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Inversion-Vibration and Inversion-Rotation Interactions
. . *
in the Ammonia Molecule
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Harrison M. Randall Laboratory of Physics, The University of Michigan,
Ann Arbor, Michigan

An attempt has been made to extend the theory of ammonia inversion in
order to account for the dependence of the inversion splitting on the full et of
vibrational and rotational quantum numbers. The potential energy of am-
monia is approximated by a double minimum potential 17(¢) plus the potential
of a syvstem of harmonic oscillators in the remaining five vihrational coordi-
nates. V(¢) has been chosen to have the form V() = —2F cos (¢/L) 4+ 2G cox
(2¢/L) in which ¢ is an inversion coordinate and L a constant. { ¢ 1 £ =/,
The double minimum wave functions are eomputed numerically. Inversion-
vibration interactions are obtained by developing the parameters F and G,
which are regarded as mild functions of the five vibrational coordinates, in a
Taylor expansion in the vibrational coordinates. With the exception of the
state 2»,° this potential accounts for the dependence of the inversion splittings
on the vibrational quantum numbers of the two doubly degenerate modes v
and v, (eleven experimental data are fitted with four empirieal interaction con-
stants). However, the potential fails to describe completely the interaction
between the inversion coordinate and the remaining nondegenerate vibra-
tional coordinate associated with »y . Since the task of diagonalizing the com-
plete rotation-inversion Hamiltonian is complicated by the presence of sev-
eral resonances, the rotation-inversion constants B~ — Bt and ("~ — (" are
calculated only from the lowest order vibration-rotation-inversion Hamil-
tonian. The caleculated constants for the pure inversion states ny, = 0.1, 2,
and 3 and the states n» = 1 in combination with the remaining vibrational
modes agree surprisingly well with the experimentally observed valuex.

I. INTRODUCTION

Recent investigations of the ammonia spectrum by Benedict ef al. (/)
and by Garing et al. (5) have uncovered a wealth of new data revealing the de-
pendence of the inversion splitting on the complete set of vibrational and rota-
tional quantum numbers. In the past, theories of ammonia inversion have aimed
at predicting the dependence of the splitting on the quantum number ny asso-
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TABLE 1
InveRsiON SpriTTiNg IN NH; (em™1)
A=A+ By — BYHIJ(I + 1) — K2 + (O — CH)K2

mns® ny' '3 My t A, B,” — B,* Com — C,"
000000 0.793 —0.005054 0.001998
014000 35.81 —0.1817 0.0721
020000 284.74 —0.535 0.231
03000 512.02 ~0.3041 0.1034
00100 0.35 —0.0036 0.0007
00220 0.43
000 11 1.01 0.048 0.011
00 0020 2.24
00 0° 22 1.42
0011t 0.57
100°0° 0.99 —0.012 0.003
100012 0.86
0110° 18.49 —0.0984 0.0429
010071 45.4 —0.191 0.097
0111t 23.G8 —0.130 0.054
110°0° 25.55 —0.1265 0.0470

ciated with the mode in which the pyramid height changes most drastically
(6-9). In this paper an attempt is made to extend the theory to include the de-
pel.df‘ﬂ ce of the mvprmon anhftu;g on the full set of vibrational and rotational

, where the designation of quantum

,

quantum numbers n; , 7", ni*, ng', J, and K
numbers is that of Benedict ef al. (1).
The (uut‘nlly available data on the inversion \p tulg, in NH; are summarized
in Table I. Although the inversion splitting depends mainly on the quantum
number n , it is clear that it also exhibits a significant dependence on the re-
maining vibrational quantum numbers n; , n4*, and ns*. This leads immediately
to the conclusion that there must exist interactions between the inversion coor-
dinate and the remaining vibrational coordinates. In the present paper a scheme
is proposed for describing and evaluating these interactions. The potential
energy function for ammonia is represented, in lowest approximation, by a

double minimum potential involving the inversion coordinate nll s the potentlal

1
UL DL pUwCilig v oiilg

of a system of uncoupled harmonic oscillators involving the five remaining vibra-
tional coordinates.” Interactions are obtained by interpreting the parameters
oceurring in the double minimum pOIE’IlUdl as mild functions of the remaining
vibrational coordinates through the use of a Taylor series expansion. In a similar

fashion the vibration-rotation interactions affecting the inversion splitting have

1 By treating the remaining degrees of vibrational freedom by means of uncoupled
harmonic oscillators, the usual anharmonicities involving only these degrees of freedom are
ignored. Although these are important for a complete description of the spectrum it is felt
that they will not contribute significantly to the inversion splitting.
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been introduced and calculated. These lead to numerical values which can be

compared with the experimental quantities B~ — B™ and (7 — ¢*.
T11. INTERNAL COORDINATES AND THE VIBRATIONAL KINETIC
ENERGY

As a method of specifying a set of internal coordinates for ammonia it is con-
venient to start with a Cartesian reference frame fixed in space and with origin
at the center of mass of the molecule as shown in Fig. 1. Let v, y,, and z; be
the Cartesian coordinates of the 7th atom with respect to this reference frame.
The subseripts ¢ = 1, 2, and 3 refer to hydrogen atoms and 7 = 4 to the nitro-
gen atom. In either of the two equilibrium configurations of the molecule the
nitrogen atom lies on the z-axis and the number three hydrogen atom is choxen
to lie in the y — z plane. The twelve Cartesian coordinates of the four atoms can
he replaced by six internal coordinatesu, (¢ = 1, - - - 6) by means of the follow-
ing scheme where m is the mass of a hydrogen atom and A/ the mass of the nitro-

gen atom.
V3 V3 I |

n= ST G T g = e e
1 1 3 M
=gt U — \—g— W= gy T am Us ,

w= =y e () v (8)],
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2

Fre. 1. The internal coordinates

To discover the physieal significance of these coordinates consider first the case
where ug = us = us = us = 0. It is apparent from the equations that us is
equal to the height of the ammonia pyramid and w, equals the distance from a
hydrogen atom to the center of the hydrogen triangle. All configurations that
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arise when u; = wa = us = us = 0 have pyramidal symmetry. That is, the
hydrogen atoms form an equilateral triangle and the three N—H bond lengths
are equal. On the other hand, the coordinates u; , us , us , and ue relate to devia-
tions from pyramidal symmetry. The coordinates u; and s describe a configura-
tion in which the nitrogen atom remains stationary and the hydrogen atoms
undergo di\‘pla('emontq parallel to the x — y plane us , however, involves a dis-

4 PR . ~

pl‘L( ement of the UIUUg,Hl atom pald,ﬁel to the Y- axis with a lOi‘I“(S‘puhumg llp—
ping of the hydrogen triangle while us represents a displacement of the nitrogen
atom parallel to the z-axis again with a tipping of the hydrogen triangle. IFor
both ws and us all the H-—H distances remain invariant.

The two equilibrium configurations are given by

n

0 [ ||
W, = U1, Uy = U2, Uy = Uy = Uy = Usg = U,

wherewhere ;" and )’ are approximately 0.94 X 10" and 0.38 X 10— cm,
respectively. Inversion of the molecule through a plane passing through the
center of mass and perpendicular to the symmetry axis is accomplished by means
of the transformation

Uy — — Uy, Ui —r U; (1 # 2).

The internal coordinates have been chosen in such a way that for all values of
the coordinates and their time derivatives the linear momentum of the molecule
remains zero. The angular momentum also remains exactly zero for all motions
in which the molecule retains pyramidal symmetry, that is, where uz = wy =
s = ug = 0, but for all values of u; and u, . For those motions however in which
the pyramidal symmetry is destroyed, there will exist small terms in the angular
momentum.

