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Abstract: The asymmetric rotator model of Davydov and Filippov has been extended to odd-
mass nuclei by coupling a single nucleon to an inert core of well stabilized asymmetric
equilibrium shape. Rotational energies are calculated for states with spin I through numerical
diagonalization of (I43%) X (I+4) rotational matrices which depend in a complicated way
on the state of the odd nucleon. The state of the odd nucleon is described by single particle
wave functions such as those calculated by Newton, generalizations for the asymmetric
case of the wave functions computed by Nilsson for axially symmetric nuclei. The rotational
energy spectrum for a given particle excitation is in general very rich in number of levels
and may consist of a complicated sequence of spin values. In many cases, however, partic-
ularly for small asymmetries, the rotational spectra may consist of several well separated
or overlapping sequences of spin states which resemble the rotational bands of axially
symmetric nuclei, especially insofar as K (which gives the projection of I on the body-fixed
z-axis) may be approximately a good quantum number for each sequence.

In an initial survey of odd-mass nuclei around 4 = 190, no clear-cut evidence has been
found for the existence of nuclei with a well defined asymmetric equilibrium shape. Calcula-
tions for Ir'®? and Re!®® indicate only that it may be very difficult to distinguish between
a symmetric and an asymmetric rotator model when the asymmetry is small. Calculations
for Pt1% show that, although the observed level scheme can be reproduced by asymmetric
rotator theory, the observed electromagnetic transition probabilities are not in agreement
with the predictions of the simple asymmetric rotator model.

1. Introduction

Since Davydov and Filippov !) first suggested the validity of the asymmetric
rotator modification for the strong coupling limit of Bohr’s collective model 2),
surveys have been made by several authors 3) which seem to indicate that the
model, in which the nucleus is pictured to have a well stabilized axially asym-
metric equilibrium shape, may successfully describe the properties of low-lying
levels of even nuclei in many different regions of the periodic table. However,
since the I = 2 and 3 rotator levels particularly in the limiting case of large
asymmetry, have properties very similar to those predicted on the basis of
the vibrational model, the validity of the asymmetric rotator model has been

¥ This work was supported in part by the Office of Naval Research under Navy Theoretical
Physics Contract No. Nonr 1224(15).
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questioned by other authors who point out that many of the predictions of the
Davydov-Filippov model are also in quantitative agreement with the vibrational
model with appropriate refinements 4). The calculations of Newton 5), on the
other hand, indicate that the axially symmetric equilibrium shape of the Nilsson
model nucleus 8) is perhaps not always the intrinsically most stable. It was
therefore thought worthwhile to extend the asymmetric rotator model to the
case of odd-mass nuclei. In order to afford a further possible test of the model,
however, the nuclei to be studied should have preferably both large asymmetry
and, equally important, a well defined equilibrium shape, thatis small vibration-
rotation interactions. The work of Davydov ?) on even nuclei suggests that
the sequence Os'86, Os!88 Os!% and Os!®? may satisfy both these requirements
better than nuclei in other regions of the periodic table. The theory will there-
fore be applied in particular to odd-mass nuclei in the vicinity of 4 =190.

2. The Model

It will be assumed that a single nucleon is coupled to an inert core of asym-
metric equilibrium shape. The rotational Hamiltonian 2) has the form

2 2 2

—_ .7 \2 —7 )2
Hrot"“2jz (Ix 72)_}_2]" (Iy 711)+2jz

(Iz_jz)2' (1)

where the inertial parameters are such that &, 5= £, £ #,. The operators I
and g, describe the body fixed components of the total angular momentum
of the nucleus and the angular momentum of the odd nucleon, respectively.
For the present it will be assumed that the wave function which describes the
motion of the odd nucleon in the ellipsoidal potential field is known in the form

Xparticle = 29: CiaXo' = XAv (2)
2

where y,’ are eigenfunctions of §2 and j,. In the limit of zero deformation
(spherical shell model limit) all but one of the coefficients ¢, are equal to zero
in a particular state. In the limit of axial symmetry £ is a good quantum
number, and the summation extends only over the possible values of . In the
asymmetric case ellipsoidal symmetry still imposes some restrictions. The
Hamiltonian can depend on the angular coordinates of the odd nucleon,
defined relative to the principal axis system of the ellipsoid, only through the
spherical harmonics, Y2, Y,? and Y2,. As a result the summation over 2
will involve either the values (+34-2#) or (—142#) with =0, 1, 2, .. ..
The two types of coefficients are related by ¢, g = (—1)"~% ¢,o. The com-
plementary state y_,, formed with 3,5 ¢,_q 1’ o, is degenerate with y, as in the
axially symmetric limit. In the strong coupling approximation the wave func-
tion of the system is made up of products of the particle wave functions and the
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rotational wave functions D},.. (The wave function which describes the zero
point vibrational motion will be understood but not explicitly written.) The
total wave function must have the specific symmetry 2)

, 2l +1 » .
Y= ;{: Cxyx = Vﬁ? 2 K E J.Q{DMKXQ —l)t ]D{W—Kx’—!)}

K

!
- 1/21(’;%21 2 CxlDhux 2+ (=1 Dygr-}, (3)

where (K — ) must be an even integer. This can be accomplished by restricting
the summation over both K and £ to the set of values

11 31591_3_

e T2 2:

This restriction is indicated by the prime on the summation symbols. The
coefficients Cy which determine the K-admixtures in a given rotational state
are to be determined from the solution of the rotational problem, unlike the
coefficients ¢;o which are assumed known for each state of particle excitation.
In the axially symmetric limit K is a good quantum and all but one of the
coefficients, Cy, go to zero. Similarly only one £ remains, although there is
still a sum over j. We then have K = 0, (the K # Q states are infinitely high
in energy). The above convention for the values assumed by K and {2 means
that the wave function reduces to that of Bohr and Mottelson 2 $) for K = 2 =
1492x) in the symmetric limit, but to this function multiplied by (—1)"
for K = Q2 = (—%-+2n), where # is integral.

3. Rotational Energies

It will be useful to introduce the rotational angular momentum operator
R, (R = I—j). In terms of R, the rotational Hamiltonian has the simple form

2 2 2

24,

T

Hrot =

R? (4)

z

which will be particularly useful if a change is made from the |[IKj$2) representa-
tion of eq. (8) to an |[IJRK ) representation (R and K are the quantum
numbers which determine the magnitude and the body-fixed z-component of
the rotational angular momentum, respectively):

2141 ) ) . .
Vs—nf Dig 1o’ = ; (— 1)~ 2K —Q|I]RK R ygr. ()

The unusual phase factor and the unusual sign in the Clebsch-Gordan
coefficient arise from the fact that the angular momentum coupled wave
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function is constructed for the case of angular momentum subtraction rather
than addition (R = I—j; K = Kz,— 1.

