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Inversion-Vibration and Inversion-Rotation Interactions 
in the Ammonia Molecule* 

An :rt.tempt has been m:& to extend the theory of ammonia inversion i11 

order to account, for the dependence of the inversion splitting on t,he full set ot 

vibrntionnl and rotational quant.um numbers. The potential energy of :rn- 

moniu is approximated t)y x double minimum pot.ent,ial ry({) plus the potrntiul 

of :s system of harmonic oscillators in the remaining five vihrationxl coord- 

nutes. V(c) has been chosen to have t,he form ly(<) = -2F cos (j-/L) + 2C cot‘ 

(2c/L) in which < is xn inversion coordinate and I, a constant. t < ~ 5 Al, I. 
The double minimum wvave functions nre computed nmnerically. Inversiow 

vibration interactions are oht,ained h?; developing the parameters F :tntl G. 

which are regarded as mild functions of the five vibrational coordirmtrs. in :I 

T:lylor expansion in the vibrational coordinstcs. With the exception of thus 

state 2~~” this potential accounts for the dependrncr of the inversion splittings 

on t h<l vibrational quantum numbers of the two doubly degenerate nrodcs Y. 

:rntl ~1 (eleven experimental data are fitted with four empirical interaction cow 

st:tnts). However, the potential fails to describe completely t,he intrtxrtioll 

I~elwen the inversion coordinak and the remaining nondegeneratcl vil)r:l- 

tionnl coordinate wssociat,ed with Y, Since the task of diagonalking the con- 

lllete rotation-inversion Hamiltonian is complicated by the presence of se\‘- 

rr:tt resonances. the rotatiowinversion constants R- - H+ nnd (‘.- - f’+ are 

cnlcultrtcd only from the lowest order vil)r3tioll-rot,:ltion-invrrsioll Il;unil- 

tonian. The calculated constant,s for the pure inversion st,ates )I? = 0, 1. 2. 

:tnd :I and t,he states r~? = 1 in combination with the remaining vil)r:~ti~ln:~l 

motlf9 agree surprisingl?- wll with the wperimrnt:ttly ohservctl v:~l~~rs. 

1. IiXTR( )I>UCTI( )?; 

Itewnt8 investigations of the ammonia spwt~rum hy Benedict c~f nl. ( /--.$ ) 
alld hy Garing et al. (5) have uwovered a wealth of NV data revealing thr dr- 
pcwdcllw of the inversion splitting on the complrtc set of vibrational and rota- 
tional cluantum numbers. In the past,, theorics of ammonia inwrsion hnvc aimed 
at predicting the dependrnw of the splitting OII the clnantum numI~c~r II? asso- 
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TABLE I 

ISVERSION SPLITTING IN NH, (cm-l) 

3,s = Ano + (&- - B,,+) [ J(J + 1) - ZP] + (C,; - C,+)P 

0 0 00 00 O.i93 

0 1 00 0” 35.81 
0 2 00 00 284.74 
0 3 00 00 512.02 
0 0 1’ 00 0.35 
0 0 22 0” 0.43 
0 0 00 1’ 1.01 
0 0 00 20 2.24 
0 0 03 22 1.42 
0 0 1’ 1’ 0.57 
1 0 00 00 0.99 
1 0 00 1’ 0.86 
0 1 1’ 00 18.19 
0 1 00 1’ 45.4 
0 1 1’ 1’ 23.68 
1 1 00 00 25.55 

-0.005054 0.001998 
-O.lSli 0.0721 
-0.535 0.231 
-0.3041 0.1034 
-0.0036 0.0007 

0.048 

-0.012 

-0.0984 0.0429 
-0.191 0.09T 
-0.130 0.054 
-0.1265 0.0470 

0.011 

0.003 

ciated with t,he mode in which the pyramid height changes most drast~ically 
(G-9). In this paper an att’empt is made t,o extend t#he t,heory to include the de- 
pendence of the inversion splitt,ing on t,he full set of vibrational and rotational 
quantum numbers q , n.$*, ni”, a:‘, J, and K, where the designation of quant~um 

numbers is that of Benedict et al. (1) . 
The currently available data on the inversion splitt,ing in AXa are summarized 

in Table I. Although the inversiou splitting depends mainly on t,he quantum 
number n2 , it is clear that it also exhibits a siguificant dependence on the rc- 
making vibrational quantum numbers nl , ni’, and nt4. This leads immediately 
to the conclusion that there mu& exist) interact,ions between t,he inversion coor- 
dinak and the remaining vihrat’ional coordinates. In tbe present paper a scheme 
is proposed for describing and evaluating these int,eract,ions. The potentJial 
energy function for ammonia is represent,ed, in lowest, approximat’ion, by a 
double minimum potential involving t’he inversion coordinate plus t,he potential 
of a syst,em of uncoupled harmonic oscillators involving t,he five remaining vibra- 
t,ional coordinates.’ Interactions are obtained by interpret,ing t)he parameters 
occurring in the double minimum potential as mild funct’ions of the remaining 
vibrational coordinates through t)he use of a Taylor series expansion. In a similar 
fashion the vibrat,ion-rot*ation int,erartions affecting t,hc inversion splitting have 