A simple ealeulation yields the vibrational kinetic energy

i » ) - y
T = J\Bmzll“ 4+ wiy + B3mas 4 ")

4y’ N )
-+ MP(!LJ, 2)( lla + us + —‘L‘ (l¢5 s + Us lle) u d (u)

3m w dt \1

‘)2 d {u 2\
o (10 +"“[dt<u‘;>]f*

where p = 3mM /M + 3mand pluy, w) = (1 + (2/3m) (us/11)%]. The sym-
metry of the coordinates is such that the leading terms in the Taylor expansion
of the potential function about an equilibrium configuration would be

o

3

Vo= 1ai3b(m — ui")* 4+ 24/3c¢(ur — w") (ue — w') + alus — s )
+ 3800 4+ ud) + 24/ 3vpolusus + wsus) + ap (us + ue) + - |,
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where po = [1 4+ (2u/3m) (1.’ /u,")?], and where the force constants a, b, e a B,
and v, defined previously by Dennison (10), have been used.

It will now prove convenient to replace the coordinates us , us , us , and ug by
a new set of internal coordinates Q. , @3, , Q4 , and @y, defined by

Qs> = cos 7(3m)us + sin rlup(uy , u))%us

Qi = —sin 7(3m) us + cos rup(us , u))us ,
Qs = cos 7(3m) us + sin rlup(ur , us)] s , (1)
Qsy = —sin 7(3m) " us + cos rlup(ur, u2)]us
where
cos 27 = <§ _ ‘_1&)> [(B_ _ 9@)2 N f?’ipﬂ]_l/z_ )
m B m “ py

The coordinates Qs , s, , Q4-, and Q4 are defined in such a way that, in the
vieinity of the equilibrium configurations, they become the normal coordinates
describing the perpendicular vibrations. Note, however, that in general they
depend on the two axially symmetric coordinates u; and u, . Finally, the co-
ordinates u; and e are replaced by a pair of coordinates ¢ and { defined by

(3m)"*u, = aysinh o cos ¢,
(6)

(1)"us = agcosh osin ¢,

where ai’ = p(u")? — 3m(u”)® + V3w u’(ub — ma)/cand ¢ = 0; —w/2 <
¢ < w/2. The constant @y has been chosen so that in the neighborhood of an
equilibrium configuration éc = ¢ — o9 and 6¢ = ¢ — ¢, are proportional to the
two symmetric normal coordinates of ammonia. In fact, it is easy to show that

this choice of ag leads to the relations

Ls(3mai 4+ pis’) = Y4a0 (cosh® o — sin® {o) (8% + 8¢°) (7)
and
8sb(uy, — u)t + V3c(ur — w') (e — us') + Lsa(ue — w’)*

= }f’é(lOZ(COSh2 gy — Sil’l2 g‘o) ()\160’2 -+ )\25{2),

I YA a lb_(JL2 CZJW
xa}‘§<m+b>i[4(m ;>+rm :

In these equations g and =={¢ are the equilibrium values of ¢ and { and describe
the two equilibrium configurations of the molecule. The physical significance of
o and ¢ is best seen by inverting Eq. (6). It will be recalled that u, is the height
of the ammonia pyramid and w, is the distance from a hydrogen atom to the

where
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Fig. 2. The coordinates ¢ and ¢

center of the hydrogen triangle. One finds that the family of curves in the «, —
u: plane with ¢ constant are ellipses and the family of curves with ¢ constant
are hyperbolas. This is illustrated in 1¢ig. 2. The coordinate ¢ may be identified
as an inversion coordinate since the molecule can be inverted from one equi-
librium configuration to the other by changing ¢ continuously from ¢ to — ¢, while
keeping ¢ fixed at its equilibrium value oy .

Upon introducing the coordinates o, §, Qs , Qs , Qi , and @y, into Lq. (2)
one obtains for the vibrational kinetic energy

T = l‘ZI(I(JZ(('V()Sh2 T — Sill%“)(&z + (2) + 12(Qi1 + ng + Qir + Qii/)

; g - : -2 Q)
. 2 | cosh ¢ sinh ¢{ — cos ¢ sin o (t
4+ |sin 7Ry + cos 7Ry|" | o e e

[ ' d sinh? ¢ cos? { + cosh? ¢ sin? ¢
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where R; is a vector with components Q. , @3, , and Ry is a vector with com-
ponents Q4 , Qg . So far no approximations have been made and Eq. (9) is
rigorous.

III. THE POTENTIAL ENERGY AND THE VIBRATIONAL HAMILTONIAN

The present state of development of molecular theory is not sufficiently ad-

vanced to allow an g ’7)’!‘7{)7‘1 derivation of a notential function for a molecule as

Valltol W QW il UCITVGLILIL O pYVCHviGl 1Ll uiOn 101 110100 Uil

complex as ammonia. The best that can be done is to choose a function with
plausible physical characteristics. The funetion must of course satisfy the sym-
metry requirements and should contain a number of adjustable parameters
which will be determined by comparing the results of the calculation with the
experimental data.

It may be remarked that, in the six-dimensional coordinate space, there
exists a path connecting the two equilibrium configurations for which the po-
tential has the smallest set of values. It may be thought of as the lowest pass
over the potential mountains standing in the way of inversion. A plausible
choice for this path is that ellipse for which the coordinate ¢ alone varies, all
other coordinates remaining zero. The double minimum character of the po-
tential will therefore be described through a suitable function of ¢. The usual
normal vibration properties of the molecule further require the presence of terms
quadratic in the remaining coordinates. It will be assumed that these always
remain near their equilibrium values, so that da, Qs , @3, , Qe , and @y, are small
quantities. In the subsequent discussion these small oscillation coordinates will
be replaced by their dimensionless counterparts ¢i, ¢z« , ¢, ¢ac, and gqa, , de-
fined by

o0 = [h/47’cwnaq (cosh® gy — sin® {0)]1/2q1 ,

(10)
Qie = (:h/41r20w,')142q1-a, i=3,4, a=uza,vy,

where these reduce to (dimensionless) normal coordinates in the vicinity of either
equilibrium configuration of the molecule.

The above considerations have therefore led to choosing a potential of the
following form,

V/he = Vo(£)/he + Ysoqs® 4 Yoes(gse + ¢3,) + Yoes(dic + ¢3,),  (11)

where ¢, ¢;, and ¢4 are constants and Vo(¢) is a double minimum potential
with minima at {o and — ¢ and a central maximum as { = 0.

Although the inversion splitting is an extremely sensitive function of the in-
version potential, the WKB treatment of ammonia inversion given by Dennison
and Uhlenbeck (6) suggests that there may be many mathematical functions
Vo(¢) which can account, at least approximately, for the observed splitting.
Practical considerations, however, limit the form of V,({) to those functions
for which energy levels and wave functions can be found with reasonable ease.
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A possible candidate might be the potential proposed by Manning (7). Although
the energy levels for this potential are relatively easy to find the wave functions
would be somewhat cumbersome to use in a perturbation caleulation. In order
to obtain more manageable wave functions, the double minimum potential

Vile)/he = —2F cos (¢/L) 4+ 2G cos (2¢0/1) for|¢| £ wLL

= 2

F 4@ foroel, < ¢ £ 7.2

will be used in the present investigation. In Eq. (12), F and 7 are positive
constants such that F £ 46 and L is a positive constant such that 1. < L,.
This potential has a central maximum at ¢ = 0 and minima at { = +¢, where
cos (fo/L) = F/4G. 1t has the general form to be expected of an inversion po-
tential in the neighborhoods of {4 and —{y and throughout the interval —¢, <
¢ < g For | ¢|> 6] it is undoubtedly a poor approximation to the true
ammonia potential, but the low-lying energy levels shouod not be affected very
much by the behavior of the potential at large values of | ¢ |.