Davydov 8) has treated the special case of an odd-mass nucleus in which the
intrinsic particle state is assumed to be such that 5 is a good quantum number
and has the special value j = 3. The |IjRK) representation is particularly
useful to show that the rotatlonal energies in this very special case have exactly
the same values as the rotational energies of even nuclei with corresponding
values of R. Each rotational energy level, however, is doubly degenerate
corresponding to the two possible values I = R :{:%. The total wave function,
of symmetry given by eq. (3), leads to a rotational wave function made up of
terms of the form

1
T3 WD) (Kgeven). ®)
In the special case R = 3, for example, only one such linear combination
exists, corresponding to |Kg| = 2. When the quantum numbers have the
values R = 3, |Kg| = 2, § = 1, the total spin I can have the two possible
values 3 and Z, so that two independent (orthogonal) wave functions can be

constructed wﬁh R = 3. Application of eq. (5) gives with I = 3

oy

L e eas 6\ (1
=5 o) = () (g Ohart Doyt~ VEQhtt+ Dl )

and with I :%
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e
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s wE i) =
Since both these wave functions result in exactly the same linear combination
of R and K, values, and since the matrix elements of the rotational Hamil-
tonian can be functions of the quantum numbers R and K only, (as can be
seen from eq. (4)), both these states have the same rotational energy, Also,
since the rotational Hamiltonian operates on an eigenfunction of R in exactly
the same way in which the rotational Hamiltonian for an even nucleus operates
on an eigenfunction of I, this energy has the same value as the rotational
energy of an even nucleus with I = 3. Altogether there are three independent
wave functions with I = 5 and four w1th I = —2~, corresponding to the possible
number of values of |K|. The two I = 3 states orthogonal to the R = 3 state
above have asymmetric rotator wave functions with R = 2 and energies which
are identical with those of the two possible I = % states. The complete energy
spectrum consists of a nondegenerate I = 3(R = 0) ground state, the two

different doubly degenerate I = 3, E(R = 2) states, the single doubly de-

t A similar representation has been used by Osborn and Klema, Nuovo Cimento 9 (1958) 791.
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generate I = 3, 7 (R = 3) state, three different doubly degenerate I = Z,

% (R = 4) states, and so forth, all with the same energies as the analogous
rotational states in even nuclei !). If the particle wave function is only approxi-
mately a pure § = % function, the degeneracies are removed and the rotational
energy spectrum should consist of doublets with 7 = R+4-1. Since no example
is known for which j = % is even a moderately good approximation this very
special case is of academic interest only. However, it does illustrate a general
feature. The rotational energy spectrum of an asymmetric odd-mass nucleus
may be very rich in total number of levels compared with an axially symmetric
nucleus.

In the strong coupling approximation the particle wave function in a given
state is well specified independently of the rotational state of the nucleus. In
an odd-mass asymmetric nucleus a realistic particle wave function in general
involves many different values of § and 2, so that products of the form
Cieciexa’) Dk, lead to rotational wave functions which are linear combina-
tions of many different values of R. Since R is no longer a good quantum
number, there will be no simple correlation between the rotational states of
odd-mass and even nuclei, and the rotational energies will depend in a com-
plicted way on the state of the odd nucleon. Either the [IK72 or the |[IfjRKR)>
representation can be used to compute the matrix elements of the rotational
Hamiltonian. For given I (and specified particle excitation) there will be
(I+1) independent wave functions corresponding to the (I +3) possible values
of |K|, so that the determination of the rotational energies with spin I will
involve the diagonalization of (1 —f—%) X (I —I—%) matrices, (provided the strong
coupling limit applies; that is, provided the rotational energies are small
compared with the single particle excitations so that matrix elements of the
rotational Hamiltonian between different particle states can be neglected).
In terms of the rotational constants.

A4, = #2327, Ay, = #2257, A; = 327, (7)
the rotational energy for the state I = 1, (K = ) is given by
(=1 Eu= —3AFA45) (@)~ 1 (A, — Ao+ A, (K2
+ (A1 +A,s)d+ (A1 —A4s)e,  (8)
where the parameters a, &, ¢, 4 and ¢, and {Kz?)> are determined by the state

of the odd nucleon. The parameter a is the decoupling parameter familiar
from the theory of axially symmetric nuclei

@ =3 (1) (+d). (9)

J

In the asymmetric case it is replaced by

atb=2"c;0¢ o (—1)YH{G+R)(j—-L+1)H (10)

i
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The parameter ¢ involves a similar sum

¢ = %l"mcf.—(mn(_l)j_*[(f—g) ((+Q+1)1 (11)
M
while
<Kﬁ%=%V%WFQﬁ (12)
2
with K = % for I = }. The term (4,+A,)d+(4,—4,)e has been purposely
separated from the main terms in the rotational energy. It has the value

%(A1+A2) zg’ cfa[f(j‘*‘1)_92"‘%}‘!"%(1‘11"1‘12) %I CiaCia-2
X[(+2)(—2+1)(j+2-1)(—02+2)]} (13)

and is an energy contribution common to all states I. (It arises from the term
A,7.2+ A,7,% in the rotational Hamiltonian, and could in principle be lumped
together with the particle energy. In all numerical computations, however,
it will be included in the rotational energy.) For I > %, matrix elements of the
rotational Hamiltonian have been computed between the different possible
states yg of eq. (3). They are shown explicitly in table 1 for I = 2 to 42 in
terms of the rotational constants, the particle parameters a, b and ¢, and the
different values of (Kz?>. The common term (4,+A4,)d+ (A;—A4,)e must be
added to the rotational energies computed from these matrix elements.
Diagonalization of the (I43%) X (I+%) matrices of table 1 will yield reliable
rotational energies only for particle states which are well separated from other
particle excitations since the rotational Hamiltonian, eq. (1), can couple
different particle states. In the special case in which two different particle
states lie close together the two sets of coupled rotational energies can be
obtained from the diagonalization of (24 1) X (2I+ 1) rotational matrices built
up from the two coupled (I -}—%) x {1 —}—%) rotational matrices for the different
states. Matrix elements diagonal in the particle wave function have the form
of table 1, with particle parameters, a, b etc. defined for each state, and with
the two different particle energies added to the diagonal matrix elements.
Matrix elements off-diagonal in the particle wave function again have the form
of the matrix elements of table 1 provided that products of the form c;,c;y’
in the parameters a, b, ¢, d, e and (K g?) are replaced by c{j) c{¥ where the super-
scripts refer to the two different particle states. Terms not proportional to
a, b, etc. must be omitted in matrix elements off-diagonal in the particle states.
They are zero through the orthogonality of the different particle wave functions
{1 (2)

Zia¢iacie = 0.

4. The Particle Wave Functions

So far no specific assumptions have been made about the rotational constants
(4, = #*/2.7,) or the particle wave functions describing the odd nucleon. In
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subsequent calculations the inertial parameters suggested by Bohr’s hydro-
dynamical model?) will be used

S, = ABfsint(y—2ak)  (k=1,2,3=11y,2), (14)

where, however, B is to be determined empirically. The state of the odd
nucleon will be described by wave functions such as those calculated by
Newton 5), that is by the eigenfunctions of a particle inan anisotropic oscillator
potential with Nilsson spin-orbit coupling and 1* term. The single particle
Hamiltonian is

12
Huparuere = — 5 Vi43m(@,2'+0,4%+w,2%)+Cl- s+DI2,  (15)

with

w, =wo(B, ¥)[1-+V5/4n B cos (y—2ak)]t  (k=1,23==1,2), 8
W, 0, W, = [ao)o(ﬂ =y = 0)]3

In the notation of Nilsson &) we have
C = —2«fiw,, D = —xufiw,. (17)

As pointed out by Nilsson, the eigenfunctions of the Hamiltonian (15) can be
treated in two possible ways. The Hamiltonian can be diagonalized by neglect-
ing matrix elements off-diagonal in the principal harmonic oscillator quantum
number N. In this case the particle eigenfunctions are expanded naturally in
terms of angular momentum eigenfunctions in real physical space, for example
in the |V l%j[b representation. Alternately, by introducing the change of
variables

z = (ifmw)¥,  y= (hlmo)y, 2= (kimo,)k, (18)

the single particle Hamiltonian can be made rigorously diagonal in N if the
orbital angular momentum operator 1 for the real physical space is replaced
by the infinitesimal rotation operator 1, in the pseudo-space &, 7, {, leading to
the Hamiltonian

H =}lio,(—V2+E) + 1o, (— V. 2402 + Hiw. (V243 +CL - s+D12. (19)

Diagonalization of the Hamiltonian (19) leads to particle eigentunctions which
are expanded in terms of angular momentum eigenfunctions in the pseudo-
space &, », £, that is in an |Nlt—;-jt9t> representation. Newton has chosen to
diagonalize the Hamiltonian in the form of eq. (19). For the present work
Newton’s calculations have been extended to include the N = 5 and 6 harmonic
oscillator states and N = 4 states with parameters appropriate for odd-proton
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nuclei . (See figs. 1 and 2 in this paper and Mottelson and Nilsson ?)). The
particle wave functions are therefore known in the form of eq. (2), but as
linear combinations of angular momentum eigenfunctions in the pseudo-space
&, 1, £. The formulae for the rotational energies, on the other hand, as well as all
subsequent formulae for electromagnetic momentsand transition probabilities,
particle widths, etc. are given in terms of expansion coefficients involving the
angular momentum eigenfunctions in real physical space. To first order in
v 5/—4nﬂ, however, the two types of functions are identical. Since the model can
be expected to have approximate validity at best, no distinction will be made
between the two types of eigenfunctions.

