
JOURNAL OF MATHEMATICAL PSYCHOLOGY: 2, 128-144 (1965) 

A Forgetting Model for Paired-Associate Learning 

HARLEY A. BERNBACH 

Univewity of Michigan, Ann Arbor, Michigan 

This paper presents a Markov model for paired-associate learning which is based 

on conclusion drawn from experimental studies of short-term memory. Learning of 
paired-associates is considered as a decrease in the probability of forgetting an associa- 
tion between trials. The ability of the model to account for experimental results is 

demonstrated by considering data from two experiments involving paired-associate 

lists. Observed values of the mean learning curve and response probabilities con- 
ditional on the outcome of the preceding trial are compared with the values predicted 

by the forgetting model and the one-element model. Comparison of parameter values 
for several experimental situations provides interpretations for the forgetting model’s 
parameters. Finally, the model is applied to an experiment using an RRTTTT design 

to demonstrate its potential generality. 

In recent years, there has been considerable impact by studies of short-term memory 
on the thinking of theorists in the area of human verbal learning. Peterson and 

Peterson (1959) showed immediate recall for trigrams to be perfect, with retention 
falling off with time before recall, and this result has been generalized to recall of 
paired-associates (Murdock, 1961a, 1961b; Peterson and Peterson, 1962). Evidently, 
one-trial acquisition of these simple items is assured, although retention is a function 
of the interval between presentation and recall. Further experimental results (Hellyer, 
1962; Peterson, Saltzman, Hillner, and Land, 1962) have indicated that the effect 
of repetition on short-term memory is to decrease the slope of the forgetting curve 
which relates recall probability to time before recall. This evidence suggests a view 

of paired-associate learning in which “learning” consists of a decrease with repetiticn 
in the probability of forgetting. 

The model that is presented here is a Markov model based on conclusions drawn 
mainly from the results of these studies, and it is intended principally to serve as a 
quantification of the theory of paired-associate learning which is suggested by these 
findings as interpreted by interference theory. The purpose of this paper is to present 
the “forgetting model” and to demonstrate the feasibility of its approach. This will be 
accomplished by considering the model in terms of three important criteria for such a 
quantified theory: its ability to account for or “fit” data from standard paired-associate 
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learning experiments, the consistency of the values assigned its parameters with the 
interpretations given them, and the generality of its application. 

The model as formulated here has been restricted to the simplest paired-associate 
task, one in which neither stimulus learning nor response learning is involved. Due to 
the nature of the complications introduced by these factors, it seemed appropriate to 
make this limitation at present. Even at this level, however, the forgetting model has 
more general application than to the standard anticipation design, and this will be 
demonstrated in the final section of the paper. 

PRESENTATION OF THE MODEL 

Before the model is presented in detail, it seems wise to trace the development of its 
principal characteristics from the short-term memory results. First, consider a simple 
test for short-term retention of paired-associates (e.g., Peterson and Peterson, 1962). 
Let us define a state C in which the response will be correct with probability I, and a 
state G in which the response will be correct with a chance probability, g. Before its 
first presentation, an item is in state G, since the correct response is not known to the 
subject. Upon presentation, it moves to state C with probability 1; then, during the 
interval before recall, it may be “forgotten”, i.e. return to state G, with some proba- 
bility Si , where 6, is a function of the length and content of the retention interval. 
This process is represented diagrammatically in Fig. 1. 

Presentation Recall 

FIG. 1. Tree for state G. 

Now consider the situation in which an item is presented repeatedly, with the 
retention interval and intervening material held constant. We have noted that reped- 
tion decreases the slope of the forgetting curve; i.e., the proportion of items forgotten 
during a fixed retention interval is inversely related to the number of repetitions. In the 
model, this indicates that the value of 6, will decrease with repetition of the item. For 
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perfect learning to take place, 6, will have to decrease to an asymptote of 0. In the 
model, the relationship between Si and the number of trials is approximated by a step- 
function which takes on the values 8 and 0. Further, it is assumed that the step from 6 
to 0 can only take place when the item is in state C at the start of a trial, and that after 