Interactions between the inversion coordinate and the remaining vibrational
coordinates are obtained by assuming that the parameters F and (7 are not true
constants but mild functions of the coordinates ¢i , ¢uzr, qsy , qar , and ¢y, . Since
these coordinates represent very small oscillations it should be possible to obtain
a good approximation by expanding £ and ¢ in a Taylor series and retaining
only the leading terms. In principle, L could be expanded in a Tavlor series
also. However, an expansion of L, F', and & would yield more unknown constants
than can be determined by the available data on ammonia. Thus, in practice,
one of the three parameters must be regarded as a genuine constant. The argu-
ment for choosing 1. as the constant can be stated as follows. The inversion
splitting is expected to be a very sensitive function of the potential burrier
height and the separation of the potential minima. The height of the central
barrier for the potential given by Iq. (12) is 4G/(1 — F/4G)" and is independent.
of L. Furthermore, the separation of the potential minima can be shown to he
very insensitive to the value of L. Thus, if one of the three parameters must
be regarded as a true constant then L is probably the best choice.

The form of the expansion of I and (7 is restricted. First, the potential must
be invariant under the symmetry operations of the molecular point group. This
exeludes, for example, terms linear in the ¢, and g4, . Secondly, since the co-
ordinates g1, (¢ — o), @3z » 43y 5 Qaz , and qq,, are proportional to normal coordinates
in the vicinity of an equilibrium configuration, the full potential must satisfy
the equilibrium conditions (8V/dq;)y = 0 and must contain no cross produets
in the quadratic development about an equilibrium configuration. The combina-
tion of these two requirements excludes terms linear in ¢; . Finally, since F and
(7 are assumed to be mild functions, only the first significant terms in the vibra-
tional coordinates will be retained. Out to quadratic terms the most general
form of the expansion of F and (7 is
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=
Il

FO + F1(112 + IJ:{T;;Z + F47‘42 + k cos (2?0/]4)1'3‘1'4 y
G = Go + qu12 + (}37’32 + (7’47'42 + k cos (?0/14)1'3'1'4,

where Fo , F1 , Fs, Fy, Gy, Gy, Gy, Gy, L, and k are true constants. Here r; and
ry are vectors with components ¢z, , g3, , and ¢, , g, , respectively. As a means
of keeping the ensuing computations reasonably manageable the constant k
will be set equal to zero although no real physical justification can be given for
doing so. Thus one obtains

Vihe = Yseq + lsers’ + Loeard
— 2[F, + Fyq* + Fardd + Fard] cos (¢/L)
+ 2[Go 4 Gugi® + Gars® + Gurd cos (2¢/L)  (14)

(13)

as a possible approximate potential energy function for the ammonia molecule.
Equation (14) is, of course, a very incomplete potential function. Cubic and
quartic terms could be added. However, unless the coefficients of the cubic and
quartic terms are strongly dependent on the inversion coordinate ¢, they will
not make appreciable contributions to the inversion splitting. Since the purpose
of this investigation is to examine the inversion splitting these extra terms will
not be included.

Since ¢1 , ¢s= , Gy » Qaa » and gy, reduce to dimensionless normal coordinates near
the equilibrium configurations, the corresponding normal frequencies can be
found by evaluating the second derivatives of V/hc at an equilibrium configura-
tion. One finds

w; = €; — 4F1 cos (fo/L) + 4(; cos (2{0/[4) 1 = 1, 3, 4. (]5)

Apart from an additive constant, which can be neglected, the potential function
of Eq. (14) can be rewritten as

V/he = Voo ' + Yows i’ + Yowird
+ [2Gy 4+ Fi*/4Gy| — 2Fy cos(¢/L) + 2Gy' cos(2¢/L)
+ [—2Fi(cos(¢/L) — cos(fo/L) + 2Gi(cos(2¢/L)
— cos(2to/L))](g" — 13)
+ [—2F;(cos(¢/L) — cos(io/L)) + 2Gs(cos(2¢/L)
— cos(2¢/L)] (1" — 1)
+ [—2F:(cos(¢/L) — cos(fo/L)) + 2Gi(cos(2¢/L)
— cos(2¢0/L)) ] (" — 1),

(16)
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where
F()’ = Fn + }’éFl + F:; + ["4 N
Gn’ = Gu + l2(;1 ‘|’ (1';; + (;4 .

It is in this form that the potential will be used in the subsequent calculations.
It should be observed that this potential has minima at { = *¢yand ¢ = ry =
rs = 0 where cos ({o/L) = Fo/4G, . These correspond to the two equilibrium
configurations of the molecule.

Having arrived at expressions for the kinetic and potential energies, one can
set up the vibrational Hamiltonian for the molecule. Equation (9), which is a
rigorous expression for the kinetic energy, is somewhat more general than ix
needed. Examination of this equation reveals that the term involving

(17)

[sin 7R3 4+ cos TR4]2

gives contributions to the inversion splitting of the order of B, — B, ", namely
of the order of 0.005 em ™" for states with n, = 0, and of the order of 0.2 ¢m™
for states with n, = 1 (see Table I). This term will be neglected in the treatment
of the inversion-vibration splitting since this is of the order of 0.8 ¢m™ ' in states
with 7, = 0 and 35 em ™" in states with n, = 1. A further simplification arises
from the assumption that ¢ never differs very much from o, . Thus, the vibra-
tional kinetic energy can be approximated by

Tow = /1/2'a02((-0sh2 o0 — sin" ) (86" + F)
+ (@5 + @3, + Qi + @)

With the introduction of the dimensionless coordinates defined by g, (10)
and a dimensionless inversion coordinate

(18)

r={¢L (ry = Co Ly, (1)

the quantum mechanical vibrational Hamiltonian becomes

Ho = HG + Hi, (20
where
HO ke = <_ K + q{l) 48 <_ o _ 9 + T.”)
v 2 0gy’ 2 39?‘;: a(j%!, ’
2 2
wa ad 6 2
e : 9
* 2 < 994z a4y + "4) 20

3 P
+ (—D 3 + 2G4 + 1 L= 2F cox v + 2GY cos 2.:‘)
f Ll
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and

‘(,H,/hc hl(x)((112 - }é) + ha(x)(7“32 - 1) + h4(1’)(7’42“1)

) ! 3* 1 (22)
where
hi(x) = —2F;(cosx — cosxy) + 2G(cos2x — cos2x) 7 =1,3,4 (23)
and

= h/[8n"cas (cosh® ¢y — sin’ §) LY, (24)
sin®(Lz) — sin’ ¢,
cosh? oy — sin?(Lz)’

2L(cosh® ¢y — sin’ ¢o) sin(Lx) cos(Lfc)
[cosh? oy — sin?(Lax)]?

fl(”f) =
(25)
fz(l") =

The transeription to quantum mechanics has been made in such a way that the
volume element in configuration space is simply dg; dx dgs. dgsy dgss dgs, . It will
be noted that H<5 is completely separable in the various coordinates and that
the inversion splitting, to this approximation, depends only upon z. H) on
the other hand, contains the interaction terms between the inversion and the
other vibrational coordinates. In the calculations to follow, H) will be treated
through perturbation methods. This appears justified since the change in energy
levels (as opposed to the change in inversion splitting) caused by the interac-
tions is small compared to the values of the levels themselves.

IV. VIBRATIONAL ENERGIES OF NH; IN LOWEST APPROXIMATION
Consider the Schrodinger equation for the unperturbed Hamiltonian
HRWE, = EQwd) .
As just remarked, this equation is separable and gives
ER/he = Eppr + @i(ni 4 28) + ws(na + 1) + w@u(ng + 1), (26)

‘I’E'?l)n = \//ngi(x)kbnl(QI)IPMIS(([:&: » q3y)‘l/n4l4(q4x s 9411)’ (27)

where ¥, is a one-dimensional harmonic oscillator wave function while ¢,,,, and
¥..1, are two-dimensional isotropic harmonic oscillator wave functions. E,,+ and
¥, + are eigenvalues and eigenfunctions of the one-dimensional equation which
describes the inversion.

