 0, x(i)(O) = xi ) i = 0, 1,2,3, (4.1) 

where E > 0, t > 0, h > 0 and xi # - Ax, or xa # h2x, , do not converge as 
l --f 0 to the solution of 

x’(t) + Ax(t) = 0, x(0) = xg . 

Consider the associated polynomial 

g(m) = g&2.) = ml4 + m + A. 

(4.2) 

This polynomial has exactly two negative real roots if E is taken small enough 
(g’(m) = 0 if m = VZ~ = - (4~))~‘~ and g”(ma) > 0 while g(m,) < 0). Let 
OL, j3@ < a) be the real negative roots and a & ib the complex roots of g. 
Hurwitz’ theorem shows that /3 + - co and 01---f - h as E --f 0. We also have 

m’+fm+~=(m2-(~+~)m+~~)(m2-2am+a2+6”) 

so that, equating coefficients gives 

2a+ol+/3=0 (4.3) 

a2 + b2 + 2a(oI + /3) + a/3 = 0 (4.4) 
- (CT + /3) (u” + 62) - 2ac& = l/E (4.5) 

a/.@2 + b2) = h/c. (4.6) 
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From (4.3) we see that a --f + co as E + 0. We next eliminate E from (4.5) and 
(4.6) to get three algebraic equations in the quantities 01, /3, a, b. Therefore 
we see that (Y, /?, b are algebraic functions of a. 

Now the solution of the problem (4.1) can be written as 

x(t) = clest + c2est + eat[c3 sin 6t + cp cos bt], 

where the Q’S are algebraic functions of OL, /3, a, b so that they are algebraic 
functions of a. Hence for fixed t, eat(ca sin bt + cq cos bt) goes to infinity 
like aseat l for c + 0, (where E, is chosen so that bt = 2n7r) while 

cleBt + c2eat = O(d) as E --+ 0, 

where r and s are rational numbers. Hence x(t) does not converge as E -+ 0. 
In a similar way, one can easily show that the solutions of the Cauchy 

problem 

EX’yt) + x’(t) 1 Ax(t) = 0 , x’yo) = xi, i = 0, 1,2,3,4, (4.7) 

behave in a similar manner. A more careful analysis of these two examples 
suggests that any perturbations of higher order do not in general converge. 

5. CONCLUDING REMARKS 

The first remark we wish to make is that it is not too hard to extend 
Theorem 3.1 to the following Cauchy problem: 

EXP’(L) + K(E) x”(t) + x’(t) + Ax(t) = 0, qo) = xi , i=o, 1,2, 

where A again is a nonnegative self-adjoint (not necessarily bounded) 
operator on a Hilbert space H; K(E) 3 0, [K(e)]” < 36, lim,,, K(E) = 0, 
x,, is the initial value in the Problem (1.2), and xi is in D for i = 0, 1, 2. 

We do not know whether Theorem 3.1 is valid if the initial data are allowed 
to be chosen from a larger set then D. A desirable situation would be if we 
could take x0 in the domain of A but this appears unlikely due to the presence 
of eat in the first of the Equations (2.5). 

The question of perturbing an nth order Cauchy problem (i.e., an nth 
order differential equation with Cauchy data) by an (n + 1)th order Cauchy 

1 The hypothesis x0 # 0 is implicitly assumed here, therefore 

c3 sin bt + cq cm bt = 0 

for a sequence E,+ 0 would imply that x1 = - hx, , x2 = h%, , by considering the 
resulting solution of (4.1). Hence, once x0 is chosen, we can find an open interval I 
about x,, for which not both - hx, and h%, are in I; thus there is no dense subset from 
which data can be taken in order to get convergence. 

409 12/I-8 
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problem appears still to be open. The question of relaxing the hypotheses on 
A as well as allowing A to depend on t for even second order perturbations 
also seems to be unanswered. Finally, there is also the problem of considering 
such questions in a Banach space. The author hopes to consider some of 
these problems in a future paper. 
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