each such trial there is a probability fl that the step will occur. The process is described 
by establishing a state C’, in which the probability of a correct response is 1 and there 
is 0 probability of leaving the state, while there remains a probability 8 of regression 

from state C to state G. 
Now consider a situation in which the subject has made an error and then been 

presented with the correct response. It might be inferred from proactive inhibition 
data (Postman, 1961) that the incorrect response will provide PI to the recall of the 
correct response, since this situation is an example of the familiar A-B, A-C paradigm. 
For the model to handle this let us establish an error state, E, in which there is a 
probability of 1 that the preceding error will be recalled in place of the correct res- 
ponse, and define a parameter /3 as the probability that this will occur on a given trial. 

We can now proceed to a detailed statement of the model, as applied to an ideal 

paired-associate learning experiment in which the time between presentations of 
item i is constant, and there are no effects of serial position. The n stimulus items and 
Y  responses are completely familiar to the subject, so that only the association must be 

learned. Each stimulus is presented alone, the response anticipated, and the correct 
response presented as the information event. 

Correct 
I 

/ 

cpc 

9 -G 

FIG. 2. Transition tree for state G. 

Every item is assumed to be in state G at the commencement of the experiment, so 
the first response will be by chance. If  this response is correct, the item will move into 
state C with probability 1. Before the start of the next trial, the item may return to 
state G with probability S or remain in state C with probability 1 ~ 6. If  the first 
response is incorrect, however, the recalled response on the next trial may be the error, 



FORGETTING MODEL 131 

and here p is introduced as the probability that after an incorrect response and reinfor 
cement the item will move into state E rather than into state C. There remains a 
probability 6 of return to state G from either state E or C before the next trial. The 
branching process starting in state G is diagrammed in Fig. 2. 

If an item is in state E at the start of a trial, the response will be incorrect, and the 
transition probabilities will be identical with those in the case where a guess in state G 
is incorrect. If the item is in state C, the response will be correct, and the item may 
move to state C’ with probability 8. If it remains in state C, then it may be forgotten 
with probability 6 and move to state G before the next trial. Figure 3 shows the bran- 
ching process for an item starting m state E and C. 

E 
I 

Incorrect 

c ’ YC’ 
Correct -C 7 C 

-6 

FIG. 3. Transition trees for states E and C. 

Since response probabilities depend only on the state, and the transition probabilities 
are independent of the trial number, the process may be represented by an absorbing 
Markov chain with the following transition matrix and response probability 
vector: 

Pr (correct) 

‘1 
1 1 II g 

(1) 

0 
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in matrix form, the probability of transition to state C’ from state C during an entire 
trial. We have: 

C’ C G E 

cyi 0 0 

a:; 
E 

C’ 

R$ 

E 

0 1 0 

0 s 0 
0 0 0 

C’ c 

-1 0 
0 1 
0 1 

0 1-P 

C' c 

cl ri 0 

F=;;, 

E 

0 l-8 
0 0 
0 0 

C’ c 

cyi 0 
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E 
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0 0 
-0 0 

0 
0 
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1 I 
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0 
0 
0 
0 

G 

0 
6 
1 
6 

G 

0 

0 
1 
0 

0 
0 

; I? 
E 

0 
0 
0 ’ 

l-8 1 

E 

0 
0 
0 . 
1 I 

(9) 

(10) 

w-9 

These basic component matrices provide a more formal statement of the model than 
was given previously, since they do not depend on any particular experimental 
procedure but can be applied in general to any test, study period, or interval. Likewise, 
the system parameters can be more formally defined as the appropriate transition 
probabilities in these component matrices. 

From the components, we can construct the transition matrix, T, for any paired- 
associate learning procedure. Thus, the matrix for the anticipation method will be 
the product AQRF; i.e., A operates on a trial consisting of test-reinforcement-interval, 
in that order. This can be seen to yield precisely the transition matrix given in Eq. 1. 
In similar fashion, matrices can be constructed to handle other procedures, such as 
prompting or delayed reinforcement. 