Hy(x) = Ey(x), (28)
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where

H, = —D(3%/02") + [2Gy + (F/4G)) — 2Fy cosx + 201/ cos 2

for—r = v £ x

’

H, = —D(8/0x°) + 2G4 + (F¥/4G)] + 2(F/ + Gd)
foroe < |x| < m2L.

[t does not appear possible to obtain exact solutions of equation (28) in terms
of known functions. However, for £ << V{(r) eigenvalues and eigenfunctions

may be calculated numerl('ally to any deslred 01der of approximation. The
oper procedure would be to obtain .

nrey, an
I pruttuurc WG oe \r\! OOTaIN SO
]

T =
join t hom to the e‘(ponentlal solutions in the mterval\ T < | | £ 7.2L. How-
ever, for the levels of interest in the present investigation ¢ (x) becomes vanish-
mgly small as |2 | — = so that the solutions in the intervals 7 < || £ 7. 2L
can be neglected entirely.? Consequently, only solutions in the interval —r <
r £ 47 need be considered.

Since the operator Hs is unchanged when x is replaced by —uz, the eigenfunec-
tions must be either even or odd functions of x. The form of H, suggests that
() should be expanded in a Fourier series in the interval —7r < x £ 4. As
a computational procedure only the first N terms of the Fourier expansions will
be retained. Thus, the even functions become

arval L= < < A
1 1 T == —rn a1

—1

~
@ a

/—— Z K ocos b (29a)
\/21r k=1 T

and the odd functions

X bk .
_ = Z —" . sin k. (20h)
=y
Regarding these wave functions as N-parameter variational wave functions
one obtains, by minimizing the usual variational integral with respect to the
a; or b, , the two matrix equations

2:
._

[(Hz — Képla, = 0,

>
i

(300

™=

ClHD G — Eosulb, = 0,

o
i

]

* For the 0% level, for example, the function ¢ (z) has a value of approximately (0.00005 at
x = = compared with a value of 0.94 at the maximum of the wave function.
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TABLE 11
KiG¢ENVALUES AND EI1GENVECTORS oF H," (12 X 12 TRUNCATION)
nyt ot 1+ 2+ 3+ 4+
Fst
(em™Y) 514.55 1451.71 2131.65 2899.49 3925.35
ao 0.647154 0.125510 0.437270 —0.131256 0.224109
ay 0.362054 0.495878 0.307225 0.225158 —0.131521
Qs —0.447480 0.603562 0.177672 0.357973 —0.113213
az —0.467819 —0.073639 0.575400 —{).048483 0.371143
ay —0.022430 —0.531707 0.485977 0.269292 0.000916
as 0.160871 —0.252730 —0.102389 0.733106 —0.014177
as 0.062313 0.097022 —0.304725 0.353268 0.637748
a; —0.020628 0.110248 —0.089206 —0.172564 0.578506
as —0.017838 0.009066 0.055148 —0.188563 —0.005545
Qs —(.000387 —0.019376 0.034769 —0.014796 -0.192113
o 0.002506 —0.005476 —0.002021 0.034106 —0.054597
an 0.000494 0.001508 —0.005404 0.010167 0.020004
where

(H‘z)?k = f ’LtjiH'z ’Ll;\-i d;)ﬁ,

w = 1/4/2m, w” = (1/A/7) cos kz, w = (1/4/7) sin kx.

Very good approximations to the low-lying eigenvalues and the corresponding
eigenfunctions can be obtained by finding the eigenvalues and the eigenvectors
of the two N X N matrices H." and H, , provided only that N is sufficiently
large. The actual diagonalization was performed with the aid of the IBM 704
digital computer of The University of Michigan Computing Center.

By trial and error it was found that a value of N equal to 12 was sufficiently
large since an increase in N beyond this value leads to insignificant changes in
those eigenvalues and eigenfunctions which correspond to the presently ob-
served levels in the ammonia spectrum. At least two cycles of computation are
required to determine the constants D, Fy/, and (. Although the decomposition
of the vibrational Hamiltonian into H{ and H) was made in a way that
minimizes the contribution of H to the levels (0, n,", 0°, 0°), this contribution
is not negligible. A tentative choice of D, Fy/, and G is made by neglecting
H altogether and choosing the three potential constants so that the best
possible fit to the observed levels (0, ns™, 0°, 0°) is obtained. Using the resulting
eigenfunctions, the approximate contribution due to HS) is caleulated. Then
the values of D, Fy', and Gy’ are adjusted to compensate for the contributions of
HL to the levels (0, ns", 0°, 0°). The best values that have been found in this

vib
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TABLE III
IliceENvALUES aND ElGENVECTORS OF H»~ (12 X 12 TRUNCATION)

s 0~ 1~ 2= 3~ 4

o™

(cm™) 515.49 1487.20 2401.77 3387.16 4482.53
fy 0.771718 -0.122245 0.368526 —0.2105682 0.251615
bro 0.523913 0.481142 0.004443 0.2981K7 —0.266783
by —0.148653 0.760754 0.107159 0.188733 0.088427
by -0.310924 0.174758 0.695448 —0.110052 0.307827
b —0.072999 —0.313068 0.539354 0.448221 —0.1514117
b 0.066367 —0.206113 —0.085132 0.717284 0.214791
b 0.037308 0.021520 —0.254207 0.178893 0. 728610
b, —().003985 0.056222 —0.064203 —0.2056890 0.352643
by —0.007251 0.009731 0.040722 —(). 122294 —0. 120744
B —().000800 —0.007187 0.021746 0.011743 —0.140729
[ 0.000775 —0.002637 —0.001966 0.021031 —0.00921%
bya (0.000206 0.000383 —0.003106 0.003291 0.020130

TABLLE IV

ExERGY DIFrERENCES FOR THE LEVELS (0, not, 0°, 09 (N X N TRUNCATION)

Level Energy difference (cm™!)

Calculated Observed
ot N =12 N =16 N =120
(1 (.00 0.00 0.00 .00
- 0.94 0.94 0.94 (4,703
1- 937.16 937.16 937.16 932.51
1 972.65 972.65 972.65 968,132
27 1617.10 1617.09 1617.09 1597 .42
2 1887.22 1887.22 1887.22 1882.16
3 2384 .94 2384 .85 2384.85 2383 .46
3 2872.61 2872 .55 2872.565 2805 48
Ehs 3410.80 3409.30 3409.30 —
1 3967.98 3967.67 3967.67 —

way are D = 6493 em ', Fy' = 1894.61 em ™', and G/ = 1288.68 em ™. Eigen-
values and eigenvectors of the matrices H,™ and Hs ™ have been computed using
these values for the potential constants. The results, for N equal to 12, are
presented in Tables IT and III. The calculated energy differences Efz — Iiy* for
N equal to 12, 16, and 20, are given in Table IV along with the observed dif-
forences for the levels (0, ns*, 0°, 0"). However, comparison hetween theory
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and experiment should be made only after the contributions of H}}, have been
computed and incorporated in the calculated values.

V. INVERSION-VIBRATION INTERACTIONS

Having obtained zeroth order energies and wave functions it is now possible
to compute the contributions due to the perturbation H . This calculation is
done in two steps. First, perturbation theory is used to express the energy cor-
rections as functions of the interaction constants F'; and G,(¢ = 1, 3, 4). The
second step is to choose numerical values of the interaction constants in such a
way that a good overall description of the vibration-inversion splitting is ob-
tained.