1 By treating the remaining degrees of vibrat,ional freedom by means of uncoupled 
harmonic oscillators, the usual anharmonicit,ies involving only lhese degrees of freedom are 
ignored. Although these are important for a complet,e description of the spectrum it is fell 
that they will not contribute significantly to the inversion splitting. 
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twn inkodwed and calculated. These lead to munrricsl values which van tw 
compared with the experimentjal quantities R- - Bt and (‘- - CT+. 

11. IXTERKAL COORDIN.4TES AND THE VIHR~4TIOKAL KISII:TI(’ 
EXERGY 

s\s a method of specifying a set of interual coordinates for ammonia it is WII- 
vrnknt~ to start wit’h a Cartesian rrfrrww frame fixed in space and with origilr 
:it’ the wnter of mass of the molecnlc as shown in k’ig. 1. I,tat, .r, , yL , and z, tw 
the Cart8esian caoordinatcs of the ith atom with respect to this refcrrnrc frump. 
The snhscripts i = 1 , 2, and 3 refer to hydrogen atoms and i = 4 to the nitro- 

gen atom. In either of the two t~quilihrium configurations of the molrcwlc~ tlw 
Ilitrogen atom lies on t,he z-axis and the number three hydrogen atom is vhoscw 
to lit, in the y - z plane. The twelve Cartesian coordinates of the four atoms (~~11 
tw rcplwrd by six internal wordinates u, (i = 1, . 0 ) by means of the follow- 

ing schcmr where II) is tht mass of a hydrogtn atom and A/ tht mass of the llit ro- 
gcn atom. 

(1) 

3m 
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FIG. 1. The internal coordinates 

To discover the physical significance of these coordinates consider first the case 
whtw 2~:~ = up = ~5 = us = 0. It is apparent from the equat.ions t,hat ~2 is 
qua1 to t’he height of the ammonia pyramid and u1 equals the distance from a 
hydrogen atom to the center of the hydrogen triangle. All configurations that 



:Irise whrn 7~:~ = u4 = ~~~ = u6 = 0 have pyramidal symmet’ry. That is, t’hc 
hydrogen atoms form an equilateral triangle and tbe t,hree Y--H bond lengtjhs 
arc ccltlal. (h the other hand, thr coordinat’es 7~:~ , ‘u4 , u5 , and 766 rclatc to drvia- 
tiolls from pyramidal symmcky. The coordinates 7~~ and 2~4 describe a c~onfigura- 
tion in which the nitrogen atom remains stationary and the hydrogen atoms 
nudergo displac~emcnts parallel t’o the x - 7~ plane. 7~5 , however, involves a clis- 
plac*rmcllt of t#he nit,rogrn at’om parallel t’o the u-axis with a corresponding tip- 
ping of the hydrogen triangle while u6 represent,s a displacement of tbr nitrogen 

atom parallel t)o t#he x-axis again wit,h a tipping of the hydrogen triangle. l>or 
both 7~5 and 11~ all the H~-~~mH distnnccs remain invariant. 

The two ccluilihrium configuratjions arc given by 

111 = lLl”, 
0 

IL? = f 112 ) u:j = uq = us = 716 = 0, 

whcbrewhtre LL~” and ~6~” are approximately 0.94 X IOPx and 0.38 x 1OP (m, 

rcspectivc4y. Inversion of t)hc molecule t#hrough a plane passing through t hc 
ccnt,er of n~itss and perpendicular t,o tbe symmetry axis is accomplished by means 
of the traIlsformation 

II.2 ----t -‘Up ) I& --f II; (i # 2,. 