As an example, we will apply the model to an experiment reported by Atkinson and 
Calfee (1964). They used the experimental paradigm which has been called 
R,R,T,T,T,T, (Jones, 1962); i.e., the list of 18 paired-associates was presented twice 
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and P’ is the error probability vector, (0, 0, 1 - g, 1). It is immediately apparent the 
U is simply the product of a scalar and the vector P’, so that: 

Pr (cn+l I 4 = Sg + (1 -8 (1 - S), (5) 

and is independent of the trial number. 
The forgetting model also makes possible the prediction of the probability that an 

error will be repeated, as opposed to the probability of any error following an error, 
as follows: 

Pr (e, , repeat on n + 1) 
Pr (repeat of error) = __ 

Pr (4 

where U’ consists of: 

W,U’ -- 
W,P ’ 

u;, = 0, 
u; = 0, 

4 = (1 - .d Pg + BU - S)l, 
24; = sg + fl(l - 8). 

This can be simplified in the same manner as Eq. 5, yielding 

Pr (repeat of error) = Sg + /I(1 - 6). (6) 

EXPERIMENTAL RESULTS 

We will now turn to consideration of the model’s performance in accounting for 
experimental data. Experiment I consisted of the learning of a twelve-item list of 
paired-associates by the anticipation method. Stimuli were single consonants and the 
response set consisted of the numbers 4 and 6. Subjects were members of elementary 
psychology classes who participated as part of class demonstrations. In all, 63 subjects 
were run, in eight groups ranging in size from five to fourteen; each group had a 
different pairing of stimuli and responses. The stimulus was projected onto a screen 
for 2.7 set while the subjects wrote their anticipated responses; the correct response 
was then shown for 0.3 sec. The complete list was presented, in random orders, ten 
times to each group. 

Parameters were estimated by a minimum x2 gridding procedure on the complete 
response protocols for the first four trials. That is, equations were derived for the 
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probabilities associated with the sixteen response sequences, cIc,c,c, , crcacae, , etc., 
and values of the parameters were chosen which jointly minimized the function: 

where ~~(8, t?, ,8) is the predicted probability, for specific values of the parameters, of 
the occurrence of response sequence i, Ni is the observed number of occurrences of 
sequence i, and T is the total number of observations. This procedure has been dis- 
cussed in detail by Atkinson and Crothers (1964). 

With a minimum x2 value of 12.69 (u!f = 12), the parameters estimated were: 

6 = 0.720, 

B = 0.448, 

p = 0.343. 

For purposes of comparison, the one-element model (Bower, 1962) was applied to 
this data also, and the estimated parameter was c = 0.147, with x2 = 26.27. Table 1 

TABLE 1 

OBSERVED PROPORTIONS AND PREDICTIONS OF RESPONSE SEQUENCES FOR THE FORGETTING MODEL 

AND THE ONE-ELEMENT MODEL, EXPERIMENT I 

Response 

sequence Observed 
Forgetting model One-element model 

predictions predictions 

cccc 
ccce 

ccec 
ccee 
cecc 

cece 
ceec 

ceee 

ecce 
ecec 

ecee 
eecc 

0.196 
0.045 

0.062 
0.044 
0.086 

0.025 
0.041 

0.034 

0.126 
0.041 

0.046 
0.037 
0.075 
0.038 

0.049 
0.054 

0.180 0.157 
0.048 0.039 
0.050 0.052 
0.042 0.039 
0.068 0.084 
0.030 0.039 
0.045 0.052 
0.037 0.039 

0.146 0.157 
0.043 0.039 
0.045 0.052 
0.038 0.039 
0.086 0.084 
0.038 0.039 
0.057 0.052 
0.047 0.039 

12.69 26.67 
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shows the observed frequencies of the sixteen response protocols as well as the values 
predicted by both the forgetting model and the one-element model. Inspection of the 
table will show that the greatest discrepancy between the data and the predictions of 
the forgetting model is that the observed proportion of correct guesses on the first 

trial is higher than the chance rate of 3. It seems reasonable to suppose that on the 
first trial, when all responses must be guesses, some strategy other than random 
responding might be used, even though chance guessing is an appropriate assumption 
for items not recalled on later trials. In fact, by correcting only the first trial prediction 
for the observed frequency of correct guesses on that trial, which was 0.533, a x2 of 

9.20 (df = 11) was obtained in the estimation procedure with the identical parameters 
estimated. For reasons of mathematical simplicity, however, it was decided to use a 
constant guessing rate of 0.5 in the remainder of this discussion. 

