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Useful Identities for Half-Space Problems in Linear 
Transport Theory* 
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A typical translationally invariant linear transport problem for a half- 
space is solved by the eigenfunction method. Using some derived identities 
for the solution of the associated homogeneous Hilbert problem it is shown 
that the usual cumbersome integrals occurring in half-space problems can be 
reduced to a simple form. The usefulness of the identities is illustrated by 
solving the problem of a plasma confined to a half-space by a diffuse reflecting 
wall. 

I. INTRODUCTION 
A large class of problems in linear transport phenomena can be formulated 

as boundary value problems and solved by the eigenfunction technique (I+). 
Typically, the governing equation possesses translational invariance and can 
be reduced to the form: 

(1.1) 

where -/I 4 p _I 0, and fi(p) .fi(~) is a real even function of M. We first show 
in this paper that with suitable restrictions on fi( F) +f&), Eq. ( 1.1) always 
generates a complete set of solutions. Using these solutions, some typical half- 
space problems are considered and it is shown that some identities established 
for the solution of the associated homogeneous Hilbert problem allow the quan- 
tities of physical interest to be expressed in a simple form. To illustrate the 
usefulness of these identities the problem of a plasma confined to a half-space 
by a diiuse reflecting wall is then solved. 

II. SOLUTIONS OF EQ. (1.1) 

The translational symmetry of Eq. ( 1.1) suggests looking for solutions of 
the form: 

!b”(2, P) = e-“‘Wd. (2.1) 
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For v finite (1 .l ) becomes: 

285 

(2.2) 

Choosing the convenient normalization of c#+( p) ; 

(2.3) 

Eq. (2.2) can be solved by the standard procedure (2). The usual discrete 
eigenvalues are then given by the zeros of A(v), where 

We will always assume that fi(p) .fi(k) belongs to the class H* (7) on ( -0, /3), 
for @ finite; and for p infinite that fi ( P) .fi( P) belongs to the class H and satisfies : 

Lim fi(~) ..MP) 5 C I P (--(2+o1), a > 0. (2.5) 
lP1-m 

Then, A(v) is a real even function of v, sectionally holomorphic with boundary 
( -p, p), and asymptotically, 

(2.6) 

Clearly if V& is a root of A(v) = 0, so is -vi and &vi”. Defining v-i = --vi, 
it will be assumed (only for convenience) that the vi can be labeled so that 
Re vi > 0, i > 0, and if vi*,, # vi, then 1 Re vi ( < 1 Re vi+l /. 

For v not on the interval ( -/3, /3) A( v) will in general have 2N’ zeros, where 
N’ includes the order of the zero. That is: 

A”-“(vi) = s A(v) Iyry. = 0 j = 1 I 2 . . . nli, fi = 1 7 7 2 . . . n’ (2.7) J , 

and 

N’= &zi. 
i=l 

In tins paper it is required that A*(v) # 0 for v on the interval E--p, /3]. (As 
usual, A+(v) and A-(v) denote the boundary values of A( V) from above and 
below the cut respectively.) This condition can be relaxed but it considerably 
complicates the results of this paper without furthering its content. With this 
requirement and choosing the arg A.+(O) = 0, the usual change of argument 
theorem gives us: 

1 
N’ = ; 40.~) arg A+(v) = i arg A+(p). (2.8) 
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(& = change along L) . As Im A+( V) = VT,~~( v)fi( v), if fi( v) .A( V) has M zeros 
for 0 < Y 5 0, clearly N’ S M + 1. We will always assume that N’ is finite. 

With these properties of A( Y) we can now construct the solutions of Eq. (1.1 j. 
We will separate them into two classes. 