‘I’hc intr,rnal caoordinates have hccrl chostn in such a way that for all vulu~ of 
thtx c*oordinatjes and their timr derivat’ives the linear momentum of t,ht molrc~d~~ 
rrmains zc’ro. The angular momrntum also remains esact’ly zero for all motions 
in which the molecule retains pyramidal symmttry, t#hat) is, where 7~:~ = ll4 = 
U& = 1~~ = 0, hut for all values of u1 and uz . For those mot’ions however in which 
t,hr pyramidal symmetry is dcst,roycd, t’hert will existS small terms in the angular 

momentum. 
A\ simpk c*alculation yirlds the vihrat8ional kinetic cinrrgy 

whcrc fi = :irr~dL,~:ll + :{r/l and p( 7~~ , u?) = [I + ( 2p/X~,/ ) ( uJ7~~ j2]. ‘l’hc> syn- 
mctr.v of t#hc aoordinatrs is such that, that leading terms in the Taylor cspansio7l 
of thtt potential func~tion ahollt an equilibrium configuration would hc 
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where pO = [I + (2~/3m.) (u~~/u~“)~], and where the force constants a, b, c, (Y, p, 
and y, defined previously by Dennison (IO), have been used. 

It will now prove convenient to replace the coordinates u3 , u4 , u5 , and ug by 
a new set of internal coordinates Q3% , Q3, , Q4% , and Qhy defined by 

(5) 

The coordinat’es Qsz , &au , Q4= , and Qdy are defined in such a way that, in t,he 
vicinity of the equilibrium configurations, they become the normal coordinates 
describing t,he perpendicular vibrations. Note, however, that in general they 
depend on the t.wo axially symmetric coordinates u1 and ~2 Finally, the co- 
ordinates ILL and ‘~2 are replaced by a pair of coordinates u and { defined by 

(5)~ )“‘ul = a,, sinh c cos {, 

W2 
iti) 

u2 = a0 cash (T sin {, 

where a”’ = H((u~~)’ - :3n~(u~)’ + ~3~~ uzo(pb - ma)/c and u 2 0; -a/2 5 
5‘ 5 r/2. The constant a0 has been chosen so that in the neighborhood of an 
equilibrium configuration 6u = u - uo and SC = [ - {O are proportional to the 
two symmetric normal coordinates of ammonia. In fact, it is easy to show that 
this choice of a0 leads to the relations 

r,~(:l~~ti~’ + ,A&~‘) = I,$zo”(cosh” uu - sin” {o)(&+” + sj-“) (7) 

and 

In these equations u. and &lo are the equilibrium values of u and [ and describe 
the two equilibrium configurations of the molecule. The physical significance of . 

u and 5 is best, seen by inverting Eq. (6). It will be recalled that u2 is the height, 
of the ammonia pyramid and u1 is the distance from a hydrogen atom to the 
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center of the hydrogen triangle. One finds that t,he family of curves in the U, - 

U? plane with CJ const,ant, are ellipses and the family of curves wit,h { constarr t 
are hyperbolas. This is illustrated in Vig. 2. The coordinate { may bc idelltifird 
as an inversion coordinate since t,hc molecule can be inverkd from one eclui- 
librium configuration t80 the other by changing j+ cont,inuously from <,, to -cl, while 
keeping g fixed at, it’s equilibrium value Q 

lipon intjroducing t,he coordinatrs D, {, Qzjz , Qa, , QJr , and &, into I~:(I. ( 2 ) 
one obtains for the vibratjional kinetic energy 

cash (r xinh af - cos { sin pS_ ” + [sill TR,< + cos 7R4]“. 
(!) 1 
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where R3 is a vector with components QSZ , Qsy , and R4 is a vector with com- 

ponent.s Qdl , Qdy . SO far 110 approximations have been made and Eq. (9) is 
rigorous. 

III. THE POTENTIAL ENERGY AND THE VIBRATIONAL HAMILTONIAN 

The present st,ate of development of molecular theory is not sufliciently ad- 
vanced t,o allow an a priori derivation of a potential function for a molecule as 
complex as ammonia. The best that, can be done is to choose a function with 
plausible physical characteristics. The fmu%ion must of course satisfy t,he sym- 
metry requirements and should rontain a number of adjustable parameters 
which will be determined by comparing t#he resultls of the calculation with t,he 
experimental data. 

