
ANNALS OF PHYSICS: 30, 411-421 (1964) 

Orthogonality of Case’s Eigenfunctions in One-Speed 
Transport Theory* 
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The eigenfunctions of the one-speed transport equation, as introduced by 
Case, are shown to have more general orthogonality properties than previously 
known. In particular, for isotropic scattering, partial range and “two-media” 
orthogonality relations are derived. An extension to linearly anisotropic 
scattering is indicated. These results facilitate the application of Case’s 
method to one-speed transport problems in plane geometry. 

I. INTRODUCTION 

Several problems in one-speed neutron transport, t’heory have been solved (1-G) 
by a method developed by Case (I). This method involves the expansion of the 
angular density in terms of the eigenfunctions of the homogeneous transport 
equation. Furthermore, Case has derived full-range orthogonality relations that 
greatly facilitate the determination of the expansion coefficients for infinite 
medium problems. However, for ot,her problems, one had to use the more tedious 
constructive method (1). 

It will be shown that t’he orthogonality relations can be generalized to any 
partial range (Section II), and especially to a half range (Section III). Also, 
“two-media” ort,hogonality relations for isotropic scattering will be derived 
(Section IV). The generalization to anisot’ropic scat’tering requires t,he intro- 
duction of bi-orthogonality relations, as indicated in Section V. With t,hese 
orthogonality relations, half-space and t’wo half-space problems can be solved 
almost as easily as infinit’e medium problems. 

First, let us review some of Case’s results. l;or isotropic scattering and plane 
symmetry, the homogeneous one-speed transport’ equation is 

(1) 
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Its eigenfunctions are 

and 

where 

(2a) 

(2b) 

and Y,, is defined by 

where 

X(V) = 1 - cu tanh-‘v, 

A(fvo) = 0, 

(3) 

A(x) = 1 - cz tanh-’ (l/z). (4a) 

The limiting values of A( Y) on the cut, - 1 < Y < 1, are 

A*(“) = X(v) f J&rcv. (4b) 

The symbol P in Eq. (2~) is a reminder that we must take the Cauchy principal 
value of integrals over p or Y. 