CLASS I-DISCRETE EIGENVALUES 

Corresponding to the 2n’ eigenvalues outside of the interval [-p, p], one finds 
the 2% solutions: 

+jpyx, p) = e-“‘“” Vi.fl(P) ) f i = 1, 2, * . * n’ (2.9) 
vi - P 

where A( vi) = 0 for (vi) finite. As the ith zero is mi degenerate, the 2n’ eigen- 
functions given by (2.9) are supplemented by: 

j = 2,3, - -- mi 
*i = 1, 2, * . f .?Z1 (2.10) 

The 2N’ solutions given by (2.9) and (2.10) are linearly independent and by 
Eq. (2.4) clearly satisfy Eq. (1.1). For x = 0, these eigenfunctions will be 
denoted by +(?‘( IL). 

If & fi( p$( g) dp = 1 then A( v) has a double zero at infinity (assuming 
J?$ ~L2fi(p)f~(~) dw # 0). In this case Eq. (1.1) has the 2(N’ - 1) solutions given 
by (2.9) and (2.10), and the two linearly independent solutions: 

CLASS II-CONTINUUM SOLUTIONS 

In addition to the 2N’ solutions of Class I which correspond to the zeros of 
A(V) there are the continuum of solutions: 

Mx, ~1 = e-“‘“6(p), for all v - p 5 v 5 0. (2.12) 

where 

corresponding to the branch cut of A( v). From Eq. (2.3) one finds: 

x(v)fz(v) = *-k(v) + A-(v) 
2 . 

(2.14) 

It should be noted that Eq. (2.14) defines h(v) only up to delta functions in 
V- pi, where f2(~i) = 0. Therefore, implicit in the solutions of (2.12) are the 
solutions : 
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&(x, p) = e+qp - /Ai), all i such that f&) = 0. (2.15) 

These will always be explicitly factored out of the solutions (2.12). 

III. COMPLETENESS THEOREM 

THEOREM: The set of solutions of Class II for y1 s v 5 -yz , y1 < y2 , -p 5 y1 , 
ye 5 0, plus the solutions in Class I form a complete set of functions on the class of 
linear continuous functionals, #(F), with compact support in [rl , y2] and such that: 

Lim $(P) 5 C I P - Y; I -6, E < 1 (3.1) 
P-r; 

an,d for either (or both) y1 , y? injnite 

Limtikd4k)f2h) = 0, 
p-71 

and/or 
?P-m 

for some k to be specijed later. 
Both of the restrictions implied by (3.1) and (3.2) can be relaxed within the 

framework of distribution theory (8); however, for convenience and simplicity 
this will not be done here. 

To prove the theorem, we have to show that the singular integral equation 

(3.3) 

has a solution when #(PC) is subject to the restrictions in the theorem. For the 
present it is required that both y1 and y2 be finite. 

Letting #‘(c() = #(P) - ci,j ai&-“( Eq. (3.3) becomes: 

Clearly the bi are given by: 

bi = IL, IPi+’ d/.&p), all YI 5 pi 5 ~2. (3.5) 
Iri-e 

Assuming that A(v) has the same properties as $(p) the function 

(3.6) 

has the properties (9) : 
(a) N(z) is analytic except on the interval [rl , yz], and N(x) has, at most, 

polar behavior in this interval. 
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(b) Lim,,, N(x) = 0 
( c > Limz+yl N(x) 5 C[x - y,1-*. 

Multiplyi:;: Eq. (3.4) by &(/A) and using (2.4) and (3.6) the expansion 
equation becomes the boundary value equation: 

Yl 6 1 6 72 

PMPM’(1*) = N+(PL)A+(P) - N-(PIA-(PI- 

This equation can be put in the conventional form: 

Ymm = N+(II)X+(PL) - N-(PM-(cl), 

where 

&> = /-4fdPLwP) 
A&) ’ 

and X(x) has the following properties: 
(a) X(Z) is sectionally holomorphic with boundary (rl , 7.~). 
(b) X(x) is nonzero in the cut finite plane. 
Cc> X+b)IX-(~1 = A+(JJ)/A-(P) = G(P) on (~1, ‘YZ?. 
(d) X(x) vanishes more slowly than ( x - y1 [ and 1 z - y2 / as x 

respectively. 
(e) Lima,, X(x) = Class (1) con& 

Class (2) zkl, k~ positive integer. 
Class (3) z+, k2 positive integer. 