It may he remarked t,hat,, in t’he six-dimensional coordinat,e space, t,here 
exists a pat,h connecting the two equilibrium configurations for which t,he po- 
tent,ial has the smallest’ set, of values. It’ may be thought of as the lowest pass 
over the potential mountains standing in the way of inversion. A plausible 
choice for t#his path is that ellipse for which t*he coordinat’e [ alone varies, all 
other coordinates remaining zero. The double minimum character of the po- 
tent.ial will t#herefore be described through a suitable funct,ion of {. The usual 
normal vibration properties of t,he molecule furt,her require t#he presence of terms 
quadrat,ic in the remaining coordinates. It will be assumed that these always 
remain near their equilibrium values, SO t,hat, 6u, QS2 , Qsl/ , Qdz , and Qhy are small 
quant,ities. In t’he subsequent discussion these small oscillat)ion coordinates will 
be replaced by their dimensionless counterparts q1 , psz , qal, , ydZ , and ydu , de- 

fined by 

6a = [h/4r”cWlao2(cosh3 (TV) - sin” <O)]li”~l , 

Qiu = ( h/4?r2~~$42y~, , 
(10) 

i = 3,4 7 a = 2, Y, 

where these reduce to (dimensionless) normal coordinates in t,he vicinit,y of either 
equilibrium configuration of the molecule. 

The above considerat,ions have therefore led t)o choosing a pot,ent’ial of the 

following form, 

V/he = Vo(T)/hc + 1/Bc& + ‘&(& + cr23.J + !,dc4(& + q&L (11) 

where cl , c3 , and c4 are caonstants and Vo( <) is a double minimum pot,ential 
with minima at co and -co and a central maximum as { = 0. 

Although the inversion splitting is an extremely sensitive function of the in- 
version potential, the WKB t,reatment of ammonia inversion given by Dennison 
and Uhlenbeck (6) suggests that there may be many mathematical functions 
V”(l) which can account, at, least approximat)ely, for the observed splitting. 
practical considerations, however, limit, the form of Vo(<) to those functions 
for which energy levels and wave functions can be found wit(h reasonable ease. 



A possible c*andidat#e might, he tht> pokntial proposed by alarming ( ‘7). ,Ilthough 

the energy levels for this potential are relatively easy to find the wave flmc+ions 
would be somewhat cumbersome to IIW in a ptlrturbatiolt cAculatiou. In ord(li 
to obt,ain more manageable wave functions, the double minimum potential 

= 2(F + G) foral, < /{I 5 x,L’ ‘IL’ 

will he used in the present illvestigation. In Eel. ( 12 1, F and G are positivcl 
c*onstants such t,hat, F 5 4G and L is a positive roustaut such that I, 5 L2. 

This pot#ent,ial has a central maximum at f = 0 aud minima at { = +<,, \vhcrc 
ws ([(,, I,) = F/N. It has the general form to be cxpe(*ted of an invcrsiou po- 
tcutial in the neighborhoods of lo and -rll and throughout the interval -{,, < 

< < j-u . For / J+ / >> 1 co 1 ‘t ‘,: 1 15 undoubtedly a poor approximation to the t ntv 
ammouia potential, hut, the low-lying energy lcvcls shouod not he aRcc*tcd vq 
much by the behavior of the pot,entjial at) large values of 1 { 1 

Interactions between the iuversion coordinak and the rcmniuiug \-ibratioual 
eoordinatcs are obtained by assuming that tht parametc>rs F and G :LW Ilot truca 
csonntants hut, mild functions of the coordinates q1 , q:ir , q:iv , f/41 , aid (141, . Since 
t,hese coordinat’es represent very small oscillations it should be possible to obtnill 
:I good approximation by expandiug F and 6’ in a Taylor series nud retnilliug 
only the leading terms. In priuciplc, L could be expanded ill a Taylor sc~rit~r 
also. However, an expansioil of I,, /“, and G would yield more uuknow11 coustallt s 
than can he determined by the available data on ammonia. Thus, ill pra(+ice, 
one of t,h(L t,hrec parameters must bc regarded as a genuine (aoustnnt. ‘I’h(l argll- 
meut for cahoosing I, as t h(l constaut (~1 be stated as follows. Thc~ ilrv~~rsio~r 
splitting is expeckd to bc a very sfwsitivc f’r~~rct ioii of tlicx potfqi t ial b:trri(~r 
height aild the separatioil of the potential minima. The height of the CYL~I~ la1 

barrier for the potential given by lj;q. ( 12 1 is 4(:( I - lf’. 4G 1” and is iudepelldCut 
of I,. l;urt,hermore, t,he separation of t,hr potential minima can be show11 to be 
\.t’ry insensitive to the value of I,. Thus, if oue of the thrccx parumc~tc~rs n111st 
1~ regarded as a true c*onst:tntj then I, is probably t,he best c*hoicae. 