In the matrix elements of H'}} the integrals over the harmonic oscillator
wave functions are well known. The integrals over the double minimum wave-
functions must, however, be evaluated numerically. The matrix of H}) is
diagonal in the quantum numbers /; and I, and moreover has no matrix elements
connecting + states with — states. Since there are no matrix elements connecting
states of the same unperturbed energy, nondegenerate first- and second-order
perturbation theory can be used to caleulate the energy corrections.

In order to achieve the desired goal of expressing the energy corrections as
functions of the interaction constants alone it is necessary to know the numerical
values of the normal frequencies w; , ws , and ws . Furthermore, in order to do the
numerical integrations over the inversion coordinate 2 one must assign numerical
values to the five parameters ao, o, oo, L, and 2z, . The most recent estimates
of the normal frequencies and equilibrium moments of inertia of NH; and ND;
have been made by Benedict and Plyler (2) and their values for w; , vy, and w,
were used in the present calculations. The equilibrium dimensions u;’ and Us'
were obtained from their estimates of the equilibrium moments of inertia. The
constant @ can be calculated once the quadratic force constants a, b, and ¢ for
the symmetric vibrations are known. These are calculated from the normal
frequencies (wi)wm, , (w1)xpy , and (w2)nu, - For the first two of these frequencies
the values given by Benedict and Plyler were used. The normal frequency
(we)nm; can be calculated from the potential energy function given by kgs.
(14) or (16). One finds

(w2)” = 16DG[1 — (Fo/4Go)"). (31)

The constants Fy and Gy are as yet unknown. However, from the known con-
stants Fo' = Fo + (L)F, + F3 + Frand G = Gy + (Lg)G1 + G5 + Gyan
approximate value for (w;)ym, can be found, assuming the F,, F;, and F, are
much smaller than Fy, and that Gy, G5, and G, are much smaller than (. In
the final cycle of the caleulation an improved value of (w2)nu, derived from the
constants Fo and G, will be used. The energies, including contributions due to
H) , are given by
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N (0 (1
Evib = Eyvib + Evib 5

1) . o 1 - . .
where B4 is the zeroth order energy given by Eq. (26) and ES} is a function

of the six interaction constants F; and G;(7 = 1, 3, 1).
In order to describe the method by which the interaction constants are de-
termined it 1s convenient to introduce the notation

AT 7o o ola Ly g, =y gy [ AV S FYNY VI
AR (nmmang’ng®) = Elmne ny'ng') — K{nmns ng'ng®),

Al PR TR - — Is 1y ; +_ 1 1
Enpeni'ng) = W[E(nmy ng'ng)y + E(nme ng*ng®)).

Thus, AL is the splitting of the pair of levels (ny, no™, 14, ns') and E is their
mean position. For simplicity, the splittings AZ(0, ny, 0°, 0") will be denoted
by A,, . The constants F3 and (75 can be determined from the observed shift in
splitting AE(0 0 1" 0°) — Ag and the observed anharmonicity £(0 1 1' 0°) —
[E(0 1 0° 0% -+ E0 0 1' 0")] since these two quantities turn out to be in-
dependent of Fy, (/;, Fy, and G, . The observed numbers yield

F, = —175.0 em ™" ;= 14.0 em "

Similarly, the shift in splitting AE(0 0 0° 1') — A, and the anharmonicity
E010 1) —[E0 10 0) + E0 00 1] yield a pair of equations in-
volving F, and (7, alone which give

Fy= 297 em ™, (y = —13.8 cm .
The question naturally arises why the two observed shifts in splitting
AE(0 0 10" — Ay and AEO 1 1'0") — 4,

were not used to determine F; and (73 . Unfortunately one finds that the two
equations for 3 and (73 obtained in this way are almost constant multiples of
each other and consequently, with an interaction of the form postulated above,
the two observed splittings with n; = 1 are not, effectively, independent pieces
of information. Two pieces of information of a distinetly different nature are
needed and the observed anharmonicity and one of the observed splittings
satisfy this requirement.

The determination of #; and (7, is subject to a much greater uncertainty than
is the case for Fy, Gy, Fy, and (74 . Three pairs of levels,

(1, 0%, 0°, 0"y, (1, 1, 0° o", and (1, 0, 0%, 1"y,

involving the excitation of the ¢, mode have been observed in the spectrum of
NH; . Unfortunately,

E.(1, 05, 0%, 0") and Evin(0, 05, 0, 2

o R —1 . N . .

differ only by about 120 em™, and these levels may be in Fermi resonance with
. . . . - 2 .

cach other through a cubic potential term of the form Kiugyrs which has been
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neglected in the potential function used in this investigation. Similarly, the
levels (1, 1%, 0°, 0°) may be in resonance with (0, 1%, 0°, 2°) and (1, 0%, 0°, 1")
may be in resonance with (0, 0%, 0°, 3'). (The levels (0, 0% 0°, 3') and
(0, 1%, 0%, 2°) have not yet been observed in the ammonia spectrum.) In
general, one would expect the Fermi resonance to have some effect on the gplit-
tings of the levels involved. Similarly, the observed anharmonicity

E1100) —[EW0100) 4+ E(100 0"
can be expected to involve a contribution due to the Fermi resonance. No matter
whether the observed numbers or estimated values of the unperturbed numbers,

corrected for I'ermi resonance, are used, one has the problem of choosing F; and
@, such that

AE( 100" 0" > A,
AE(110°0% < a;.

It appears that no values of F; and (7; exist, unless third and higher order per-
turbations give significant contributions, which will satisfy these inequalities.
One can fit the splitting of the levels (1 0%, 0°, 0°), in which case the predicted
splitting of the levels (1, 1%, 0°, 0°) is much too large or one can fit the splitting
of the levels (1, 1, 0°, 0), in which case the calculated splitting of the levels
(1, 0%, 0°, 0°) will be too small. In order to obtain a rough estimate of the
values of F; and (; the second alternative was chosen. Although the choice is
quite arbitrary it might be hoped that the Fermi resonance has a smaller per-
centage influence on the splitting of the levels (1, 1%, 0°, 0°) than on the split-
ting of the levels (1, 0%, 0°, 0°). The values of F; and G; obtained in this way
are

Fi= —1440cem™, Gy = 256 cm .

It should be understood that the numbers for F; and G; may be badly in error.
In fact, the dilemma cited above casts doubt upon the validity of the interaction
function between ¢; and & which has been postulated.

Since Fy and Gy are known, the values of the interaction constants can be
used, with the aid of Eq. (17), to calculate Fy and G, . Equation (31) then yields
an improved value for the normal frequency w, for NH; , which in turn can be
used to obtain corrected estimates of the force constants a, b, and ¢. Improved
estimates of the parameters ay, o, 00, L, and xo then can be made. The best
values obtained for these parameters are presented in Table V. As a final step,
the corrections to the energy levels due to HY have been recalculated.

It should be noticed that the magnitudes of the interaction constants F; and
@G are sufficiently small to justify the use of perturbation theory. That this
would be so was not obvious at the beginning of the calculation. Another point
of interest is that HY) contributes a correction to the levels (0, n.*, 0°, 0").



48 WEEKS, HECHT, AND DENNISON

TABLE V
PARAMETERS FOR NH;

w; = 3516.98 em™t : (3m)H2,? = 2.101 X 10720 em X g!'/®
w: = 3590.51 em™! (W 2u,® = 0.7757 X i07% em X gi'®
wy = 1689.11 em~

Py = 1894.61 om G = —13.8 cm™

Gy = 1288.68 cm™! Iy = 1.1441

D = 6493 cm™! sinh oy = 1.1133

Iy = 211191 ¢cm™! sin & = ().264%

Gn = 1275.68 ¢cm ! L = 0.2342

Fy = —144.0 em™! do = 19574 X 1072 em X g!?
G =256 cm™! ws = 1047.98 em™!