If the distinction were to be taken literally, the operator 7, in the rotational
Hamiltonian, for example, could be written

Jo = Setle = Sy+3 (V% — V%) (mpe+Co,) 5 (V i—: + V%) (mp—Sp,)-

The second term can be ignored since it has no matrix elements diagonal in N
while the eigenfunctions of the Hamiltonian (19) are rigorously diagonal in N.
Therefore 7, could be replaced by

ja: = S,+ (1+h)ltx = 7.ta:+hltm!

=g (Ve V) -
a)ll wz
In the most unfavourable case, y = 30°, the quantity # would have the value

b= (15/87)824+0(8Y).

Insofar as 2 can be neglected the matrix elements of 7, are independent of the

choice of eigenfunctions, and no distinction need be made between the |Nl-%j!2>

and the |NI17,2,> representations.

where

5. Electromagnetic Moments and Transition Probabilities

Expressions for the electromagnetic moments and transition probabilities
are straightforward generalizations of the expressions developed for axially
symmetric nuclei 6 10.11) They involve matrix elements of the multipole
operators .# (L, u) between the possible states y, of eq. (3) and summations

t The diagonalization of the Hamiltonian (19) was carried out on the IBM 704 digital computer
of The University of Michigan Computing Center. The problem has been programmed for arbitrary
values of C, D, § and y and computes the eigenvalues and eigenvectors as well as parameters such
as a, b etc. and some additional quantities which are useful in the computation of electromagnetic
moments and transition probabilities. The diagonalization of the (I-3)x (I+43%) rotational
matrices (with I = 1) was also carried out on the IBM 704 computer.
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over the coefficients Cy. The reduced transition probability between states
I, and I,, governed by an arbitrary tensor operator of rank L, is defined as
usual by
B(L, I} —~1Iy) = 3 [l y Mo\ A (L, p)loy I, M D[2 (20)
“My
The ut space-fixed spherical component of the tensor operator is given in
terms of the body-fixed components .#’ (L, ») by # =>,D5, A" (L,v).

If the tensor operator is a function of the odd nucleon s 1ntr1n51c coordmates
the reduced transition probability can be written

B(L I;~1I) =[X g g ol A (L)1 (27 +1) 7%
Hit
x{ E CmC(2+v)C;i)gcﬁfzm-u)<11LKV|11LIr(K+”)><7'1LQ”}7'1L?'1(Q+”)> (21)

even v

3 O Uil (— LA LI +0) G LV L@+
As previously, the prime on the summation symbols indicates that the sums
over K and  are restricted to the set of values ... —%, —2, 1.2, % .. .. Only
the value of the reduced matrix element of the particle operator of rank L
remains to be calculated. The above formula can be applied specifically if
the particle wave functions are expanded in the form of eq. (2), that isin the
|N l%j.Q) representation. For some types of operators the | N, ZA%E > representation
used by Nilsson may lead to simpler expressions for the reduced transition
probabilities. The quantum number /A and X' give the eigenvalues of [, and s,,
the body-fixed z-components of the orbital and spin angular momentum of the
odd nucleon, in units of #. The Nilsson expansion coefficients a, 5 are given in
terms of the c,, throught

Aoy = Z <l1/12|l 1825¢50.

In terms of such coefficients an alternate expression for the reduced transition
probability may be useful:

B(L Ii —9[’)
=[2 Z Z{ S CRCRyallaal oy I LKV L LI (K+2) ) {ag(2+) 4" (L, v)|0, 2> (22)

-1 lar even p

+ 2 C(’)C —(K+») m“a, (9+v)(—I)I'—%<11LK'V111L11(K+V)><°‘f(~Q+”)|J/l(L: v) | 25},

odd »

where the labels « stand collectively for quantum numbers such as N, /, 4, and 2.

t In order to define the phases of the coefficients it is important to note that the ¢;q are defined
in the |NI}jf2) rather than in the [N}/j2) representation. The quantum numbers N, [ and s = }
are never indicated in ¢;g but are to be implicitly understood.
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The expression for the magnetic moment takes the specific form

p=grl+ =2 Ci2K[(g,—£))<{So>+ (8,—gr) <]

JUHE)I—K+1)]}
2(I+1)

, L U—E)(I+K+1))
+g CxC k) (—1)# ( 2)((I+1)

where (a-b) and ¢ are written out explicitly in egs. (10) and (11), while <£2) =
>';0c% 2. Expectation values such as {s,» have their simplest form in terms
of the expansion coefficients a,,5:

(S =% Z 2’ (@%ia-114 —Fa+n-1)»
(s)= Z Z (—1)'ay0_4)3 %, 0-pp- (24)

(s4) = Elg. (—D)'ayory), 1%, — @i,

1
I+1)%

+§,CKC—(K—1) (— 1)1_ [(g,—8g) s>+ (g.—gr)(a+b)] (23)

[(gs—8u)<s+>+(gi—gr)c],

The electric quadrupole moment is given by

0v= Qocosy+a0) T G BE T 1)]

I+1)@I+3)
. , BU+K)I+K-1)(I—-K+1)(I—K+2)]}}
+(Qo sin y+¢,) g CxCix_g) (I+1)21+3) , (25)
where Q, gives the contribution of the deformed core
Qo = 3ZeRz2p[/bm, (26)

while ¢, and g, give the contribution of the odd nucleon. The matrix elements
of ,7,2Y,,(6,) for the odd particle are again evaluated most easily in terms of
the expansion coefficients a; 4 and lead to

2epfi 3 I(I+1) 3

o~ [—a?A(N +%) [m] 12400214

(N4+14+1)(N—1+2)3(1—1
2(20—1)(21—3)

2, (1)
= oy g |: 4%y av0 (N+3) [ﬁiﬂé)

(N+I+1)(N—1+2)3l(1—1)
(2I—1)(21—3) ] 242)i2(1—2)(4+2)>

(N+143)(N—1)3(+2) (+1)
(2+3)(20+5) ] <Z2A2ll2(l+2)(/1+2)>] :

9o =

3
+2aLAa(l—2)A [ )] <l2/10!l2(l——2)/1>:| N

:\ 242|121(A+-2) > (27)

+a1480-2)(A+2) [:

+a142012)(A+2) [
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The quantum number X (as well as the harmonic oscillator quantum number N)
is not indicated explicitly in the coefficients @,, since all the matrix elements
are diagonal in 2. (The quantity ¢, is the charge of the odd nucleon. An effective
charge might be used if vibrational interactions with the core are taken into
account.) It should be noted that @, can be negative even if the nucleus has a
large positive intrinsic deformation (8> 0, y < 30°).