Case has shown that an arbitrary function @(CL), defined on the interval 
~~~~~/3,where--l~c~<@61,canbeexpandedas 

$b) = U+@+(P) + a-d&L> + j’A(v)+d~) dv, (5) 
LI 

where one can take a+ = 0 unless ,8 = 1, LY 5 0, and a- = 0 unless CLI = - 1, 
/3 2 0. For (Y = - 1, /I = 1, Case derived the following very useful orthogonality 
relations : 

(6b) 

(6~) 



ORTHOGOKSLITY IS TRANSPORT THEORY 

The integral in Eq. (6a) requires some discussion since part of it, i.e., 
:!I 1 

c vu 
-1 r’-rL 

4 -1 
CL 44 

V-M v’ - /.L 

does not have a unique meaning when v -+ v’. Using the definitions 
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(7) 

(8a) 

(8b) 

where the limit E -+ 0 is to he taken only after the integration over z is performed 
we understaud the singular factor of the integrand in Eq. (7) as 

pL-fcL-=____ 
v’ - p 

l P1 
v - v’ ( 

---pL 

V-W v’ - CL V-M ) (9) 

+ 7r26(v - p)6(v’ - /.L). 

This has been used in Eq. (6a), and shall he used for all integrals of a similar 

type. 
Equation (9) is a restatement of the PoincarB-Bertraud formula (1, 7), and 

has the advantage of allowing the formal inversion of the order of integration in 
cases such as the following: 

II. GENERAL-RANGE ORTHOGONALITT 

We shall first derive the orthogonality relations for a general range, a! 5 v 5 6, 

- 1 5 (I( < p _I 1. This treatment, although too broad for known application in 
neutron transport theory, will display the generality of the technique. 

Consider (1) 

(11) 

This function is analytic in the complex x-plane (including infinity), cut along 
a: < z < ,8, and satisfies the ratio condition, 

x,+(v) A’(v) _- = 
X,-(v) xq’ CY<V<& (12) 

the Hiilder condition, and the conditions 
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JXo(x)j = O(1.z - aI?, z--+a, 

I X0(x)1 = at2 - P I”>, 2 -+ P, 

Where K > -1. 

All these conditions are also satisfied by 

X0(z) 
x-cr ’ 

if cr<O, 

and 

X0(2> 
p-’ if P>O, 

(144 

(14b) 

and by any linear combination of ( 11 ), (14a), and ( 14b) if we exclude (14a) 
whenever (Y 2 0 and (14b) whenever p 6 0. For any such function, we shall use 
the notation X(x). The behaviour of the X(x) for large z can be inferred from 

Now, we define 

X0( a> = 1. 

y(p) = ? x%4 
2 A+(/4 ’ 

c.Y$pS& 

This can also be expressed as 

Y(P) = u/274[X+b4 - X(P)l, 

whereas 

(15b) 

Y(P)+) = %4-~+(P) + X(P)l. (16) 

Clearly, we can have up to three linearly independent y(p). We denote one of 
them as 

T”(p) = F xo+(d 2x37 (17) 

Applying Cauchy’s integral theorem to X(z), and using Eq. (15b), one can 
show that (1) 

s 
B & Y(P) __ = X(z) - X( 43 ). a P---z 

For .z = Y, (Y 5 Y $ /?, this equation gives 

where we have used Eq. (16). 
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Equation (19) can be rewritten as 

415 

(20) 

or also as 

xc w >(v - PMP) = J” Ahhw &‘, a!gVYp. (21) 
CL 

We then proceed in the usual way, i.e., we write this equation twice, for +&) 
and &(P), multiply by &(P)Y(P) & and &(w)Y(P) do, respectively, integrate, 
and subtract. The result shows that the &( CL), a: $ v 5 0 are mutually orthogonal 
in the interval Q! 5 P I p with respect to the weight function Y(M). By applying 
the partial fraction analysis, as explained in Section I, we evaluate also the 
normalization factor: 

This relation can be used to determine the coefficients A (v) in an expansion such 
as (5). 

Since the weight function y(v) is still somewhat arbitrary, we can select a 
particular one which meets certain additional requirements. For example, if 
0 s QI < p 4 1, there are two linearly independent y(p) ; and if we want, ,$+(P) 
to be included in the orthogonality relations, we must take 

(23) 

as we can see from Eq. (20). 
If we have three linearly independent Y(P), that is, if Q < 0, p > 0, then the 

choice, 

provides full orthogonality of the 4y(~), ac I v 2 0, 4+(p) and C&(P). 
We shall not pursue the general range formalism any further but turn now t,o 

the two special cases of interest in transport theory. 
In the full range case (a = -1, p = l), the ratio X(z)/A(z) reduces to a 