(3.9) 

+ Yl , Y2 
- 

The problem of finding X(Z) subject to these conditions is the “classical” ho- 
mogeneous Hilbert problem (7). The solution is: 

(3.7) 

(3.8) 

(3.11) 

and tl and k are integers chosen such that 

1>tz+ fl(Y2) > 0 
-=, 

a 

1 > t1 - e(r,) 2 0; 

(3.12) 

13(p) = arg A+(p). 
n- 

For the entire-space and half-space problems one can easily obtain tl and tz 
from Eq. (2.8). They are listed in Table I. 
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TABLE I 

CLASSIFICATION OF THE FUNCTIONS X(z) 

-B B -N’ -N’ -2N’ 
0 B 0 -N’ -N’ 

-P 0 -N’ 0 -N’ 

If N’ > 0, then for the half-space and entire-space problem X(z) belongs to 
the Class (3). Solving Eq. (3.8) for this class, we find: 

N(z) = --?-- 
s 

y2 404-N(P) 
2&X(z) y1 p-.2 ’ 

(3.13) 

which is a solution to (3.4) only if the additional kz conditions are satisfied: 

s 

Y2 
P’ Y(LL)#‘(P) Q = 0, I = 0, 1, . * . kz - 1, (3.14) 

Yl 

To satisfy (3.14), kz discrete eigenfunctions are included in the sum contained 
in #‘(p). As lcz 6 2N’, there are always enough eigenfunctions to do this. Even 
so, it still must be shown that Eq. (3.14) does not impose any restrictions on 
$(P) other than those stated in the theorem. Using the representation of X(x) 
derived in Appendix A, it will be shown that (3.14) is consistent with the theo- 
rem. Before proceeding it should be remarked that for X(z) belonging to either 
Class (1) or (2), an N(x) can be found which satisfies (3.4) without restrictions 
such as (3.14). In these cases no discrete eigenfunctions are needed and A( V) is 
easily found to satisfy the assumed conditions. Therefore, in the following, only 
X’s belonging to Class (3) will be considered. 

Equation (3.14) is explicitly: 

1 = O,l, .‘. /c2 - 1, and the sum is over lcz aij’s. In order to express this equa- 
tion in its simplest form, consider the integral: 

which is 

(3.17) 
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Using the representation of X(z) given by (A.3), (3.17) takes the form: 

v 

s 

2 dzX( z) 
_--- 

2ri c x - v Y=YL 
(3.18) 

(C encircles the (rl , y2) cut in the negative direction.) As the integrand goes at 
most like z? as 2 goes to infinity, we have finally: 

d+1’ 
--- 

&“l’ vf+‘X(vi). (3.19) 

If v = CCI is a zero of A( V) , one may want or have to include +2)(p) and ~$2’ (IL) 
in the sum over the discrete solutions. In this case the following integrals have 
to be simplified: 

and 

s 

72 (1) - 
12 ,m = M%/&#2’hd 4-l = 

Yl 
These integrals can be simply performed 

s 
Y2 zz ~%dfdd & (3.20a) 

Yl 

Ye 
- 

s ~“+‘d.dfdd &. (3.20b) 
Yl 

by using the representation of X( z j 
given by (A.3) and letting z ---f 00. We find: 

s Y2 r%dfdd & = 0 l<k2--1 (3.21a) 
YI 

s 

Y2 
~~%hdfi~~~ dcL = (- ), (3.21b) 

Yl 
and 

(3.21c) 

Using the representation of X(x) given by (3.10) and (3.11), B is found to be: 

B = Ylh + yztz + & s 

Y2 
ln G(P) &*. (3.22) 

Yl 
It is now clear that the integrals II’~~?’ are never zero for all i and j. Therefore 

condition (3.14) can indeed be satisfied without further restrictions on $4, IL). In 
Section IV it will be shown that the aij’s are also unicmely determined. 