Since explicit expressions for M1 and E2 reduced transition probabilities may
be useful, they are given below for transitions I; to I; between different rota-
tional states based on the same particle excitation:

3
BML I, »1I) = — [gR[Ii(Ii—kl)]*é,‘,l 3 ChCth

Jrz Cx W Ce KO LK Y (g,—8,) s>+ (8,—8r) (2D}
(—1)fr o
__\72__{(g8—g,)<s~>+(gz“gR)(‘H‘b)}

(— 1y
22
(If there is a change in the particle excitation of the odd nucleon in the transi-
tion, the expressions for the M1 transition probabilities are merely slight
generalizations of the above formula which are obtained if products of the
form ngf ¢; —g-p and a,m__mf @, o 10 the expectation values are replaced

by i ¢ a4y and ally_;, @l 4, Tespectively.)
The E2 rates, again for transitions between different rotational states based on
the same particle excitation, are given by

+§,CK(1)C-(2K—1)<[1 1K —1L1I(K—1))

2
+ 2 CxCO LKL (K4-1)) {(g,—8) s>+ {g—8r) 0}]

B(E2,Il ">I1) = ]__67—5

2
—i—CK“’Cfﬁ+2)<Il2K2|Ii211(K+2)>)] :

|00 cosy+a) 3/ G C 2RO 2L K

(If the transition involves a change in the particle excitation, the core can
give no contribution. The contributions of the odd nucleon will have a more
complicated form and will involve five different terms of the form g,, ¢_,,

g1, 91 and gp).

6. Spectroscopic Factors for Nucleon Emission or Capture

In this section we consider the relative amplitudes for nucleon capture into,
or removal from, bound states of asymmetric nuclei. Such amplitudes are



300 KARL T. HECHT AND G. R. SATCHLER

measured by stripping and pick-up reactions, respectively 12). The amplitude
for stripping or pick-up contains an overlap integral over target and residual
nucleus wave functions, which may be expanded in the form

JW§+1(§, X)yp,(£)dé = ; BilLagM gamlL 471 413 M o102’ (X), (30)

where X denotes the coordinates of the (4 +1)th nucleon, while the z-component
m refers to a space-fixed coordinate system. Quantum numbers such as N and /
are not explicitly indicated in eq. (30) for simplicity. The parentage coefficient
B, in expansion (30) is then the amplitude for finding the (A4 +1)th nucleon
with angular momentum j within the nucleus of mass 41 when in a state
¥ 441, With the remaining nucleus of mass A in state y,. If there are # nucleons
of this type in nucleus (44-1), the capture or emission probability is pro-
portional to the spectroscopic factor 12)

S(7) = nlB,> (31)

The two cases we shall consider are the removal of a nucleon (i} from an
odd-mass nucleus to leave an even nucleus, and (ii) from an even nucleus to
leave an odd-mass nucleus. (The stripping processes are simply the inverses.)
In previous sections we have only considered the states of a nucleus with
a single nucleon coupled to a structureless asymmetric core. This is adequate
for the description of the removal of the nucleon if the core is identified with
the resulting even nucleus. However, the removal of a nucleon from an even
nucleus requires a more detailed description. One simple generalization is to
consider the nucleons to fill (consistently with the Pauli principle) the lowest
levels in the ellipsoidal single-particle potential well. If we restrict ourselves
to configurations in which even numbers of nucleons are paired off in the lowest
(doubly degenerate) single-particle levels while only the last odd particle is
allowed to change its state, it is straightforward to show that the resulting
energy levels and wave functions are the same as for the single-particle model
of the preceding sections. {This simple equivalence does not hold for more
complicated configurations.) The other nucleons merely form an inert core
which we assume to be the same as the corresponding even nucleus. However,
we now have a consistent mechanism for removal of a nucleon from an even
nucleus, or inversely its addition to an odd-mass nucleus.

With this assumption, the wave-function of the even nucleus now has the
form

2Lo+1
VT 16a2

Ye 2 Ck, [D{n?eKle‘ (— l)IeDf‘ge_Ke}X. (32)
Ke

The summation is over positive, even values of K, only, including zero, and
C, is chosen to absorb a factor 4/2 which arises because the normalization of the
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function in brackets is different for the special case K, = 0. The X is a nor-
malized determinant of the wave functions (2) for the occupied single-particle
states t. The odd-mass nucleus has a wave function which is a generalization

of (3),

T +1 _, _
‘/’o:V Tenr 2 CrolDlie, X (—)°7Dlg, o X 1. (33)

The X, is again a determinant of single-particle states. For the configurations
which we are considering, all but one of the nucleons are paired off, while the
odd one occupies the state y,. The X _, is similar but with the odd nucleon in the
state y_,.

With these wave-functions the amplitudes g from the overlap (30) are the
following 1:

Case (i), 4 = even:

- 2l+1 : .
Vnp; = Vﬂ“ 1 S T RO ey g Lo (KoK Tei1o Ko
+(—1) (Kqt+Ke )<Ie7 —K (K +K )'Ie7I Ko>1 (34)
Case (ii), 4 = odd:

- 2l,+1 .
‘/"ﬂjZV o 2 Y CRICE (=1 ek, ke To Ko (Ke—Ko) Lo jle Ke»
2Ie+1 Ky Ko o e B o™ e

+(—1 )Ieci(Ko+Ke)<Io 1Ko— (Ke+Ko) ojle—Ke)], (35)

where # in (34) or (35) is the number of nucleons, in the total system of (4 +1)
nucleons, which are of the same type as the one removed.

The spectroscopic factor is then S (j)=|V" ﬁﬁ A2

7. Numerical Results and Possible Applications

According to our model the odd-mass nucleus is assumed to have a well
defined asymmetric equilibrium shape. In looking for possible examples for
such a model the neighbouring even nuclei might be used as a guide. Preferably
these should have large asymmetry and show relatively little vibration-
rotation interaction. There is some indication that nuclei around 4 = 190
may satisfy both requirements. Asymmetries of 16.5°, 19°, 22° and 25° have
been reported 3) for the sequence Os186, Os188, Os!1% and Os!%2, for example;
and the indications are that asymmetric rotator theory is satisfactory, particu-

t If neutrons and protons are treated as distinguishable, X is a product of determinants of
order N for the neutrons and of order Z for the protons.
tt The indices e and o refer to the even and odd-mass nucleus, respectively.
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larly for the isotopes Os% and Os'®2. For this reason it was decided to make a
preliminary survey of the odd-mass nuclei around 4 = 190. Unfortunately very
little is known about the excited states of the odd-mass isotopes of osmium,
although it might be noted that the experimentally observed magnetic moment
of Os'®? (4 = 0.12) is considerably smaller than the value predicted on the

+ 8l

+8I
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_6‘55 9 3/23/2
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49 4.9 o 149
o I~ N 67
——'—_\ D
a1 3,¥ Y -~ SN +47 5

9 9/2 g9/2

—1 | | | | 1 ] { .
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Fig. 1. Single-particle levels for odd-proton nuclei in the region 50 < Z < 82 (y = 15°). The
parameters C («) and D (u) for these levels have been chosen to have the values recommended
by Mottelson and Nilsson ®). The calculated wave functions correspond to the parameters C =
—0.1 (¢« = 0.05); and D = —0.0275 (4 = 0.55) for N = 4 (+ parity) levels, while D = —0.0250
(# = 0.50) for N = 5 (— parity) levels. Since levels of a given parity do not cross, the single
particle levels are labelled by their parity and by an ordering number which would be the number
of the odd proton if the single-particle levels, at small deformation §, were filled in order. The
single-particle levels are also labelled with the spin and parity of the lowest rotational level
(ground state) for the specific deformations 8 = 0.3 and g = —0.2.

basis of an axially symmetric rotator model (x = 0.8, ref. ®), table 7). Although
insufficient experimental information is available for a test of asymmetric
rotator theory in the case of Os87 and Os!8, the experimental situation is some-
what more favourable in the case of some of the isotopes of Re, Ir, Au, Pt and
perhaps W.
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7.1. ODD-PROTON NUCLEI