rational function (1 ), and the weight function (24) is simply 
2 2 

vo - p 

1 - j.L2 Yob) = c 2(1 - c) PY 

in agreement with Eqs. (Ga-c). 
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The analogous specialization to the half range will be carried out in the next 
section. 

III. HALF-RANGE ORTHOGONALITY 

In this case (a = 0, 0 = 1 j, it is convenient to make a slight change in notation 
by introducing the following particular X-function and y-function (1) : 

X(&f) = XO(FcL)/(l - P>, (25) 

rb> = ~5kPx+b/~+(d = rob>l(l - PI. (26) 

Sometimes the moments of this y(p) are useful: 
1 

Y (n) = 
I 

P’?(P) dcl, (27) 
0 

y’O! = 1. (28) 

The weight function (23) needed for the full orthogonality of 4+(p) and +y(~), 
0 s Y 5 1, can now be written as 

(%I - LfMIL). (29) 

The corresponding formulas are given in the summary at the end of this section. 
As an example of the use of these formulas, consider the half-space albedo 

problem (1 j. That is, consider Eq. ( l), with II: 2 0, and the boundary conditions 

#CO, PI = 6(/J - /Jo>, /J > 0, (SOa) 

where p. > 0, and 

lim #(5, Jo) = 0. (3Ob) z-m 

In view of Eq. (30b), the solution is sought in the form 

#lx, P) = a+~+(~cL)e~s'"O + 1’ A(v)#&_l)eP’” dv, 

so that Eq. (30a) gives 

(31) 

66~ - PO> = a+++(~) + /’ AbhGL) dv. (32) 
0 

From this, we can immediately write the expressions for the expansion coeffi- 
cients, using (A.l, 2, 4), and relying on Case’s completeness theorem, 

a+ = 2Yho) 
- i&r&y 

(v* - ~0hb&#&0> 
Ab) = (vo - v)y(v)A+(v)A-(v) . 

(33) 

(34) 
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Fo? x = 0 the integration in (31), with (34) substituted, can actually be 
carried out (I), by applying Cauchy’s integral theorem to the function 
[(uO - T)(Z - P~)X(X)]-‘. This leads to the known expression for the reflected 
angular density. 

Similarly Milne’s problem (I ), the problem with a uniform source distribution, 
and some other half-space problems can be solved, using t’he orthogonality rela- 
tions. These also help to shorten the initial step in the solution of slab problems 
(3, B), namely the conversion of the singular integral equation for the expansion 
coef5cient.s into an equation of the Fredholm type. 

SUMMARY OF HALF-K~~GE FOR~VIULXS 

In all the formulas, 0 5 v 2 1, 0 5 Y’ 5 1. 

.i 

J 
+v(~)b(~)(uo - PMP) 4.i = (uo - ~>rb>A+(u)A-Wsb - u’) (A.1) 

6 

s 

1 
d&L)#bb)bo - /.JL)Y(P) 4.l = cYYO~(-uOb(u) (A.31 

0 

f1 #*(/.i)4+(P) tuo - tr)Y(lr) (b = =w4C~*)2x(~uo) (A-4) 
Jo 

I’ 
1 

4J-“(P)4+(M)bo - ML)Yb) d/J = $@“uu0x(4 (A.51 
0 

s 1 $4.L)4b~(P)(uo - /.c)rh> d/J = ?5d#4u’)bo + u>X(-u) (A.6) 
0 

\l P#dcL)~uo - PMP) &l = %cuh”’ - (uo - VII 

(A.7) 

Jo 

Remark : Formulas for a medium with no absorption are obtained if the above 
equations are divided by ~0 on both sides and then the limit c + 1 (which entails 
v,, -+ 30 ) carried out. 

IV. “TWO-MEDIA” ORTHOGONALITY 

Another case of interest is a system with plane symmetry and two adjoining 
media which differ in the value of c, say c = ct on the right-hand side of the inter- 
face and c = cz on the left-hand side. Accordingly, we must distinguish vol and 
vti2, #Q(P) and &:(P), &(P) and $J&), X,(z) and X*(z), and sitnilarly for t,he 
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other relevant functions, each defined as in Section III, with the appropriate 
value cl or cz . 

It is convenient tozintroduce the following notation (1,5) : 

c(v) = 
i 

Cl > v > 0, 

c2 , v < 0, 

dv> a&.i) = y- p +-- + &Mv 
V- 

Z(v) = 1 - VC(V) tanh-’ v, 

L*(v) = Z(v) f +rvc(v), 

x(x> = xL(z)xd-z), 

(35) 

(36) 

(37) 

(38) 

(39) 

I’(P) = %.4PL>x+w~+(c1). 
It can beghowny( 1, 5) that : 

(40) 

s 1 
4J 

PWP) --q = x”x(z), n = 0, 1, (41a) 
-1 P 

s 1 

&YP) + = z2x(4 + 1. 
-1 z 

(41b) 

These equations lead to: 

s ’ ~‘T(p)@v(p)~~yl(p) dp = v”I’(v)L+(v)L-(v>6(v - v’>, n = 0, 1, 2, (42) 
-1 

s 1 ynrbMp) dp = 0, n = 0, 1. 
-1 

(43) 

The three linearly independent weight functions pnI’(p), n = 0, 1, 2, can be 
combined such that the orthogonality relations include any two of the four 