For the entire-space problem we can construct X(z) by inspection. The solu- 
tion is given, up to a constant, by: 

X(x) = n’ 
A(z) 

g (vi” - 22)mi . 
(3.23) 
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It has been specified that y1 and 72 be finite in the above procedure. It is clear 
that if p = 00 the proof is still true with suitable restrictions on $(p). For 
y1= -m,yz= + co, the solution for X(z) is given by Eq. (3.23). If only one 
end point is finite, say y1 , the end point condition for X(x) is applied only to 
the finite end, y1 . X(z) is then given by: 

X(x) = (2 - y1)W”). (3.24) 

(3.25) 

where In G(p) is that branch which vanishes at infinity. It is clear that N(z) 
will exist with the correct properties, if in (3.2) we choose k 4 2 + k, (k, given 
by Class (2)), or k > 2, if X(z) belongs to Class (1) or (2). 

It is now easy to show that A(V), given by VA(V) = N+(P) - N-(V), does 
satisfy the assumed conditions. Therefore, the completeness theorem has been 
proven. 

IV. APPLICATIONS TO HALF-SPACE PROBLEMS 

In this section the theorem of Section III will be used to obtain solutions to 
Eq. ( 1.1) for 0 5 z 5 03. For simplicity it is assumed that N’ = 12’ > 0; that 
J;(p) fOforO<cl6@,exceptpossiblyatp= wifP= co;andthatvi# w. 

We first consider the albedo problem, where we want to find a solution of ( 1 .I) 
for 0 5 x 5 00 subject to the boundary conditions: 

and 

$40, P) = VP - PO) 0 5 P S P, 0 < p. < p (&la) 

Lim $(2, P) = 0. (4.lb) 
X++W 

Using the theorem of Section III, we can write: 

(4.2) 

The sum is over N’ discrete eigenfunctions and (4.lb) implies that the sum is 
over i = 1, 2, * . * N’. Condition (4.la) gives: 
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The ai’s can be determined by the N’ conditions of (3.14). The equations are 
explicitly : 

PoIY(Fo) = 5 d,'Pi' . (4.4) 
i=l 

It is easy to show that 

det II’:? = ( -jN’ fivJC~~l~,$~ (~1 - vj>, (4.5) 

which is clearly nonzero. Using Cramer’s rule, the ai’s are found to be: 

ai = -&$f$ (E) i = 1,2, . . . N’. (4.6) 

It should be mentioned that if vi is mi degenerate, (N’ # n’) . Equation (4.4) 
becomes: 

&Y(PO) = g1 bil , (4.7) 

here 

bj = aij , j = 1, 2, . . . ml 

= a?,i-ml , j = ml + 1 . . ’ m2 + ml, etc., 

which is never zero and therefore the aij’s can be uniquely determined in this 
case also. 

In applications we normally want to know the discrete eigenfunction coeffi- 
cients, because they usually give the asymptotic form of +(x, P), and the emerg- 
ing “angular” distribution: #(O, p), p < 0. The emerging “angular” distribution 
for the albedo problem is: 

$40, IL; PO) = gl dp’bh + le A(vMcL) dv, /.L < 0. (4.9) 

For ~1 < 0, +&A) = vfi(~)/(v - II), and Eq. (4.9) becomes: 

(4.10) 
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Expressing N(p), for P < 0 by using the representation of X(x) given by Eq. 
(A.3), we obtain: 

N(p) = -L 
24GPL) i 

AEk+gl* I-c,> - X(Q)1 1 . (4.11) PO - P P 

The emerging “angular” distribution now reduces to: 

P < 0; 

go, p;/.Lo) = y(/&l) fb@ l 
X(P) [ 

-L - -g (4.12) PO - c1 --y g &;)] * i=l vi - 

The Mime problem can be readily solved by using the formulas derived for 
the albedo problem. In the Milne problem we want to find the solution to Eq. 
(1.1) subject to the boundary conditions: (~9 # W) 

Lim $(2, cl> = CJi(x, PL) Re vi > 0, (4.13a) 
z++m 

and 

eo, PI = 0 /.J 2 0. (4.13b) 