F; = —1750 em ! a = 2.2712 X 10° dyne/cm
G = 140 em™! b = 7.0770 X 105 dyne/em
F, =297 cm™! ¢ = 2.0624 X 105 dyne/cm

Since the major contributions to the energy corrections of the lower states
come from matrix elements of Huy with Any, = 0, =1, and since it is estimated
that contributions of matrix elements with ny, = 4 are less important for thesc
states than the effects of third or higher order perburbation terms, only matrix
elements (no HYb |ns’) with ny, n’ < 4 have been retained for simplicity,
and the corrections for states, n. = 3, have not been ineluded. The corrected
energies for the levels (0, n.", 0°, 0°) for n, = 0, 1, and 2 arc given in Table VI.
In this table two sets of calculated energy values are given. Ifor the first of these
the simple form of the inversion potential, assumed up to now in this investiga-

+3¢ been used for the ath
9 uata

s ha % alanilatinny Tha correct ad anersiog
1011, 0as OeCh a

for the zeroth order caleulation. The cted energies
should be compared with the unperturbed energles given in Table I\ It is seen
that the inclusion of the corrections due to H43 improves the agreement he-
tween caleulated and observed energies. However, the ground state splitting
remains too large even after the correction has been applied. With the simple
form of the inversion potential used so far it does not seem possible to decrease
the ground state splitting and still retain a very good overall description of the
remaining (0, n,™, 0°, 0) levels. However, only a very slight modification of the
inversion potential function is needed to give an excellent fit between the ob-
served and predicted levels. In one possible generalization the simple form of the
potential function used so far can he regarded as consisting of the leddlng and
dominant terms in a Fourier expansion of the true potential function. Beiter
approximations might then be obtained by including cos 3z, cos 4x, or higher
terms. It is found that it is possible to fit both the observed n, = 0 and 7. = |
levels with the inclusion of a small negative cos 4x term, that is with the follow-
ing modified form of the effective inversion potential function

V(o) = 26 + FPAGY — 28 cos x + 20 cos 20 — 2u, cos Lo,

COs 20 SR
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TABLE VI
CoRRECTED ENERGY LEVELS Evin(0, no®, 00, 00)
Caleulated (cm™1) Calculated (cm™1)
Simple form of Modified form of
Level inversion potential Observed (cm™) inversion potential
0 0+ 0° 00 0.00 0.00 0.00
00 0°¢° 0.88 0.793 0.79
01+ 00 @ 933.20 932.51 932.52
01 0°0Q° 968.29 968.32 968.33
0 2+ 0° ¢ 1606.70 1597 .42 1588.24
02 06°0° 1877.78 1882.16 1868.25
Calculated (cm™) Calculated (cm™)
Simple form of Modified form of
Splitting inversion potential Observed (cm™) inversion potential
Ag 0.88 0.793 0.79
Ay 35.09 35.81 35.81
As 271.08 284.56 280.01

The caleulated energy values given in the last column of Table VI (which also
include the corrections due to H1) were obtained with the following values of
the parmeters: po = 21.80 em ™, Fy = 1,888.81 em ™, Gy = 1,287.65 cm ™,
and D = 64.71 em™". Comparison with Table V shows that the inclusion of the
small cos 4x term necessitates a slight adjustment of the dominant potential
parameters. With the addition of still further small correction terms it would be
possible to improve the fit of the higher inversion states. No such refinements
however will be made since the main purpose of the present investigation is to
account for the dependence of the inversion splittings on the vibrational and
rotational quantum numbers. For all subsequent calculations therefore only the
simple form of the effective inversion potential (without the cos 4z term) will
be used.

The calculated inversion splitting, as a function of the vibrational quantum
numbers, for levels with 7, equal to 0 or 1 is given by

AE(ny 0 ng® ni*) = Ao — 0.56n; — 0.73n; + 0.22n,
+ 0.27n," 4 0.28n5" + 0.03n’ — 0.17nn, (32)
+ 0.78nm; — 0.18nms — 0.0003%° — 0.00071;°
and
AE(n, 1 nd® ni*) = A, — 16.44n;, — 22.63n; + 6.75n4
+ 5.95n] + 6.21ns + 0.54ns — 3.69n5m, (33)
+ 12.16nm; — 3.60nm, — 0.0055° — 0.0021°
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An inspection of these equations suggests that, regarded as power series de-
velopments in the quantum numbers, they may not be rapidly convergent.
Cubic and quartic terms would have been obtained through third and higher
order perturbation corrections but this lies outside the scope of the present paper.

The caleulated splittings for levels with n; = 0 are compared with the ob-
served =plittings in Table VII. These numbers were obtained from Fgs. (32)
and (33) by setting Ay and A; equal to their observed values 0.793 and 35.81
¢, respectively. The numbers in Table VII are sensitive functions of £,
(75, Iy, and Gy but are essentially independent of Fy and 7y . It is seen that the
calculated and observed results agree reasonably well with the exception of the
splitting of the levels (0, 0%, 0", 2"). It was pointed out above that this pair
of levels may be in Fermi resonance with the pair (1, 0%, 0", 0°) and con-
sequently a good agreement is perhaps not to be expected. Apart from the
exception just mentioned, eleven data have been accounted for with four inter-
action constants. No doubt a still better agreement could be obtained by intro-
ducing further parameters in the potential function and by carryving out the
perturbation caleulation to higher orders. The fact that the caleulated numbers
do not reproduce exactly the data used to determine the interaction constants

TABLE VII

INVERSION-VIBRATION INTERACTIONS: DEGENERATE VIBRATIONS

Inversion splitting

Level Calculated (¢cm™) Observed (cm 1)

001100 0.34 .35

00200 0.46 —

002200 0.46 0.43

000°11 1.04 1.04b. e

00020 1.34 2.24

000022 1.33 .42

001111 0.42 0.57

011100 19.39 18,49

010011 43.10 45.4

01111t 23.00 23.68

Anharmonicity Calculated (cm™!) Observed (cm™)

E011100) — [E(01000) + E(001100)] 32.32 31,08
E010011) — [£(01000¢) 4+ £(000°11)| —15.28 —14.9bd
FO11Y — [E010000 + E00111)] 19.18 21.24

* Used to fit ¥, and G5 .

b Used to fit F; and G, .

¢ A more recent value is 1.01 em~t—see Ref. 5.

¢In view of Ref. 5§, —16.88 ¢m™! is probably better.
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is due primarily to the fact that these constants were obtained using approxi-
mate values of the parameters ao, {o, oy, L, and xy , whereas the numbers given
in Table VII were calculated using improved values for these parameters. Table
VIII summarizes the results for the splittings of states in which the symmetric
¢ vibration has been excited. The agreement is seen to be relatively poor. The
anharmonicity used to determine F; and , should be the one corrected for
Fermi resonance, namely, 20.18 em™ + Cpr(100°0") — Cpe(110°%"), where
Crr 1s the correction due to Fermi resonance. Benedict et al. (4) have estimated
that Crr(100°0°) is 13.5 em™". Since the levels (0, 1%, 0°, 2°) have not been
observed it is difficult to make a reasonable estimate of Cyr(110°0°). For the
purpose of determining F, and (; a somewhat arbitrary estimate of 10 em™
was made for the overall contribution of the Fermi resonance to the anharmonic-
ity.