Predicted and observed response probabilities for the entire series of ten trials are 
shown in Fig. 4. Since parameters were estimated from the results of the first four 

IO- _--- One-element model One-element model 
Forgetting model Forgetting model 

4 0 
1 I I I 1 I I I I I 

I 2 3 4 5 6 7 8 9 10 
TRIALS 

FIG. 4. Predicted and observed response probabilities for the entire series of ten trials. 

trials only, the predictions for trials 5 through 10 are extrapolations independent of the 
results on these trials. It is clear that the forgetting model does a better job in account- 
ing for these data than does the one-element model, which tends to overestimate 
responses probabilities after several trials. Comparison of the predictions by the two 
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models of the conditional probabilities on trial 2 is particularly interesting. Since the 
one-element model does not allow any effect of the response which is made, conditional 
probabilities depend only on the state on the preceding trial and not on the response. 
Thus, the one-element model makes the same prediction for the conditional proba- 
bilities as for the mean learning curve on trial 2, since all items are in state G on 
trial 1. The forgetting model, on the other hand, makes predictions which do depend on 
the response made, so these predictions can be different. It is quite clear that the data 
support the position of response dependence in this case, and this is a strong feature 
of the model. 

The response dependence is a result of the error interference feature of the for- 
getting model. This feature can be tested more directly by considering the prediction 
for the probability of repeating an error. In order to do this, we will turn to what we 
shall refer to as Experiment II; this experiment is actually a part of a larger-scale 
investigation by J. Baerwaldt, who has kindly allowed the use of this data in this 
report. 

In the experiment, 44 subjects, all undergraduate students who participated as a 
course requirement, learned a list of twelve nonsense syllable-digit pairs with a three- 
item set of responses. The anticipation method was used, with a two-second period 
each for the test and reinforcement. Parameters were estimated by the same procedure 
used in Experiment I and, with a x2 of 9.88 (df = 12), the values were: 

6 = 0.878, 

e = 0.379, 

/3 = 0.131. 

As before, the one-element model was applied also, and a value of c = 0.060 was 
obtained with a minimum x2 of 14.58. 

The statistics of interest here are shown in Table 2, which gives the response 

TABLE 2 

RESPONSE PROBABILITIES CONDITIONAL ON A PRECEDING ERROR, EXPERIMENT II 

Forgetting model One-element model 
Observed predictions predictions 

.___ -~ 

Same Diff. Same Diff. Same Diff. 
Correct error error Correct error error Correct error error 

2 0.412 0.311 0.277 0.399 0.309 0.292 0.373 0.314 0.314 
3 0.394 0.351 0.255 0.399 0.309 0.292 0.373 0.314 0.314 
4 0.298 0.320 0.282 0.399 0.309 0.292 0.373 0.314 0.314 
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probabilities conditional on a preceding error. While the one-element model predicts 
equal probabilities of repeating or making a different error, the forgetting model can 
be seen to be successful in accounting for the observation that a repeat of an error is 

more probable than another error. 

PARAMETER VALUES 

I f  it is to prove possible to relate the model’s parameters directly to experimental 
variables, the parameter values obtained from various experiments should be con- 

sistent with the differences in experimental conditions. In particular, 6 should be 
directly related to the average intertrial interval or the length of the paired-associate 
list, 0 should depend on the opportunity for practice or repetition during and between 
trials, and /3 should be a function of factors influencing the amount of interference 
provided by an error response. 