Using the completeness theorem we can expand $(r, P) subject to (4.13a) as: 

and then (413b) becomes: 

(4.15) 

In order to compute the ai’s and the emerging “angular” distribution we need 
only integrate the albedo solutions times -&Vi (PO) over PO . This can again be 
done using (A.3), and we find: 

and the emerging “angular” distribution is: 

PC0 

GO,  cc) = ** [  h(PL) + Vifib) lE l --q g (g$j]. (4.17) 
j=l Vj 
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V. IDENTITIES FOR X(z) 

In Section IV we showed that the representation (A.3) for X(z) allowed the 
usual cumbersome integrals involved in a half-space problem to be reduced to a 
form which involved only X(Z) and other, in principle, known functions. In this 
section we will derive two more identities for X(x), both of which may serve as 
a means to numerically determine X(x), or as will be shown by way of an exam- 
ple in Section VI, permit some quantities of interest to be trivially determined. 

Defining C = J!$J~(P)~z(P) do, and for convenience assuming C # 1, we want 
to prove: 

X(2)X( -2) = A(x) 

[l - Cl fj (vi2 - 2”) 
’ (N’ = n’). (5.1) 

To prove this, consider the function 

R(z) = A(z) 

Cl - clxL3)x(-z) fi (Vi2 - 2”) * 
(5.2) 

It is clear that R(x) is analytic in the plane cut from -p to p. Across the cut 

and also 
Lim R(z) = 1. 
Z-SW 

Therefore, R(z) = 1, and the identity (5.1) is proved. From Eq. (5.1) we see 
immediately : 

X2(O) = 1 

[l - Cl fj vi2 * 
(5.3) 

The phase of X(0) is uniquely determined by the fact that Lim,,-, X(z) = 
( -)N’ / x ( -N’ (x real), and that X(z) is a nonzero, real function of z. Therefore 

A particularly simple result of this is that [l - C]n?il v? must be real and non- 
negative. Of course, if C = 1, an identity similar to (5.1) can be derived. 

The identity (5.1) may be useful for calculating X(z), for large z. Expanding 



LINEAR TRANSPORT THEORY 295 

both sides of Eq. (5.1) in powers of z-l, and equating coefficients, one finds a set 
of coupled algebraic equations for the coefficients of X-~ in X(x). In particular 
cases a truncated solution may rapidly converge and the coefficients of the low 
inverse powers of z be easily obtainable. 

To obtain the second useful identity for X(Z) we use the representation of 
X(z) given by (A.3) and the identity (5.1). We find: 

(5.5) 
i=l 

From (5.5) we first notice that if we know X(p) for -p 6 p 5 0, we can 
readily determine X(z) everywhere. Such being the case, by letting x = p, 
-/3 5 p s 0 in (5.5) we obtain a nonlinear integral equation for X(p), 
-p i P 5 0, for which an iterative solution may rapidly converge. More im- 
portant is the property that (5.5) allows us to express integrals over X(p)-’ 
(which always appear in the emerging “angular” distribution), in terms of X(z), 
and it is this property that we will exploit in the next section. 

VI. AN APPLICATION 

To illustrate the usefulness of the identities derived in the preceding section 
we will consider the model of a one-dimensional plasma with a uniform back- 
ground of ions confined to the half-space, z > 0, by a diffuse reflecting wall. In 
the usual linear Vlasov approximation the governing equations are: 

and 

aE(x, t) 
a.i: = -h-e v, x, t) dv. 