The low-lying levels of the isotopes of Re seem to form a §+, 2+, 2+
rotational sequence. The various isotopes of Ir and Au all have $4 ground
states with magnetic moments between 0.1 and 0.2 nuclear magnetons. On
the basis of an axially symmetric model rotational bands based on 2 = $+

Epart Y =30°
hwe

6.0

551

50+

—

0 o.l 02 03 04 05
B—s

Fig. 2. Single-particle levels for odd-proton nuclei in the region 50 < Z < 82 (p = 30°). See
caption for fig. 1.

and %+ states should be expected in these two cases. The most likely particle
states are the [402] Q = 3+ Nilsson level for the 75% proton in Re and the
[402] 2 = 2+ Nilsson level for the 77* and 79" protons in Ir and Au. (See
fig. 3, ref. ?)). The levels are labelled by the asymptotic quantum numbers
[Nn,A4].) In an asymmetric nucleus 2 is no longer a good quantum number.
With the introduction of a small asymmetry Nilsson levels with different ©Q
interact with each other. As a result the single particle levels of an asymmetric
nucleus cannot cross each other when plotted as a function of the deformation
parameter f, except for states of opposite parity. For small values of the
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asymmetry parameter y, the single particle energies differ little from the Nilsson
values, except in regions where Nilsson levels with different £ cross each other
or lie close together over large ranges of §. The single particle levels for asym-
metric odd-proton nuclei in the region 50 << Z < 82 are shown in fig. 1 for
an intermediate value of the asymmetry parameter y == 15° and in fig. 2
for the largest possible asymmetry y = 30°. In order to give some idea of
the possible rotational bands which can be built on these particle states, the
levels have been labelled with the spin of the ground state (lowest rotational

TaBLE 2
Order of low-lying rotational levels for odd-proton nuclei®)

Part. Gr. st. Spins of lowest Part. P Gr. st. Spins of lowest
state ar spin rotational states state ar. spin rotational states
93 - 3 2 43 8 4. 61 + ¥ L2 T T
o, 8l + % P2 S 73 - 3 A B B
~ - 3 CE T I 71 - % 8 2 F 7.
U T I AR AN SR N S
L T 57+ b 2 8 3% 8.
79 + b 4 8 % % 3. 69 - 8 i 84 %
o3 85 - F] $ ¥ %7 % 55 + b 8 8.
S 88— § ¥ 5} o§ Y. 5 4+ b 3 3 % o3~
Q“l 77 + 3 AN T T B 67 - 3 3 & 28 4.
75 - 3 3 % 5. 51 + 3 + 3 3 3 ..
63 + % 8 £ 8 % % 65 - R A
81 + 3 ¢ 2 F % % 71 - E EEEE S
o 93 - . EANE R S SR 63 + % $ 8 5 % 3.
g 9l - 32 S T T B S 69 - % $ ¥ 38 5.
- 89 - ¥ 32 &3 % 3. 61 + 2 £+ 3 3 %
87 - 3 28 % 5 8. 59 + § ¥ 3 &3 8.
. 86 - 3 I 57 + § P 8+ % 3.
o 83 - H 2R S R 67 - % 2 A S S e
P9 + 1 i 3 £ 4 8. 55 + § $ £ 3 5.
I 5% 4 & 3% b % B
« 77 -+ 2 2 3+ & % 65 - ¥ 8 4.
73 - $ IR T T B AR 51 + ] 3 ¢ 3 % 8-
81 + 3 3 8 % 4 % 73 - ] LR I
95 - 3 : £ 4% % 61 + 1 + 3 & 5 &
s 93 - 3 43 % 8. 71 - ] 3 28 5.
U S N O B A 5 o+ 0+ 3§ 3% B
~ 79 + 3 4 3 8 3 8. 69 - 2 2 & 3 % 3.
89 - % $ 2 3 3 5. 57 + 3 L N R
. 87 - ¥ I8 R s 55 + 3 2 8% % 8.
28 - 3 8 3 % 2 8. 67 - ] 3 3 ¥ % &
LA S SR S S 5 4+ % 33 b b %
o 83 - 3 £ 5 3 3 5. 51 + 3 2 2 3 % 3.
75 - 3 £ ¥+ 8. 65 - ¥ 02 3 ¥ E 2.
63 + 3 8 3 8 5 8.

@) Levels with I < 3 are listed for the negative parity states, I < § for the positive parity
stales.
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level), for f values of —0.2 and 0.3. For these specific values of 8 and y the spin
values of the lowest rotational levels based on each particle state are also listed
in table 2 starting with the ground state at the left. Since the rotational spin
sequences may be very sensitive functions of both g and y, the spin values
listed in table 2 can only serve as an indication of the types of rotational
sequences to be expected. The investigation of any specific example must be
based on a plot of the rotational energies as a function of y for appropriate
values of 8. To get some understanding of the behaviour of the rotational
levels, however, consider particle state 65, the lowest negative parity single-
particle state which grows out of the hy shell model level, as an example.
In the prolate symmetric rotator limit, § > 0, y = 0°, this is a pure 2 = %
state with an I = 3 rotational ground state. In the oblate symmetric rotator
limit, § < 0, y = 0°, or what is equivalent, § > 0, y = 60°, this is a pure
Q = Ll state with an I = 4} rotational ground state. Between y of 0° and 60°
(8 > 0) the ground states therefore changes from an I =$ to an I = 1} state.
Note, however, that for y = 30° an I = %} value has already been reached,
whereas for y = 15° the ground state I value is Z. Note also from fig. 2 that
I = $ ground states are very common in the case of large asymmetry. Although
the single particle levels could be labelled with the asymptotic quantum
numbers [#,n,#,] this does not seem to be a useful label since the order of the
single particle levels [n,n,%,] would be a function of y. Since levels of the same
parity cannot cross each other, the levels are labelled by the occupation of the
odd nucleon. Since levels of opposite parity do cross each other, however,
such a scheme cannot give the order of the single particle levels for all values
of 8. In figs. 1 and 2 the particle levels are therefore labelled by the number
of the odd nucleon (Z), for the case of very small deformation 8. Thus, level
81 grows out of the s} shell model state, while levels 79 and 77 grow out of the
dj shell model state. For small values of § the wave function for the state 77
becomes predominantly £ =  as y approaches zero. For larger values of 8,
however, the wave function for state 77 approaches that of a pure Q = $
state as y approaches zero. (Note tha. the Nilsson levels [411] 2 = 14 and
[402] 2 = 2+ cross each other at 8 ~ 0.19). The state 77 may therefore be
expected to be the state of the odd proton in the isotopes of Re if asymmetric
rotator theory is applicable.