The form of t,he expansion of F and G is restricted. lcirst, the potential must 
be invariant, under the symmetry operations of thtl molr~ular point group. This 
excaludes, for example, terms linear in the yaa and qda . Secondly, since> th(b CY)- 
ordinates q1 , ({ - <,,J, qaz , q3!, , yl+ , and q4,, are proportioual to normal coordinates 
in the vicinity of ali equilibriun~ configumtiou, the full potCntia1 must satisfy 
t hc equilibrium conditjions ( dT’/‘dqi j. = 0 and must contain rio cross produc*ts 
iu t’he qutdratjic development about’ an equilibrium c*oufigurution. The c~ombi~la- 
tiou of these two requirements excludes terms linear iu qI I~innlly, siu(*e F and 
C are assumed t#o be mild functions, only t,hr first significant terms in the vibra- 
tionxl caoordinat,es will be retained. 0111 to cluadratic+ tc>rms th(l most, geueral 
form of the expansion of F and (: is 
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F = F. + F1qlZ + Fyra” + F4r4’ + X: COB (2cu/L)rs.r4 , 

G = GU + Glql” + G,r,2 + C:4rJ2 + k: cos (3_o/L)r, .r4 , 
(13) 

where Fo , F1 , Fs , F4 , G” , G, , Gs , (24 , L, and k are true co&an&. Here r3 and 
r4 are vect80rs with components 93% , qzy , and q4 Z , qdy , respectively. As a means 
of keeping the ensuing computations reasonably manageable t’he constant h- 
will be set equal to zero although no real physical justification can be given for 
doing so. Thus one obtains 

Vlhc = !&lq12 + f+3r32 + >&4r4’ 

- 2[Fo + FlqF + F3r: + Fo-421 cos (c/L) 

+ 2[Go + C&q: + G3rs2 + G4r4’] cos (al/L) (14) 

as a possible approximat,e potential energy function for the ammonia molecule. 
Equation (14) is, of course, a very incomplete pot,ential fun&ion. Cubic and 
quart,ic terms could be added. However, unless t’he coefficients of t’he cubic and 
quartic t,erms are strongly dependent on t)he inversion coordinate [, they will 
not make appreciable cont,ribut,ions t’o the inversion splitt’ing. Since the purpose 
of this investigation is t,o examine the inversion split.ting these extra terms will 
not, be included. 

Since q1 , qsr, qa,, , y4= , and 94y reduce to dimensionless normal coordinates near 
t,he equilibrium configurations, the corresponding normal frequencies can be 
found by evaluating the second derivatives of Vjhc at an equilibrium configura- 
tion. Onr finds 

wi = ci - 4F, cos ([o/L) + dG:i cos (2<o/‘L) i = 1, 3, -l. (15) 

Apart, from an addit,ive con&ant, which can be neglected, t.he potential fun&on 
of Eq. (14) can be rewritten as 

V/he = $&Q q12 -I- $$.Q r:s2 -I- ?+I~ r4’ 

+ [2Go’ + F;‘/4Go’] - 2F,,’ POS( c/L) + 2Go’ cos(25-IL) 

+ [-2FdcoWL) - cos(<o/L) + 2G1(cod25_lL) 

- COS(2<“/L) )](y1” - $4) 
(16) 

+ [-2F3kdUL) - co&-o/L)) + 2Gdcod2i-IL) 

- cos(2~o/L))](r:r2 - 1) 

+ [-2F4(cod[/L) - co&-o/L)) + 2G4(eos(2T/L) 

- COS(2(o/L))j(7’4’ - 11, 



Fc,’ = F,, + ;,iF, + F:, + FJ , 
(Iii 

( :I,’ = (II0 + f.#& + (;:I + (;J . 

It is in this form t,hat the potential will be used in the subsequent, cnlculat ioIls. 
It should be observed that this pot’ential has minima at { = *{,, and ql = I’:! = 
rJ = 0 where COY ([o/L) = F,,.I’M;,, These correspond to thr two cvlllilibrilun 

configurations of t.he molecule. 
Having arrived at expressions for the kinetics and potential energies, OIW (WI 

set up the vibrational Hamiltonian for tht molcculc. IGluation ( !)), which ih :t 
rigorous clxpression for the kinetic cncrgy, is somewhat more gcntral t IMII is 
needed. I’:xaminat,ion of this cyuation reveals that the term involvitrg 

[sin 7R3 + cos 7Rljl’ 

gives c&ontributions t,o the inversion split)ting of the order of B,, - B,, +, narnt4y 
of the order of 0.005 cm-’ for st#at’tJs with 11~ = 0, and of the order of 0.2 ~11~~’ 
for states wit,h Q = 1 ( see Table I ). This t)erm will he neglecated in the treat mcll t 
of the inversion-vibration split)ting since this is of the order of 0.8 cnP’ ilt stattas 

with 7i,2 = 0 and 35 cm-’ in st,at,es wit’h n2 = 1. A further simplification arisr>s 
from the assumption t,hat cr never differs very muc*h from u,, Thlls, the \4br:l- 

tional kinetic energy can he approximated by 

I7 1 “,,, = ,4+zu2( cash’ u,, - sin” <) (60” + j”) 