In order to test the performance of the forgetting model to these criteria, we will 

consider two experiments in addition to Experiment I and II of this report. These 
were reported by Atkinson and Crothers (1964) as Experiments Ia and Ib; for clarity, 
we shall refer to them here as simply Experiments A and B. Identical conditions and 
materials were used in both, Greek letters as stimuli and a three-item response set; they 

differed only in that A used a nine-item stimulus list and B an eighteen-item list. 
A x2 minimizing procedure on the complete response protocols for Trials 2-5 was 
used, and simultaneously estimated parameter values for all four experiments are 
given in Table 3. 

TABLE 3 

PARAMETER ESTIMATES FOR THE FORGETTING MODEL 

Experiment 

1 II A B 

8 0 120 0.878 0.468 0.562 

8 0.448 0.379 0.667 0.700 

B 0.343 0.131 0 0 

Experiments A and B provide an excellent test of the effect of increasing list length 
while other conditions are held constant. As expected, the major difference is in the 
value of 8; i.e., there is a greater probability of forgetting during an average intertrial 
interval of seventeen items than during one of eight items. The value of 8, however, 
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changes very slightly, evidencing only a small additional opportunity for extra rehearsal 
of items which are recalled during the longer interval. The value of /I can be seen to 
be very strongly effected by the opportunity for “correction” provided by the reinfor- 

cement. Thus, in Experiment I, the 0.3-sec. presentation of the correct response left a 
very high probability of interference from an error response; this interference was 
considerably less in Experiment II where the reinforcement was presented for two 
seconds, and became completely ineffective with the longer presentation times of 
Experiments A and B. 

Comparison of the values of 6 and 0 for Experiments I and II is not so clear as that 
between Experiments A and B, since the conditions of Experiments I and II were 
quite different, particularly in that Experiment II used materials that were considerably 
more difficult to learn than those used in any of the others. Nevertheless, it is clear that 
the slower learning of the more difficult material can be mainly accounted for by the 
greater probability of forgetting between trials, and that where list lengths are the 
same, as in Experiments I and II, 0 will be smaller where greater forgetting provides 
less opportunity for between-trial rehearsal. 

While a great deal more systematic study of the variables influencing parameter 
values is in order, the present results would seem to indicate that the forgetting m.odel 
has a great potential for relating its parameters directly to experimental variables. 

ALL-OR-NONE PROPERTIES OF THE MODEL 

In the special case where /3 = 0, as it did in Experiments A and B, the forgetting 
model reduces to the following three-state model: 

1 0 0 1 

e (1 -8)(l-8) (l-e)6 I[1 1 . (8) 
0 l-8 6 g 

This model is identical in form to the three-parameter model identified as T, by 
Atkinson and Crothers (1964), and as they point out, it can be shown to be mathematic- 

ally equivalent to their LS-2 model. As such, it shares with the one-element model 
the fundamental properties of all-or-none models in generating predictions for trials 
after the first guessing trial. Thus, this three-state forgetting model predicts station- 
arity of response probabilities from the second response to the last error, as well as a 
constant probability of an error conditional on the occurrence of an error on the 
preceeding trial. When /zI is greater than 0, the predicted probability of an error prior 
to the last error increases with trials, since the probability that the item was in state E 
is greater for trials just prior to the occurrence of an error than for trials further back. 
The probability of an error following an error is still constant in this case, however, 
as can be seen from Eq. 5. 

While the data reported in this paper as Experiments I and II bear out these pre- 
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dictions of stationarity quite well, with the predicted increase in the probability of an 
error prior to the last error being quite clear in Experiment I, where /3 = 0.343, other 
investigators have found results to contradict this. In particular, Atkinson and Crothers 
(1964) noted that the probability of an error following an error decreased with trials 
in six of the eight experiments that they reported, and other investigators (e.g., Calfee, 
Atkinson, and Shelton, 1965) have obtained similar results. Nonstationarity of res- 
ponse probabilities prior to the last error has also been found (Suppes and Ginsberg, 
1963), with the probability of an error decreasing with trials. The model, as we have 
mentioned, predicts stationarity only between the second response an the last error, 
and Atkinson and Crothers (1964) noted that nonstationarity was not so pronounced 
if the first guessing trial was not included. Nevertheless, response probabilities were 
clearly not stationary as the model predicts. 