discrete eigenfunctions, q%,%(p). We shall include q%+(r) and &-(M) by taking 
the following weight function : 

( VOl - dbo2 + dw. 

The orthogonality relations with this weight function and some related 
formulas are summarized at the end of this section. These formulas facilitate the 
solution of typical two-media problems, like those considered by Mendelson and 
Summerfield (ci) . 

The results of this section embody as special cases both the half-range and 
full-range results, The latter can be seen by observing that, for cl = cz = c, we 
have X(Z) = X(2)X( -2) = h(x)/(l - c)(v~ - 2”). Thus the weight function 
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reduces to : 

bo” - PmP> = 2(1 c c) P, - 
in accord with Eqs. (6a-e). 

For cz = 0, we have voz = 1, X,(Z) = l/(1 - x), and therefore x(x) = X,(z)/ 
( 1 + x). Thus the weight function for this case reduces to : 

in agreement with Eqs. (A.l, 2). 
The partial range case can be included in this scheme if C(V) is taken to be 

constant for LY 5 v 5 p and zero otherwise. Instead of x(z), as defined by Eq. 
(39)) weIthen’_need 

x0(z) = exp 
1 { 1 l ln L+(v) dv 

23-l > L-(v)y-z * (45) 

This suggests an even broader generalization by taking c(v) to be an arbitrary 
function of v. However, we cannot now see any application for such a generaliza- 
tion. 

SUMMARY OF “TWO-MEDIA" FORMULAS 

s 1 

aG(EL)a?“~(~L)(vol - d(vo2 + Il)r(/JL) a 
-1 (B.1) = (VOl - v)(vo2 + v)r(v>L+(v>L-(v>s(v -v’> 
s 1 -1 ch+(I1Ml*)( vol - dbo2 + dr(d 4 = 0 03.2) 

s 1 -1 $&.&(PL) bo1 - dboz + drb) 4~ = 0 (B.3) 

s 1 

-l #lfbkdY) ( vol - dbo2 + &Yp) dp = 0 03.4) 

s 1 -l 41-(PM&) ( vol - dbon + d&.4 4~ 
= vc(v)vo1(vo2 - VOl)X( -vo1h-+(v) 

s 1 

-l 4Zf(P)@“hL)( vol - dbo2 + dr6.d cliu 

= vc(v)vo2(vo1 - voz)x(voz>~z+b> 

03.5) 

03.6) 
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s 

1 

&(p)~2-(co(Y01 - P)bO2 + P)a.J) & 
-1 

03.7) 

03.8) 

03.9) 

(B.lO) 

= 9&l CP 41 vlJ2 xc-YOl). 

Further integrals, which involve C&(P) for Y < 0 and r&(~) for v > 0, occur 
in multislab problems. However, these integrals can be reduced to (B.l-3) by 
observing the identity 

C2h(~) - ch,(p) = (cz - c1)6(v - p). (B.ll) 

V. OUTLOOK 

When considering anisotropic scattering, it turns out that this-generalization 
is not quite straightforward, except in the full-range case, where relations of the 
form (6a-c) are still valid (2). It appears that for the half-range no full or- 
thogonality relation is available which would involve all the eigenfunctions 
needed in the expansions. Instead, one must resort to bi-orthogonality relations. 

In the half-range case with linearly anisotropic scattering, the definitions and 
identities of Shure and Natelson (4) lead to the relation 

(46) 

and to similar formulas involving I#Q(P), with 

B = b,(l - c)(R) - B)/d(voF), (47) 

and with the other symbols having the same meaning as in ref. 4. By application 
of these formulas, simple half-space problems can be solved just as easily as for 
isotropic scattering. 

More details about this and about other cases of anisotropic scattering will be 
given elsewhere (8). 
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The various generalizations of the completeness theorem and the orthogonality 
relat’ions leave little doubt that we are dealing here with general properties of a 
certain class of linear integrodiff erential equations. Therefore, rather than push- 
ing ahead by stepwise generalizations to higher order anisotropic scattering and 
the like, one is tempted to ask what is that class of equations. 

Perhaps a closer link to broader theorems in the theory of linear functional 
equations could be established. One might ask for expansions applicable to 
arbitrary functions .f( 2, F), where both c and v would appear as running param- 
eters. Expansions of this type have already been encountered in time-dependent 
transport problem (9, 10). 

The answers to such questions might provide a bett,er understanding of the 
mathematical background of Case’s method. 
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