+ ‘2v& + c&x,, + cj:, + c&l. 
(181 

With the intjroduction of the dimt~nsionlvss coordinates dcfil~c~l by I*:(I. ( I o ) 
ad a dimensionless inversion coordinate 

.r = { I, (1’1, = (1, I,), (I!)) 

the qllalltum mechanical vibrational Hamilt.onian bccomrs 

Hvi,, = H$, + H’.!’ \I/> , I 20 i 

where 
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and 

where 

hi(Z) = -2Fi(COSx - ros20) + 2Gi(COS 2x - cos 220) i = 1, $4 (23) 

and 

D = h/[8a2ca02(cosh2 u. - sin’ lo)~“], 

fi(X) = 
sin’(Lx) - sin’ {O 
cosh2 u. - sin2(Lx) ’ 

jxx) = 
2L (cash’ (~0 - sin2 TO) sin(Lx) COS(LZ) 

[cosh2 co - sir?(lx)]” 

(24) 

(25) 

The transcription to quantum mechanics has been made in such a way that the 
volume element in configuration space is simply dq, dx dq,, dq3, dq,, dq4, . It will 
be noted that Z#b is completely separable in the various coordinates and that 
the inversion splitt,ing, to this approximation, depends only upon x. Hi.::, on 
the other hand, cont,ains the interact’ion terms between the inversion and the 
other vibrational coordinates. In the calculations to follow, Hz:; will be treated 
through perturbation methods. This appears justified since the change in energy 
levels (as opposed to the change in inversion splitting) caused by t,he interac- 
t’ions is small compared t,o t,he values of the levels themselves. 

IV. VIBRATIONAL ENERGIES OF NH3 IN LOWEST APPROXIMATION 

Consider the Schr6dinger equation for the unperturbed Hamiltonian 

H$&!; = E”?‘$!’ Vll Vlb . 

As just remarked, this equation is separable and gives 

E:$‘iJhc = E,,+ + w,(n~ + 36) + w,(nz + 1) + ws(% + I), (26) 

a!? = ~L.*~(z)~,,,(q1)~n3z3(q:~= , q3YMn(z4~q42, !l4Y), (27) 

where tin, is a one-dimensional harmonic oscillator wave function while tirL313 and 

~:“’ 

are t,wo-dimensional isotropic harmonic oscillator wave functions. En?* and 
,,* are eigenvalues and eigenfunct,ions of the one-dimensional equation which 

describes t,he inversion. 

H&(X) = W(a), (28) 
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Ht = -D(d”,/d.i”) + [LX’; + (F:2/4G,,‘)] + 2( F,I’ + (:;) 

for 7r < 1 x 1 < n- ?I,,. 

It dots not appear possible to ohtain exact solut’ions of equation (28 ) in terms 
of known functjions. However, for E << T7(n) cigenvalues and eigenfunctions 
may he calculated numerically t,o any desired order of approximation. ‘l’htl 
proper procedure would he t,o oht,ain solutjions in the interval -T 5 .r 5 +a alld 
joill them to the exponential solut,ions in the intervals P < 1 I 1 5 T ?I,. How- 
w-cr, for the levrls of interest in the present’ investmigatjion #(x ) hccomrs vallish- 

iiigly small as 1 s / ---f a so that t,he solutions in the intervals K < j .I’ 1 5 P 21, 
WI tw neglected ent,irely.’ Consequent~ly, only solutions in the interval -r 5 
.r 5 +a need be considered. 

Yinw the opwat.or Hz is unchanged when r is replaced by -.r, t,hc cigcnfunc~.. 
tions must be either even or odd functions of s. The form of H, suggtlsts that 
#(J’ ) should he expanded in a Fourier series in the int’crval --H 2 x 5 +a. .Is 
:I computational proccduw only the first N terms of the l~ourkr c~pansiol~ \\-ill 
tw rctaincd. Thus, the PVCII functions kwnc~ 

and the odd fmwt~ions 

*_ = 5 -!fk sin 1i.r. 
k=l d71. 