These results do not necessarily reflect a basic inadequacy of the forgetting model, 
however. In the first place, nonspecific practice effects may have been present in many 
of these experiments, and this would have caused a decrease with trials in the value 
of 8 which is not specified by the model. It is also possible that the approximation of the 
relationship between S and the number of trials with a step function is not altogether 
appropriate to some experiments. A model incorporating trial-dependent forgetting 
has been proposed by Atkinson and Crothers (1964), and this formulation has proved 
quite successful in accounting for some data exhibiting nonstationarity (Calfee et al., 
1965). Secondly, though the forgetting model has been designed for situation in which 
only association learning is taking place, there may well have been some stimulus 
learning present in these experiments. The success of the LS-3 model of Atkinson and 
Crothers (1964), which includes a specific stimulus encoding process, in accounting 
for the nonstationarity aspects of the data would seem to lend support to this hypo- 
thesis. 

Processes such as these could, of course, be incorporated in the forgetting model. 
The model has, however, proved able to account for most of the significant aspects of 
data from the kind of paired-associate learning experiment for which it was designed, 
and we will choose not to complicate it at this time. 

EXTENSION OF THE MODEL 

So far in our discussion, we have applied the forgetting model to one specific 
experimental situation: paired-associate learning by the anticipation method. The 
model, however, has considerably more general application. To show this, let us break 
down the experiment into its three component parts: the test, the reinforcement, and 
the forgetting interval. The model’s transition matrix can be likewise broken down into 
these components, as follows. We let Q represent the transition probabilities during 
test, R during reinforcement, and F during the inter-trial interval, while A represents, 
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in matrix form, the probability of transition to state C’ from state C during an entire 
trial. We have: 

C’ C G E 

cyi 0 0 

a:; 
E 

C’ 

R$ 

E 

0 1 0 

0 s 0 
0 0 0 

C’ c 

-1 0 
0 1 
0 1 

0 1-P 

C' c 

cl ri 0 

F=;;, 

E 

0 l-8 
0 0 
0 0 

C’ c 

cyi 0 

A-; 

E 

0 1 -- e 

0 0 
-0 0 

0 
0 

1-g ’ 
1 I 

G E 

0 
0 
0 
0 

G 

0 
6 
1 
6 

G 

0 

0 
1 
0 

0 
0 

; I? 
E 

0 
0 
0 ’ 

l-8 1 

E 

0 
0 
0 . 
1 I 

(9) 

(10) 

w-9 

These basic component matrices provide a more formal statement of the model than 
was given previously, since they do not depend on any particular experimental 
procedure but can be applied in general to any test, study period, or interval. Likewise, 
the system parameters can be more formally defined as the appropriate transition 
probabilities in these component matrices. 

From the components, we can construct the transition matrix, T, for any paired- 
associate learning procedure. Thus, the matrix for the anticipation method will be 
the product AQRF; i.e., A operates on a trial consisting of test-reinforcement-interval, 
in that order. This can be seen to yield precisely the transition matrix given in Eq. 1. 
In similar fashion, matrices can be constructed to handle other procedures, such as 
prompting or delayed reinforcement. 

As an example, we will apply the model to an experiment reported by Atkinson and 
Calfee (1964). They used the experimental paradigm which has been called 
R,R,T,T,T,T, (Jones, 1962); i.e., the list of 18 paired-associates was presented twice 
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for study, and then the stimuli alone were presented for test four times, with no rein- 
forcement following the tests. The stimulus member of each pair was a single Greek 
letter, the response was the number 1 or 2, and the subjects for the experiment which 
we will consider were 60 college students. 