Fig. 3 shows the rotational energies based on the particle state 77 as a function
of y for relatively small asymmetry and a value of § (= 0.3) which reproduces
the experimentally observed value of the electric quadrupole moment for Rel85,
The behaviour of these rotational energy levels as a function of y is character-
istic of a large number of particle states. For very small values of y the particle
wave function is predominantly £ = 3. The lowest set of rotational states
form an I = $§, %, 2, ... sequence with approximate I(I4-1) spacing. The
corresponding wave functions are almost pure K = $ rotational functions
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(corresponding to Kg = 0). At y = 10° for example, the low I =  state is
99.98 %, pure K = 3. The particle wave function, on the other hand is only
80.7 9%, pure 2 = 3, with the following admixtures: 2 = >:10.19%, Q =
—5:78%,2=2:199%,2=—2:019%,. The rotatlonal energies of these
states first increase with y since the energles are very sensitive to a small amount
of admixture of Ky = 2 near y = 0° through the 4, (K3?> term in the rota-
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Fig. 3. Rotational energies for the particle state 77 (f = 0.3). As y approaches 0°, particle state
77 goes over to the axially symmetric [402] 2 = §+ particle state for this deformation

tional Hamiltonian; A is inversely proportional to sin? . In the axially sym-
metric limit the 7 = 3 ground state has a rotational energy of 0.96 in the
units of #%2/Bf? approprlate to fig. 3. A relatively large zero point rotational
energy, such as that predicted for y ~ 12°, may be important in determining
the order of rotational bands based on different particle excitations. For y < 11°
the next set of rotational levels form and I = 1, 2, 3, .. . sequence with Ky of
approximately 2 units. As y approaches 0° these rotational levels rapidly go
to large values through the influence of the 43;(Kg?) term. Aty = 12°the = }

and 5 3 levels form the lowest rotational states. At y a 12.5° the states w1th
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I=3% ha.ve rotational wave functions with almost equal proportions of K = 2

3
and K = ;. By y ~ 14° to 15° the ] = —2-, -g-, ... sequence has crossed over
thel = — -g, 2, .. . sequence. (Note, however, that levels of the same I do not

actually cross) The lower sequence now has rotational wave functions of
almost pure K =% character while the higher sequence is predominantly

K = 5. At 14° the particle wave function consists of the following admixtures:
D=35:6269%, 2=—-1:215%, Q2 30%, =1:1289%, 2= —
3 :0.1 %, At still larger values of y an I =3, 5 7,... sequence with Ky
approx1mately equal to 4 units crosses the I = % %, 9, - - - Sequence and near
y of 18° the higher levels have strongly mixed K = § and K = —3 rotational

wave functions.
The observed levels of Re!® consist of the following: an I = 3+, I+, 2+

sequence built on the ground state at 0, 128, and 287 keV; a 3+, 3+ doublet

at 646 and 717 keV; and another ;+, g+ doublet at 872 and 879 keV (with the
spin assignment of these last two somewhat uncertain). Mottelson and Nilsson
on the basis of the axially symmetric model ?) explain these as the beginning
of rotational bands based on the single particle Nilsson levels [402] 2 = +,
[400] 2 = g—}—, and [411] Q = —{— in that order. In terms of the asymmetrlc
model, however, the p0551b111ty exists that two of these three rotational
sequences are based on the same single particle level (77). With y ~ 10° the
spacing of the first five rotational levels corresponds to the observed energies.
Since the two apparent rotational sequences at 10° correspond to almost pure
K=3%and K =—;— bands even though K is not a good quantum number in
the asymmetric case, it would be difficult to distinguish between an axially
symmetric and an asymmetric model. The E2 rates would be very similar in
the two cases. Predictions for the magnetic dipole moment differ somewhat
since the asymmetric ground state particle wave function is not a pure 2 = —g-
wave function; but these differences are small. The theoretical value on the
basis of the asymmetric model is x = 3.37 (for § = 0.3, y = 10°), compared
with an experimental value of 3.16, and a theoretical value of 3.7 predicted
on the basis of the axially symmetric model ?). The major differences between
the theoretical predictions for the two models would probably involve the
transition probabilities between the $4-, +4- levels and the ground state band.
According to the axially symmetric model these transitions would involve a
change in the odd nucleon particle excitation. In the asymmetric model,
however, transitions from one ——i—, g—{— doublet to the ground state would
involve no change in the particle wave function. At present there is not sufficient
experimental information to decide between the two possibilities. Note that
the selection rule |AK| = 1 would inhibit the M1 rates between two rotational
sequences in the case of both models. Note also that the collective contributions
to the E2 rates are small for a AK a 2 transition in the asymmetric model if
sin y is very small.
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The rotational energies in fig. 3 have been drawn only for y =< 18°. Near
¥ A 20° the single particle levels 77 and 63 have very nearly the same energy
so that diagonalization of (I4+3)x (I +%) rotational matrices based on a single
particle state cannot be expected to give sensible values for the rotational
energies. For y > 22.5° the difference in energy between the particle states

77 and 63 is again large enough so that the rotational energies can be expected
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Fig. 4. Rotational energies for the particle Fig. 5. Rotational energies for the particle
state 63 (§ = 0.3, ¥ > 22.5°). These are the state 77 (§ = 0.3, y > 22.5°).

natural continuation of the rotational levels
of fig. 3. Near y &~ 20°, particle states 63 and
77 are nearly degenerate. For y > 22.5° the

natural continuation of those for state 77 at
smaller angles y.

to be small compared with the difference in particle energies. Now, however,
particle state 63, the lower of the two, has a wave function whose character
is very similar to that of the state 77 at smaller angles ». The rotational energies
based on particle level 63 should therefore form the natural continuation of
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the rotational energies of fig. 3. They are shown in fig. 4 for values of y between
22.5° and 30°. The rotational energies based on particle level 77 for the same
range of y are shown in fig. 5.

Among the isotopes of Ir and Au, which seem to have similar low energy
spectra, the experimental situation seems to be most favourable for the isotope
2711, The experimentally observed low-lying states of Ir'®! are shown in the
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Fig. 6. Rotational energies for the particle state 79 (§ = 0.2). As o approaches 0°, particle state
79 goes over to the axially symmetric [402] £ = §+ particle state. The insert shows the experi-
mentally observed low-lying energy levels of ,,1r'*1. Note that the order of the rotational levels
for y = 13.5° (f = 0.2) is in agreement with the experimentally observed + parity states in Irl®!

insert of fig. 6. According to the axially symmetric model the low-lying posi-
tive parity states might be explained in terms of two rotational bands; the
ground state band with K = 3 based on the [402] £ = 3+ Nilsson level, and
a nearby band with K = 1 based on the [400] 2 = Z+ Nilsson level. Because
of the proximity of the two states the K = 1 and 2 bands would be coupled

2
through the rotation-particle coupling (RPC) term!3) in the rotational
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Hamiltonian. According to the asymmetric model, however, the positive
parity particle levels 81 and 79 are split relatively far apart even for small
asymmetry. (The limiting Q = :1:% and 27F3 axially symmetric particle levels
have very nearly the same energy and are connected by an off-diagonal matrix

25
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H8R*

1 1 i 1
6° 10° 15° 20° 25° 30°
Y

Fig. 7. Rotational energies for the particle state 79 (8 = 0.3).

element when y # 0°). In the asymmetric model therefore the two particle
states are far enough apart so that the observed rotational states should be
based on a single particle state. Fig. 6 shows the rotational energies for particle
level 79 as a function of y for the deformation 8 = 0.2. Fig. 7 shows the rotation-
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al energies for the same particle level with g = 0.3. The low-lying levels have
the appearance of two overlapping rotational band systems, one a 2+, %—{—,
74, ... sequence, the other a 21+, 24, 24, ... sequence. (The zero point
rotational energies are very large for y between 2° and 6° since the strong
Q = %, 3 mixing of the particle wave function gives a relatively large Ky ~ 2
admixture for small values of y so that the %% (Kz2)/8Bg? sin?y term in the
rotational Hamiltonian gives a large energy contribution to all rotational
levels.) For 8 = 0.2, y = 13.50°, and for g = 0.3, y = 9.85° the observed
levels of Ir'® are reproduced quite well. For intermediate values of § there
is always a value of y for which the predicted and observed energy spectra are
in relatively good agreement.

TaBLE 3
Rotational energies for Irl®

Theoretical

Experimental Asymmetric model Symmetric model with RPC

=03 B =02 _ -

y = 9.85°%) y = 13.50°?) p=03° B =029

8+ 351 keV 377 keV 418 keV 305 keV 316 keV
i+ 348 374 415 324 205
3+ 178 173 178 208 206
$+ 129 (129) (129) (129) (129)
3+ 83 87 86 (83) (83)
3+ 0 0 0 0 o

8) £2/6Bf* = 29.6 keV.

b) A2/6Bf% = 30.8 keV.