(L’!U,) 

Itrgarding these wave functions as N-parameter variational waw func+ons 
one obtains, by minimizing tbr usual variational integral w&h rcspwt to the 

Cl, or II, , the two matrix equations 

N-l 

kz [ ( H, iA- - &+6,iklak = 0, 

2 [(Hz )>. - IL6j,]6, = 0, 

( :10 / 

2 E’or the 0+ level, for example, the function +(s) hits a value of approximately O.OOOOR :II 
s = r rompwed with a. value of 0.94 ttt the maximum of the wave function. 
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TABLE II 

I~~GENVALTTES AND EICENVECTORS OE' Hz+ (12 X 12 TRUSCATION) 

0+ 1+ 

/<>,?+ 
(cm--’ ) 514.55 1451.71 2131.65 2899.49 3925.35 

0.64i154 0.125510 0.437270 -0.131256 0.22-1109 
0.362054 0.495878 0.305225 0.225158 -0.131521 

-0.447480 0.603562 0.177672 0.357973 -0.113213 
-0.467819 -0.073639 0.575400 -0.048483 0.371143 
-0.022430 -0.531707 0.485977 0.269292 0.000916 

0.160871 -0.252730 -0.102389 0.733106 -0.013177 
0.062313 0.097022 -0.304725 0.353268 0.637748 

-0.020628 0.110248 -0.089206 -0.172564 0.578506 
-0.017838 0.009066 0.055148 -0.188563 -0.005545 
-0.00038i -0.019376 0.034769 -0.014796 -0.192113 

0.002506 -0.005476 -0.002021 0.034106 -0.054597 
0.000494 0.001508 -0.005404 0.010167 0.020004 

2+- 3+ 4+ 

where 

+ 
[CO = 1/z/a?r, Uk + = (l/d;) cos x.X, ?Li;_ = (l/&i) sin kr. 

Very good approximatlions to the low-lying eigenvalues and t,he corresponding 
cigenfunctions can he obtained by finding t,he eigenvalues and t,he eigenvect,ors 
of the two N X N matrices Hz+ and Hz , provided ouly that N is sufficiently 
large. The actual diagonalization was performed with the aid of the IBM 703 
digital computer of The University of Michigan Computing Center. 

By trial and error it was found that, a value of N equal to 12 was sufficiently 
large since an increase in N beyond this value leads to insignificant changes in 
those eigenvalues and eigenfunations which correspond to the present’ly ob- 
served levels in the ammonia spectrum. At least, two cycles of computation are 
required to determine the constants D, Fo’, and Go’. Although t,he decomposition 
of the vibrational Hamiltonian into H!ph and H!ji was made in a way that) 
minimizes the contribution of H$L to the levels (0, n2+, O”, O’), this contribution 
is not negligible. A tentative choice of D, Fo’, and Go’ is made by neglecting 
H$i altogether and choosing the t,hree potential constants so that the best 
possible fit to the observed levels (0, nz*, O”, 0’) is obtained. Using the resulting 
eigenfunctions, the approximate contribut,ion due to H$?, is calculated. Then 
the values of D, FO’, and Go’ are adjusted t,o compensate for the contributions of 
H$tA to the levels (0, nz* , O”, 0’). The best values that’ have been found in this 
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TABLE III 

I<IOENVAI,UES AND EIGENVECTORS OF Hz- (12 X 12 TRIX(~.~TIOXI 

II!- o- l- 2- 3- 4 

I:,y 
(cm-‘) 515.49 1487.20 2401.77 3387.16 4482.53 

0.771718 -0.122245 0.368526 

0.523913 04x1142 0.004443 

-0.148653 0. i(ioi54 0.107159 

-0.310924 0.174758 0.69544s 
- 0.072999 -0.313068 0.539354 

0.06636i -0.206113 -0.085132 

0.037308 O.o’L1520 -0.254207 
- 0.003985 0.056222 -0.064203 
-I). OOi251 0.009731 0.040722 
-0.000800 -0.007187 0.021746 
0.000775 - 0 .002637 -0.001966 
0.000206 0 .0003x3 -0.003106 

-U.210582 0.254615 
0 298187 -o.2titi7x:j 

0 188i33 0 .oxs42; 

-0.110052 0.307w7 ? , 

0.448221 -0.1.5141; 
0.717284 0.214i91 

0.178893 0.7”NilO 
-0.205890 I). :<52ti_I:j 
-0.122294 -O.l’9i4!1 

O.OlliG -0. 140X!) 
0.024031 -O.(XJ92lX 
0.003291 0.020130 

,1! ! N = 12 

Energy difference (IX+) 