(6.la) 

(6.lb) 

Here 

x, v, t) dv, dv, , 

n is total number of electrons, f is the deviation of the electron distribution func- 
tion from the equilibrium distribution lzfo , and f. is normalized to one. For 
convenience .fO will be chosen Maxwellian, i.e.; 

(6.2) 
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Introducing Fourier transforms in time, 

j;(v, 2) = (271-)-I” f:f(z, 0, t)eiot dt, 

and looking for eigenfunctions of the form: 

J(v, 2~) = e iwZ’u~P(v), and 8(z) = eiwz”‘El, (6.4) 

Eqs. (6.1) become: 

(v - V)&(V) = &h(v) SW 4Y(V’) dv’, (6.5a) 
w 

E = 4nev Y m s iw -02 $dv’) do’, 
where 

’ afob g1(v) = -5 - 2 47re’n 
av > UP = - * 

m 

(6.5b) 

(6.5~) 

In addition to solutions of the form (6.4) there is another solution of (6.1), 
namely : 

E” = constant = E, (6.6a) 

and the corresponding electron distribution function: 

fyv) = -+n afob --. 
zwn av 

(6.6b) 

Even though Eq. (6.5a) is not of the exact form as (2.2), with trivial modifi- 
cation the completeness theorem is still true when the additional solution (6.6) 
is included. Just as in Section II, the discrete eigenvalues of the Eqs. (6.5) are 
given by the zeros of A( v), where 

n(v) =l+Iq-)$gt 

Noting that 

(6.7) 

(6.8) 

and that the Im A+( V) = 0 only for Y = 0, f m, Eq. (6.8) gives: 

N’ = 1 if U’ I wp2, 
and 

N’ = 0 if w2 > of. 
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As the time dependent problem will not be considered here, we will assume the 
simplest case, when 0’ > c+,‘. 

The continuum solutions of (6.5) corresponding to the branch cut of A( V) are: 

l q&(v) = &7l(V)P __ + X(v)G(v - v) (6.9) 
V-U 

and 

x(v) = A+(v) + A-(v) 
2 * 

(6.10) 

In the diffuse reflecting wall problem we have a plasma confined to the region 
x > 0, by a nonelectromagnetic wall which absorbs electrons from the plasma 
and re-emits electrons incoherently back into the plasma. The boundary condi- 
tions can be chosen so that g(O) = 8(x = 0) is given and for 

v > 0, f(0, v) = -h(v) I” vf(0, v) dv 5 c%(v). (6.11) 

Requiring 

s 

co 
h(v) dv = 1 (6.12) 

0 

automatically implies that the electron current is conserved at the wall; 

s 

a2 
--m f(O, v>v dv = 0, (6.13) 

which must be satisfied for this problem. 
Using the radiation condition, f(z, v) and B(z) have the following expansion: 

qx, v) = s 0 
co A(v)~i”“‘“~,(v) dv - 2 ‘$) 

8(x) = lw A(v) (-2) eiws”’ dv + Eo . 

(6.14a) 

(6.14b) 

At x = 0, the boundary conditions give us: 

v>o C/z(v) = I- A(v)&(u) dv - s$ (6.15a) 

and 

B(O) = lrn A(v) (-2) dv + Eo. (6.15b) 
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Assuming C is known, Eqs. (6.15) can be solved for E. , and A( V) just as in 
the preceding sections. If we let 

N(2) = 2$ lm vz-y) f”) (6.16) 

we find: 

N(z) = 2& 1 
- y(v)h’(v) dv 

v-2 ’ 
(6.17) 

where 

h’(v) = t?Ch(v) + 2%) (6.18) 

X(2) = exp O(v) = arg h+(u), (6.19) 

and 

(6.20) 

To find C and Eo explicitly we have to find the electron current emerging from 
the plasma at 5 = 0 by using the above solutions to (6.15). To do this we need 
the identities for the X(x) given by (6.19). Noting that now, Lim,,, X(z) = 1, 
we obtain as before: 

-x(z) = 1 + 1 o ~2gl(~)YbJ) dv 
V-2 

; 

X(x)X( -2) = 
a> 

1 - (U,“/W”) ; 

and 

X(z) = 1 + 1 
s 

' dvv2g,(v) 
1 - (w,"/w") -cc X(v)(v + 2) * 

(6.21) 

(6.22) 

(6.23) 

The velocity distribution function for electrons emerging from the plasma is 
given by: 

v<o 

f(O, v) = 2tiN(v)gl(v) - en? ‘focv) __ __. 
mm au 

(6.24) 
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Using Eq. (6.21), N(x) given by Eq. (6.17) simplifies and the “emerging” 
distribution becomes: 

ISow, using C = -J’!k vf( 0, v) dv, and (6.25) we obtain: 

-C = -C l- r(v’)v’2k(v’) dv’ l:, X$;; yd;,, 

' gl(v)v dv 
(6.26) 

ienEo w 
s mwp2 --m X(v) . 