¢) #2/6Bf? = 28.4 keV, a = 0.415, 4 = 0.670, AE = 174.5 keV.

) %2/6Bf* = 28.8 keV, a = 0.348, 4 = 0.741, 4E = 172.5 keV.
In these footnotes, a is the computed decoupling parameter, 4 the computed RPC parameter,
AE is defined by AE = E([{400]4+)— E([402)3+). The quantities #?/6 Bf* and AE are chosen
empirically.

The theoretically predicted energies are shown in table 3 on the basis of
both the asymmetric and the symmetric models. In the asymmetric model
the rotational constant, %2/Bf?, was determined empirically to fit the 129 keV
level. The predicted energies for the upper 34 and 7+ states are somewhat
too high but this is perhaps not disturbing since vibration-rotation interactions
have not been taken into account. In the symmetric model the rotational
energies were computed by diagonalizing the symmetric rotator Hamiltonian
with RPC term. The values of the decoupling parameter a for the Q = % state
and the coupling parameter A 13), were computed from Nilsson wave functions
and are shown in table 3. In the symmetric case the determination of the rota-
tional energies involved two empirical constants, the energy difference between
the 2 = %and 2 = 3 particle states and a rotational constant #2/2.# = #?[6BB*
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which was assumed to have the same value for both bands. Although the
predicted energy values may be somewhat better on the basis of asymmetric
theory (if it is borne in mind that vibration-rotation interactions are apt to
depress the higher rotational states somewhat), no preference can be given to
either model. The rotational wave functions are very similar for both models
since the overlapping 34,3+, %4,...and 14, 3, 34, . . . sequences in the
asymmetric model are predominantly X = 4 and K = %, respectively. The
ground state which is predominantly K =4 has a K =1 admixture
with amplitudes Cy between —0.1 and —0.2 in the case of both models. As a
result it is again difficult to distinguish between the two models as far as
predicted values of the electromagnetic moments and transition probabilities
are concerned. Table 4 shows that neither model is very successful in predicting

TABLE 4
Electromagnetic moments and transition probabilities for Irt?!

Theoretical: Theoretical: symmetric
asymmetric model model with RPC
Experimental 503 5= o0z
y = 9.85°  y=13.50° p=03 p=02
n +0.2 n.m.?) —0.42 —0.37 —0.15 —0.11
Q 1.541x10-2%cm?8) 1.47 0.93 1.57 1.03
B(M1)
3—>3% (83 keV) 0.001 (n.m.)2 b) 0.0011 0.0009 0.0068 0.0055
$—>% (129 MeV)  0.18 ©) 0.156 0.130 0.042 0.028
B(E2)
3 —3 (88 keV) 0.10 x 10-%8cm? b) 0.006 0.016 0.16 0.11
$ > 2 (129 keV) 0.6 (£+0.3)9) 2.15 0.92 2.00 0.84
3% (348 keV) 0.4 (£0.1)¢) 0.90 0.38 0.97 0.41

&) W. v. Siemens, Ann. Physik 13 (1953) 136; KX. Murakawa and S. Suwa, Phys. Rev. 87 (1952)
1048

b} A. W. Sunyar, Phys. Rev. 98 (1955) 653

¢} Using a meanlife 1.4 X 10~1 sec (R. L. Méssbauer, Z. Naturforschung 14a (1959) 211)

9) T. Huus, J. Bjerregaard, B. Elbek, Dan. Vid. Selsk. Mat. Fys. Medd. 30, No. 17 (1956);
E. M. Bernstein and H. W. Lewis, Phys. Rev. 105 (1957) 1524

¢} R. H. Davis, A. S. Divatia, D. A. Lind, R. D. Moffat, Phys. Rev. 101 (1956) 753

the experimentally observed magnetic moment and in giving consistent pre-
dictions for the observed M1 and E2 transition probabilities. (Free nucleon g,
values are used in all the magnetic moment calculations, and gy is set equal to
Z[A. A value of Ry = 1.2+ A% fm is used for all electric quadrupole calcula-
tions). The Ir'® calculations seem to indicate that it may always be difficult
to distinguish between a symmetric and an asymmetric model when the
asymmetry is relatively small.

7.2. ODD-NEUTRON NUCLEI

Figs. 8 and 9 show the single particle energy levels for odd-neutron nuclei
in the region 82 << N < 126 for asymmetries of 15° and 30°, respectively. For
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the specific deformations § = 0.3 and § = —0.2 the spin values of the lowest
rotational levels based on each particle state are also listed in table 5 (starting
with the ground state at the left), in order to give at least some indication of
the types of rotational sequences to be expected. Particle levels 121 to 115,
and perhaps level 99 may be the pertinent levels for odd parity states of nuclei
with 4 around 190.

E
_p_gﬂ.' -125 -125 -123
ﬁwo \l/ r/( 2
- 2 -2l
—-i123 7: |5° /
70 [~ ]
6.5
6.0
79 /Zz'\\\ -
Ny, h ﬁf 3 +tol .
| | 1 1 | | ] ] 1
-0.3 -0.2 -0.l [¢] 0.1 0.2 03 o4 05
B —

Fig. 8. Single-particle levels for odd-neutron nuclei in the region 82 < N < 126 (y = 15°). The
parameters C(x) and D(u) for these levels have been chosen to have the values recommended by
Mottelson and Nilsson ?). The calculated wave functions correspond to the parameters C = —0.1
(k = 0.05) and D = —0.0225 (& = 0.45) for both the — parity N = 5 and + parity N = 6
levels. The levels are labelled by their parity and by an ordering number which would be the
number of the odd neutron if the single-particle levels, at small deformation f, were filled in order.
The single particle levels are also labelled with the spin and parity of the lowest rotational level
{(ground state) for the specific deformations § = 0.3 and § = —0.2.

The nucleus ,zPt1% is of particular interest since its energy spectrum is
seemingly fit by asymmetric rotator theory. The experimentally observed
energy levels are shown on the left hand side of fig. 10. The levels have been
studied through Coulomb excitation 4), the decay of the metastable 12+ level
and the positon decay of Au'% to the low-lying states. The most striking feature



314 KARL T. HECHT AND G. R. SATCHLER

of the level scheme is that both the upper and lower §—, $— doublets show
large electric quadrupole transition probabilities to the ground state, the E2
strengths being 10 to 30 times the single particle estimates 14). In a rough way
each doublet seems to correspond to a state with a rotational (or vibrational)
angular momentum of 2 units. Fig. 10 shows that there are actually three
different particle energy levels all with theoretically predicted rotational spectra
which seem to reproduce the experimentally observed level scheme. All three
particle states fall in the region appropriate for the 117*® neutron in Pt19, and

7
Epart -125 Y- -123 _i2)
fw,

/ -9
70 -
. v

—

Fig. 9. Single-particle levels for odd-neutron nuclei in the region 82 < N < 126 (y = 30°).
See caption for fig. 8.

all three seem to imply large asymmetry. Moreover for any value of § within
the limits to be expected in this region of the periodic table there seems to be a
value of y for which the observed level scheme is reproduced at least tolerably
well. For g = 0.1, y ~ 30°, similarly for 8 = 0.2, y ~ 23°, however, particle
levels 119 and 121 have nearly the same energy so that rotational energy
calculations based on a single particle state may not be valid. For the values
of f and y used in fig. 10, the energy separations between single particle states
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TaBLE 5
Order of low-lying rotational levels for odd-neutron nuclei?)