Since there were two types of trials, we must construct two transition matrices to 
describe this experiment. For a study trial, this is simply the product ARF, with the 
condition that, since there is no response made which can provide interference, ,6 = 0. 
Thus we have: 

C’ 

T, = ; 

E 

C' c G E 

.l 

0 
e (1 - qO(l - 6) (1 Ly3 0 
0 1 -s 6 0 

I 

. (13) 
-0 l-8 6 0 

On the test trials, we will assume that a subject not recalling the correct response 
will repeat his previous response, if he recalls that. With this assumption, we can 
apply the forgetting model simply by augmenting the matrix Q to include a state E', 
from which there is a probability of 0 of forgetting a previously made incorrect 
response. That is, 

The matrix for the process is then the product A’Q’F’, with each component 
matrix augmented to include state E’. Thus: 

C’ c G E E' 

(1 - B)O(l - 6) (15)s 
0 0 

Al - 6) 
(l-& 

(1 -‘:)O(l - 6) 
0 
0 . (15) 

0 (1 -tq(l -8) B 
0 0 0 1 I 

If we do not assume that the parameters 6 and 6 will be the same for both the test and 
study processes, the entire system has four parameters, 8, , 6, , 8, , and 6, , while g, 
since there are two responses used, is simply $. 
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The best of the models proposed by Atkinson and Calfee for this experiment is an 
all-or-none model, also using four parameters. Their transition matrix for a test trial is: 

c G E 
0 0 

1 - (P + W2 612 I ; (16) 
0 1 

the starting vector is (LX’, 1 - x’ - y’, y’) and TV, 6, x’ and y’ are the system parameters. 
Parameters were estimated by deriving equations for the probabilities of the 

sixteen possible response sequences on the four test trials, and then using a 
minimum x2 gridding procedure such as was used for Experiments I and II. The 

values of the parameter estimates for both models were as follows: 

Forgetting Model Al!-or-None Model 

6, 0.573 p 0.207 

e, 0.393 6 0.289 
8, 0.656 x’ 0.478 
8, 0.731 Y’ 0 

TABLE 4 

ORSERVED PROPORTIONS AND PREDICTIONS OF RESPONSE SEQUENCES FOR THE ALL-OR-NONE MODEL 
AND THE FORGETTING MODEL, RRTTTT EXPERIMENT 

Response 

sequence 

c(:cc 0.586 
lxxx 0.020 
ccec 0.018 
ccee 0.026 
cecc 0.015 
cece 0.018 
ceec 0.021 
ceee 0.050 
CCCC 0.040 
ecce 0.006 
PClx 0.010 

ccee 0.009 
eecc 0.024 
eece 0.010 
eeec 0.013 
eeee 0.134 

X2 

Observed 

All-or-none model 

predictions 
.- 

0.578 
0.016 
0.015 

0.026 
0.022 

0.015 
0.013 

0.054 
0.041 
0.015 
0.013 

0.024 
0.020 
0.013 

0.012 
0.123 

30.2 

Forgetting model 

predictions 

0.579 
0.018 
0.014 

0.031 
0.023 

0.012 
0.015 

0.060 
0.041 
0.011 
0.008 

0.018 
0.022 
0.011 

0.015 
0.121 

23.0 
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Observed response frequencies and predictions for both models are given in Table 4. 
Clearly, the forgetting model does an adequate job in fitting the data from this experi- 
ment; the x2 value obtained is even less than that for the best model presented by 
Atkinson and Calfee, providing a good demonstration of the generality of the model. 

Of greater interest here, however, is the opportunity for analysis of the experiment 
provided by the valuation of the parameters. Comparison of 6, with 8, indicates that 
there is a smaller probability of forgetting when the interval is filled with studying 
other items than when the same interval is filled with active recall. While hardly 
conclusive, this result would seem to bear quite directly on the question of input 
versus output interference (Tulving and Arbuckle, 1963). Comparison of or with et 
is even more striking, the latter being almost double the former. Since we are consider- 
ing learning to be a change in the probability of forgetting, the difference in the values 
of the parameter 0 under the test and study conditions represents considerable dif- 
ference in learning rate. One possible interpretation is that active responding produces 
much greater learning than does simply studying the material. Whatever the inter- 
pretation, it is clear that the forgetting model, through application to this kind of 
experiment, is starting to touch on issues which are of more general interest than simply 
accounting for data in an experiment of one particular design. 
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