The integral in the second term of (6.26) is clearly just (X(0) - 1). 
[l - (o,“/w’)]. The second integral in the first term of (6.26) is just 

2 [X(-v’> - X(O)] 
( > 
1 - .T$ v’ -, 

Using Eqs. (6.22) and (6.12), (6.26) finally becomes: 

CX(0) l- dvr(v)vh(v) = ‘s [X(O) - I]. 
P 

Noting the fact that 

l?(O) = -2 (2&N(O)) + Eo, 

(6.27) 

(6.28) 

expressing N(0) in its simplest form, and then solving (6.27) and (6.28) for 
C and Eo we obtain’: 

(10) (6.29) 

and 

c = iwE(O)X(O>[X(O> - 11 

s 

m 
3ae dvvMv)r(v) 

0 

From (6.22 j we see that 
2 -112 

X(0) = 1 - 3 ( > 

(6.30) 

1 This result is more simply obtained by using the continuity equation in Poisson’s 
equation and using Lim,,, 8(z) = EO . 
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so the only quantity left to be determined is the integral in the denomination 
of (6.30). If we consider two extremes; the wall re-emitting electrons at the 
temperature of the unperturbed plasma; and the wall at zero temperature, this 
integral can be easily done. 

For the wall at the temperature of the unperturbed plasma, the emitting dis- 
tribution function which conserves electron current is simply: 

h(v) = pme--Bmv2’2. (6.32) 

For this distribution we find: 

s 
03 v dVh(V)~(V) = g2 X’(0) 5 112 ) 

0 ( ) 
(6.33) 

and the current of electrons entering the wall; -C, is then: 

-c = ienE(O)X(O) p 
( > 

1’2[1 - X(O)] 
2am X’(0) * w 

(6.34) 

For the wall at zero temperature the emitting distribution function can be 
chosen : 

h(v) = -Lim 6’(v - UC). (6.35) 
VO-'O 

The current of electrons entering the wall is now simply: 

WC = iw-aO) 
-&$- 11 - X(0)1. 

One can similarly calculate the density of perturbed electrons, 

P(O) = sq m, v> dv, 
-cc 

at the wall. For the wall at the equilibrium temperature we obtain: 

(X(O) - 1) XN(0) + X’(O) __ __ 
X’(0) 2 X(O) 1 (6.37a) 

and for the wall at zero temperature, 

P(O) = zqg X’(0). (6.37b) 

We have thus seen that the identity relations for X(z) have allowed us to 
express several quantities of interest in terms of rather simple functions. Of 
course, more detailed information about the system will in general be more com- 
plicated, but even then these identities will help simplify the formulas. 
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VII. CONCLUSION 

While we have considered only equations of the form ( 1.1) and the slightly 
different equations of the plasma problem it is clear that for any equation or 
system of equations which have a spectrum similar to Eq. (1.1) and for which 
a completeness theorem of the form of Section III is valid there are similar 
identities for the solution of the associated homogeneous Hilbert problem for the 
half-space. The judicious use of these identities will always simplify the formulas 
of interest. 

SPPENDIX A 

If X(z) belongs to the Class (3), i.e., Lim,,, X(z) = zdkz, k~ > 0, and integer, 
we have by Cauchy’s theorem. 

X(z) = &s, yg (A4 

where C encircles the (n , yz) cut in the negative direction. Equation (A.l) 
then becomes : 

(A.21 

or 

(A.3) 

If X(z) is not in the Class (3), a similar representation of X(z) can be derived 
by making suitable substractions. 
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