Part. P Gr. st. Spins of lowest Part. P Gr. st. Spins of lowest
state 8- spin rotational states state & spin rotational states
125 — 3 $ £ % ¢4 109 + + 3 &% &R
123 — 3 EIE I I B A 97 - i & i3 $..
185+ ¥ L R 95 - + & 33 2B
o 121 — 3 1 £ % 8 3. 93 - 1 : 881
AT SRS S S N O O 107+ F 8B REE
a 18— 3 P A 91 - 3 2 § 5 8 %
131+ 3 + &8 § % 89 - % & & #...
129+ S A A R 105 + § 3 8+ 8 8.
o121+ 3 § ¥ 4 3% & 87 - 3 3 3% %
TS | LR S B 103 + & &% 8 ¥R
o 18 = ] 884 7. 85 - ] LI I T
99— ] P &3 8 & 83 - 3 % & & M.
us -+ % P &% 4 % 101 + ¥ 3 b F ¥
ur -+ 3 2 A T I
125 - 3 1 8 & 8 4. 99 - ¥ & 8% % %
135 + 3 §F 3 F 8 Y. 107 + ¥ 33 P ¥ T
o, 133+ 3 2R - A 97 - 3 i3 8 8.
~ 131  + 3 $ + 7 8 8. 95 - § LI B 2 B
o123 - % EI B B B 105 + 8 ¥ 2§ 7 OF..
~ 121 — 3 $ 4+ 87 8 93 - Y 8 F R -
129+ ¥ S B T A 91 - % R B B
o 127+ 3 ¥ 8 2 ¥ E.. 103 + % B i o ¥ R
s 119 - 3 $ 5§ % % 8. 89 - ] EE I
b+ H P %3 3 & 87 - 1 83 8 4.
I m + 3 3 8 % 3. 101 + 3 3 B
= o - 1 $ 4% % 8. 85 - 8 B¢ F B 4.
115 - % 3 £ 8% 8- 83 - ] ¥+ 8 F--
109+ ] EIE I I 2 SR
125 — 3 P B N I 91 - 3 $ 3 4 & 5.
123 - % $ &3 8 %5 109 + 8 8 F ¥R ..
121 - 3 P &8 7 8. 95 - ] P T B
s 185+ § P 8¢ % 3. 107 + EONEE T B 2
PRt T S S A N A AR 93 - + 8 F &
R I I 3 $ 8§38 5. 91 - % 8 & 7 &
131+ § P B B I 105 + 8 & &4+ % &
.12+ 3 3 3 8 % & 89 - 3 2 ¢ & 5 8.
17 o+ ¥ PR EOLR. 03+ B 3 %P E .
AR LCANET SEE B O 2 2% NP 81— ¥ 4 4R Ef
- 115 - b3 $ £ %48 2. 85 - % 8+ 8 8 5.
13+ 3 84 8 3. 83 - 3 R T I
1 % 8+ % 8. 101 + % ¥ ¥ &R i
9 - % $ & 5 8 %

) Levels with I < 4 are listed for the positive parity states, I < 4 for the negative parity
states.

119 and 121 seem to be large enough for at least the approximate validity
of the simple model. The theoretically predicted — and 3— levels which fall
above the 424 metastable state are dashed since they would not have been
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experimentally observed. A third §— state (above 259 keV), however, would be
in agreement with experiment only if the E2 transition probability from the
ground state is small.

Porticle State: HEY 121 ne
B=0. B=oi £-02
7 =30° y = 20° =30
8 i 2
392 -
- ve 362 - —3§6————7/2-
340 s~ T T "W 380 .-
Observed L evels ——=—===g,2" _— - ——— -
EC
293 - 282 s/2-
259 kev \3/2+4 253 5/2- 262 572~
240 ~
= 5/2 225
210 - 2n - 32”
32 3/2
/ 198 372~
129 _(r29) 1
52 (|0| 572~ ‘éi’ 5s2~ W29 52"
99 32~ ——————3/2- ————3/2" 714 32
2= 172- 172~ 72 -

Fig. 10. Energy levels for ,,Pt!%. The experimentally observed levels are shown on the left.
Level schemes predicted on asymmetric rotator theory are shown for three different negative
parity particle states in the region appropriate for the 117*: neutron. Predicted levels with
I = % and § above 259 keV have been drawn with dashed lines since they would probably not
have been experimentally observed. The predicted third I = § levels (above 259 keV) are in
agreement with the observed facts only if they are connected to the ground state through very
small E2 transition probabilities. The rotational constant #2/Bf? has been chosen to fit the 129
keV level in each case. Values of %2/Bfi? of 80 keV, 100 keV and 82 keV were used for particle
states 115, 121 and 119.

TABLE 6
Magnetic moment and M1 transition probabilities in Pt19%

Extot State 115 State 121 State 119
*pt- B=01p=30° B=01p=20° L=02p=30
u (n.m.) 0.600 0.689 0.726 0.667
B(M1) (n.m)?
31 (210 keV) 0.047 0.076 0.392 0.088
3 >3 (99 keV) (0.044) 0.072 0.017 0.112
3 —> 3 (140 keV) 0.0087 0.0056 0.242 0.014
§—> % (31 keV) 0.071 0.024 0.306 0.165

The experimentally observed and theoretically predicted values for the mag-
netic moment are shown in table 6. These are determined mainly by the particle
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wave functions since an I = % level is a pure K = § level for all values of . The
reduced widths for magnetic dipole transitions seem to rule out the second
possibility; but considering the limitations of the model and perhaps experi-
mental uncertainties, they seem to give fair agreement for the other two levels.

TaBLE 7
E2 transition probabilities in Pt

B(E2) Exot. 14 State 115 State 121 State 119
10-% cms XL 01y =30° B=01p=20° f=02y = 30°
3 > (99 keV) 0.90 1.6 1.5 6.5
$—} (130 keV) 1.0 1.6 1.5 6.5
5 —~% (31 keV) 0.53 0.063 0.00005
§ 31 (210 kev) 2.14 0.05 0.08 0.00003
; B —> 3 (240 keV) 1.29 0.006 0.003 0.00003
5 §—> 3 (140 keV) 0.11 0.006 0.36 1.84
§— % (>259 keV) 0.002 0.28

The electric quadrupole transition probabilities are shown in table 7. The
asymmetric model fails to predict one of the most striking features of the
observed spectrum, the large cross-over E2 transition probabilities involving
the upper 3—, $— doublet. Since this is the most characteristic feature of the
spectrum, it must be concluded that the simple asymmetric model does not
fit the low-lying levels of Pt!%%. The calculations indicate that a fit of the energy
spectrum alone, if only a few states are observed, can never be confirmation
of the asymmetric model, since the asymmetric rotator spectrum is very rich
in levels which are a sensitive function of y, so that many different sequences
of four or five levels can be reproduced.

Attempts to fit the levels of Pt!% with a symmetric rotator model seem to
indicate only that the nucleus falls into the intermediate coupling region where
neither the simple rotational nor the simple vibrational model can be applied.
Since the particle states 119 and 121 are nearly degenerate for certain values of
B and relatively large y, the possibility does exist that the observed level scheme
can be accounted for in terms of two different particle excitations with rota-
tional wave functions which for the I = 3—, §—states are strong mixtures of
the two states and would therefore give rise to two $—, 3— doublets with
strong E2 transition probabilities to the ground state. However, much more
experimental information would be needed about the nucleus before such a
sophisticated interpretation could be adequately tested. It should be noted,
however, that no strong E2 cross-over probabilities are observed for the 2+
levels of the neighbouring even isotopes, Pt1% and Pt1%, The assumption that



318 KARL T. HECHT AND G. R. SATCHLER

the low-lying levels of Pt1® involve two different particle excitations may
therefore be reasonable.

We would like to thank Mr. R. A. Leacock for his help with the computer
programs.
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