It might be thought that the discrepancy between the computed and observed
splitting for the pair of levels (1, 0%, 0°, 0") can be attributed entirely to a Fermi
resonance with the pair (0, 0%, O , 20). The effects of Fermi resonance, however,
cannot be the only source of the error since it can be shown (77) that the sum
of the splittings for the states (1, 0%, 0°, 6°) and (0, 0%, 0°, 2°) is unchanged by
the resonance whereas the predicted splittings (Tables VII and VIII) are too
small in both cases. The trouble may lie in the simple form assumed for the inter-
action between ¢, and x. Further experimental information about states such

as (2,0%,0°,0°) or (1,2%0° 0") might help to clear up this difficulty.

VI. VIBRATIONAL ENERGIES OF ND; IN LOWEST APPROXIMATION

As a test of the validity of the inversion potential chosen for the ammonia
molecule it will be interesting to caleulate the set of vibrational levels (0, ny™,
0°, 0°) for NDjs . As is well known, the potential functions for two isotopie spe-
cies of a molecule are identical to a very high order of approximation. This

TABLE VIII
INVERSION-VIBRATION INTERACTIONS: LEVELS WITH %y = 1

Inversion splitting

Level Calculated (cm™") Observed (cm™t)
100000 0.51 0.99
101'0° 0.84 —
100011 0.58 0.86
110°0° 25.32 25.55
Anharmonicity Calculated (cm™) Observed (em™)
EQ110%°) — [E(010°0°) + 7 (100°0°)] 30.63 30.18 cm®
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]

identity of potential function imposes the following relations between the con-
stants of Eq. (14) and those of the corresponding formula for ND; .

(Fo)xpy = (Fo)xny, (Go)xoy = (Go)nwm,,

(Fi)xp, = [(@)xps/ (@) x| (F3) s,

(Gi)wpy = [wi)xpy/ (@) xul(Gi)na, ¢ =1,3,4
(ci)npy = [(wi)npy/(wi)nmg)(€i) N,

Thesce relations follow at onee from the fact that the ratio (/L) is a mass inde-
pendent, dimensionless quantity while the coordinates ¢; , r3 , and 74 are dimen-
sionless small oscillation coordinates related to the w’s in the usual way. The
transformation of the quantity I which occurs in the kinetic energy part of the
Hamiltonian is accomplished through Eq. (31) and is

(D)np, = [(wz)NDg/(wz)NH;;]?(D)NHg (34b)

The normal frequency (w:)ynp, can be obtained through the aid of the observed
w, by applying the product rule

() yo, (w2)wmy _ [M + 3'"}/

M + 3mg

(:wl)NHti (wﬂ)Nﬂs

where A7 is the nitrogen mass, iy the hydrogen mass, and my the deuterium
mass.

The values of the constants for NDy | calculated from Eq. (34), are given in
Table IX along with the constants Fy' and G appearing in the effective one-
dimensional potential. Using these values of the constants the eigenvalues of
the one-dimensional double minimum problem, Eq. (28), (simple form of the
inversion potential), have been found for NDj according to the method de-
seribed in Section IV. In this case, the 07 level lies 394.93 em ™ above the minima
of the effective one-dimensional potential. The energy differences £, — k7
are given in Table X.

TABLE IX
ConNsTaNTs FOR NDj(em™1)

w = 2496.96
wy = 264218
wy = 1226.32

we = 801.01 Fy = —128.8
D = 37.93 G; =10.3
Fo = 2111.91 F, =21.6
Gy = 1275.68 G, = —10.0
Fr= —-102.2 Fy = 1953.61
G, = 18.2 Gy = 1285.08
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TABLE X
ENERGY DIFFERENCES FOR THE LEVELs (0, no%, 00, 0°) of ND; (N X N
TRUNCATION)
Level Energy differences (cm™1)
" . . i . Calculated modi- Estimated
ne Calculated simple form of inversion poiential fied form of perturbation Observed
inversion polcntwl correction
N =12 N =16 N=2 N =16
o+ 0.00 0.00 0.00 .00 0.00
0~ 0.08 0.08 0.08 0.07 —0.02 0.053
1+ 746.90 746.74 746.74 748.18 —-2.0 745.7
1~ 751.20 751.18 751.18 752.61 —-2.2 749 .4
2+ 1359.71 1359.45 1359.45 1347 .44 -5 1359
2~ 1435.70 1435.60 1435.60 1429.39 —4.5 1429
3* 1835.47 1834.98 1834.98 1814.24 1830
3~ 2115.41 2115.08 2115.07 2101.24 2106.60
Eas 2495.39 2485.28 2485 .28 2468 .57 —
4~ 2873.08 2867 .55 2867.55 2851.93 —

The table also gives these energy differences caleulated with the modified
form of the effective one-dimensional inversion potential, Eq. (28m). The poten-
tial constants again follow from those of NH; and have the values: yo = 21.80
em™; Fy = 1947.81 em™; Go = 1284.05 em™; D = 37.80 cm . An exact
calculation of the perturbation due to HJ has not been performed and might

he diffeult to internret sinee there oxist 8 number of resonances. Ho
o€ aimeuwit o LIIULLPILL SINCC UNACre CXist & NUmMDCr Of resonances. aowever, on

the basis of the H) contributions for NH; , a very rough estimate has been
made of their probable values for ND; . These appear in the next to last column
under the heading Estimated Perturbation Correction.

VII. INVERSION-ROTATION SPLITTINGS IN NH;

The observed infrared spectrum of ammonia shows the rotational fine strue-
ture which is characteristic of a symmetric top molecule where, however, the
effective rotational constants are functions of the vibrational quantum numbers
and of the symmetry (+ or —) of the inversion states. The inversion splitting
may therefore be expressed as a function of the rotational quantum numbers

through a formula of the form

A=A+ (BT = BOUW +1) = K1+ (C5 = COHK + -

ATeh o b b st T g d T o AL ad +1: e of exnression 1
Although terms quartic in J and K are often added to this type of expression in

order to obtain a more exact fit to the experimentally observed splittings, the
dominant contribution comes from the quadratic terms. In the present inves-
tigation no attempt will be made to calculate these higher order terms. One of
the consequences of the potential function chosen to represent the ammonia
molecule is that the potential becomes exceedingly high and the wave function
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vanishingly small for all values of the coordinates for which the configuration
departs significantly from pyramidal symmetry. For this reason the total Hamil-
tonian which ineludes both rotation and vibration may be represented to first
order as the sum of the vibrational Hamiltonian already treated and a rotational
Hamiltonian characterizing a symmetrical top. Thus

H = Hg, + (Lol /(P24 P)) + (5T 0P2 (35)

where /1 1s the moment of inertia about the symmetry axisand /  is the moment
of inertia about an axis perpendicular to the symmetry axis. As usual 7, 7,
and P. denote the components of the total angular momentum along the prin-
¢ipal axes of the molecule.

I'rom Table T it can be seen that the rotation-inversion constants B3, — B, ™
and ', — ¢, are very sensitive funetions of the inversion quantum number,
ns , while their dependence on the remaining quantum numbers is much less
pronounced. This fact suggested the following plan of attack. The Hamiltonia

|24 poah SLCQ HHE TOROWILE oL 4 11¢ Tlaiin

of I2q. (35) was initially >1mp11hed by including in Ao and in /- and 1, only
those terms which depend upon the inversion coordinate x. The inversion split-
tings can be calculated with some exactness using perturbation theory. Sub-
sequently the dependence of B, — B, and (,” — ('," on the remaining
coordinates will be examined.

[‘or the purpose of computation it is convenient to rewrite Ifg. (35) ax
) (23]
H=H"+H",
where
o [13) 2 2 s
H" he = HS) he + B, [] JS 4+ O, (36)
(1) - 1, , 2 2 " 2 oy
HY 'he = HG he + (B — BO — JA + (C — C)J2, (37)
and
2 ; 2 N 4
= h;/8xrcl, , (= h/8¢cl, . (38)
The rotational coeflicients B and (' are tunc‘rmm of the inversion coordinate
—1 e
whereas B, = 9.965 em ' and (', = 6.341 em ™" are their equilibrium values as
estimated by Benedict and l’lvle (2 ) [For eonvenience, dimensionless angular
momentin one T 5] | I F A | n(m H
TTOITICTI LWL \p\lalul.\ o T 47 g lt(u = I, l/, ,c/ HAVE Deeil 1Nroaicoed IT vin 18

given by Tq. (‘)1) and Hm, by Eq. (‘)‘))_
f

by

B—B,‘—Blr o Smfo—sintle)
h wosh oy + 1) + sm’kuc)_]

(39)
(()> {o — cos” (L.z)—l

C—-C, = 0[
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where x = {/L is the inversion coordinate and oy is the equilibrium value of the
coordinate o.
The zeroth order Schrodinger equation has solutions

\I/(O) = ‘I/‘(;?L Vi, (40)
E(()) - E‘(,(])})) + BE[J(.I + ]> . KZJ + CBK2, (4’])

where ¢,y is a symmetric top wave function, ¥} is the wave function given
by Eq. (27), and ES) the energy given by Eq. (26). Since the calculation of the
vibration-rotation energies will be restricted to terms at most quadratic in the
rotational quantum numbers J and K, the corrected energies are found to have
the form

0 = By, + Bnms ) [J(J + 1) — K + Conma™nm) K, (42)

where E,;, is the vibrational energy calculated previously.
The quantities of interest in this investigation are the differences of the ro-
tational constants of the (4 ) and (—) levels, namely,

B, — B," = B(mny nyny) — B(nms ngmy),

- +
Cn - C'vn

(Y( nln«fn,gm) — C( nrnfn;;m) .

The calculated values of B,” — B, and €, — (.7, for the levels (0, ny", 0°,
0°, J, K) are compared with the observed values in Table XI. The numbers in
Table XI are differences of the diagonal matrix elements of B — B, and C — C,
when only the inversion coordinate x 13 considered. As stated, it is believed that
these represent the major contributions to the rotational part of the inversion
splitting. A comparison with the observations tends to verify this conclusion
since the agreement is relatively good. In particular it is gratifying to see that
the increase as n, takes on the values 0, 1, 2 and the decrease for n, = 3 is
correctly predicted. Although the agreement is quite good it is far from perfect
as might be expected from the approximate nature of the calculation. It may
be remarked that Sheng et al. (8) and Hadley and Dennison (9) made similar
calculations for ny = 0 and 1 using essentially the same techniques. A compari-

TABLE XI
InversioN-RoTaTiox SpLiTTING IN THE LEVLEs (0 ns* 0° 00 J K)

not (B~ ~ B"eure* (B — Bf),ns (C™ — CHeare (C7 = CM)obs
0* —0.0055 (cm™!) —0.005054 (cm™!) 0.0015 (em™!) 0.001998 (cm™!)
1= —0.17 —0.1817 0.049 0.0721

2+ —0.57 —0.535 0.17 0.231

3* —0.25 —0.3041 0.095 0.1034

s Major contributions only, as given by the simple Hamiltonian (35).
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=on shows their results to be in substantial agreement with ours revealing the
same type of deviations from the experimental data.

Although the differences of the rotational constants depend mainly on the
inversion quantum number, 7., it i clear that they are also funetions of the

vibrational quantum numers n, , n; , and ny . In order to discuss this dependence
it Is convenient to write

Blnns nang) — B(nme ngng) = B(0ns 00) — B(0ns"00) + AB(ninsngng)
and
CCngmy ngng) — Clnms ngng = C(0na00) — C(0n2'00) + AC(nnonany ).

In the present approximation, AB and AC arise from cross terms between oft-

diagonal matrix elements of HY), and off-diagonal matrix elements of B — B,
2 mairix eieme Of Hyvip &Nna on-aiagonal matrix eiements of
and (! — (', . The calculated values of AB cmd AC for levels with n, = 1 are

compared with the observed values in Table XII. It is scen from this table that
the changes in B,” — B, and ;7 — (,7, for levels with ny = 1, as a function
of ny, ny, and ny, are given surprisingly well by the simple Hamiltonian ex-
pressed by Eq. (335). In all cases the signs of AB and AC are correet and, with
the exception of the level (0, 17, 0", 1'), the caleulated magnitudes agree rather
well with the observed numbers. The corresponding numbers for levels with
ny = 0 are shown in Table XITI. The caleulated values of AB and A€ for the
levels (1, 0%, 0%, 0°) undoubtedly should be disregarded since they are strongly
dopondom on the potontml constants F; and (7; which were found earlier to be

N A g +h o
llldlu ([lld/l\ lUl Ut‘h(lll}ll% e ]ll

P J e S R B,
O1-vioratrion SplteHig O uie pure vipnra-

TABLE XI1I

DeprENDENCE OF (B™ — B*) axn ((7 — (") ox ny, ny, AND n; WHEN
n. = 1
Level ABjtlem™ e AB plem™) ACelem™)® ACupalem™!)
1100 0.067 0.0552 —-0.019 —0.0251
01 1' Qv 0.091 0.0833 —0.025 —0.0292
01+ 00 —0.027 —0.009 0.008 0.025
01 11 1t 0.064 0.052 —0.018 —0.018

* Major contributions only, as given by the simple Hamiltonian (35).

TABLE XIII

DEPEXDENCE OF (B~ — BT) anNp ('~ — (") oN n; . n; . AND ny WHEN
fe = 0
Level ABHIC(cm 1y® ABo{em™1) AC aelem™1)* AC lem )
1 0= 00 Qv 0.0049 —0.007 —().0019 0.001
00+ 1t Q0 0.0041 0.0015 —0.0011 —0.0013
00 01t —0.0012 0.099 0.0003 0.009

* Major contributions only, ax given by the simple Hamiltonian (35).
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tional levels (1, 0%, 0°, 0°). For the levels (0, 0%, 1', 0°) the calculated and ob-
served values of AC agree well while the corresponding values of AB agree in
sign and only roughly in magnitude. The calculated and observed numbers for
the levels (0, 07, 0°, 1) are not in good agreement and indeed even the sign of
AB is not given correctly.

A complete agreement between the calculated and observed rotation-inver-
sion constants should not be expected on the basis of a Iamiltonian as incom-
plete as Eq. (35). The fact that the agreement is as good as it is appears to verify
the assumption that Eq. (35) does indeed contain the dominant terms. An
attempt was made to introduce corrections to Eq. (35) for the purpose of ex-
amining the next order of approximation. Details of this attempt are given
elsewhere (71)." Unfortunately a number of difficulties appeared which pre-
vented any substantial progress being made. In the first place the additional
terms which are quite complex in form, contribute mainly through off-diagonal

elements and thus second order perturbation theory must be employed. There

were found to exist a number of near resonances among the interacting levels
which appear to limit the validity of nondegenerate perturbation theory. While
the numerical values for these correction terms did not substantially improve
the agreement between the calculated and observed rotation-inversion constants,
the theory did predict that the fine structure of the resonance perturbed levels
(0,0%,0°,1") and (0, 1%, 0°, 1) should exhibit marked perturbations of the rota-
tion lines. Experimentally (3-5) it is found that the rotation-inversion pattern
for these bands is indeed highly irregular and can not well be expressed by a
power series in the rotational quantum numbers. [t seems probable that further

progress may require lmportant modifications of the inversion potential func-
m .o +1 ae

NP SR ~ ~ A
21TIEIMNenvs lll LIie Hieuiavu v

tion as well as 1
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3 In Ref. (1) an attempt has been made to generahze the complete vibration-rotation
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rotation constants of order B2/w have been examined.