Calculated 
N = 16 N = 20 

0+ 
0 

0.00 0.00 0.00 

0.94 0.94 0.94 
937.16 937.16 937.16 
972.65 972.65 972.65 

1617.10 1617.0!) 1617.09 
1887.22 1887.22 1887.22 
2384.04 23X4.85 2384.85 
2872.61 287T2.55 2872.55 
3410. x0 3409.30 3409.30 
3967 ,9X 3967.67 3967.67 

O.oll 

o.m:j 
032.51 . . < 
MX :(:2 

1597.42 
lX82.l(i 
2383.46 
2895 4s 

_ 

way are 11 = 64.93 crn~-‘, Fo’ = 1894.61 cm-‘, and G,,’ = 1288.68 cm- ‘. Eig~~~l- 

rdrws and eigenvectors of the matrices Hz+ and Hz- have been compnt,rd lwillg 

t8hew vulues for the potential ronstants. The results, for N equal to 12, arc 
prcwntrd in Tables II and III. The calculat’ed energy differences k$, - I<,,+ for 
N c~~u:tl to 12, 16, and 20, are given in Table IV along with the ohsc~r\q~d dif- 
f~~rc~~ww for the kvrls (0, nzi, 0”, 0”). Howewr, comp:trison f)etwcrll th(hor>r 
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and experiment should bc made only after the cont,ributions of H$A have been 
computed and incorporated in the calculated values. 

V. INVERSION-VIBRATION INTE:RACTIC)NS 

Having obtained zerot,h order energies and wave functions it is now possible 
t,o compute tlhe cont8ributions due to the perturbation H!,!t . This calculation is 
done in two steps. First, perturbat’ion theory is used to express the energy cor- 
rections as functions of the interact,ion constants Fi and Gz(i = 1, 3, 4). The 
second step is t’o choose numerical values of the int,eract,ion constants in such a 
way that a good overall description of t,he vibration-inversion splitting is ob- 
tained. 

In t’he matrix element,s of H$A the integrals over the harmonic oscillator 
wave functions are well known. The integrals over the double minimum wave- 
functions must, however, be evaluat,ed numerically. The matrix of HitA is 
diagonal in the quantum numbers Z3 and Z4 and moreover has no matrix elements 
connecting + states with - states. Since there are no matrix elements connect’ing 
states of the same unperturbed energy, nondegenerate first- and second-order 
perturbat’ion theory can be used to calculate the energy corrections. 

In order to achieve the desired goal of expressing the energy corrections as 
functions of the interact,ion constants alone it is necessary to know the numerical 
values of the normal frequencies w1 , w3 , and wq . Furthermore, in order to do the 
numerical integrations over t’he inversion coordinate z one must assign numerical 
values t,o the five parameters ao , (0 , CQ , I,, and x0 . The most recent estimates 
of the normal frequencies and equilibrium moments of inertia of NH, and NIA 
have been made by Benedict, and Plyler (2) and their values for w1 , cqj , and w+ 
were used in the present calculations. The equilibrium dimensions ~1’ and ~2’ 
were obtained from their estimates of the equilibrium moments of inertia. The 
const,ant a0 can be calculated once the quadratic force constants a, b, and c for 
t,he symmetric vibrat’ions are known. These are calculated from t#he normal 
frequencies (~1)~~~ , (~1)~~~ , and (mz)NH3 . For the first two of these frequencies 
the values given by Benedict and Plyler were used. The normal frequency 
(ti2)NHs can be calculated from the potent,ial energy function given by Eqs. 
( 14) or (16). One finds 

(~2)’ = 16DG,,[l - (F,,/4Go)‘]. (Xl) 

The constants FO and GO are as yet unknown. However, from the known c’011- 

stants Fo’ = PO + (l/i)F1 + F3 + F4 and Go’ = GO + (>i)G, + G3 + GJ an 
approximate value for (w~)~“~ can be found, assuming the F1 , F3 , and FJ are 
much smaller than F. , and t,hat G1 , G’, , and G, are much smaller than GO . In 
t,he final cycle of the calculation an improved value of (~2)~~~~ derived from t,hc 
const.ant,s F. and Go will be used. The energies, including cont,ribut,ions due t,o 
Hii; , are given by 



lV’;vih = fl$i:j) + E:lk , 

whrw E$:, is the zeroth order rnergy given by F:y. (26) and &;A is a ftm&ion 

of the six interaction cwnstants k’, and G;( i = I, 3, 1). 
111 order to describe the method by which t,he interaction caonstauts arc de- 

tc>rminc,d it is convenient t,o introduce the notat,ion 

AE( Illnell::VL:4) = E( nln-n;"rL;il - f~(lLIIL~+R;vL:"), 

Bc rllllall:~5z:" ) = 1~[_K(r~1112~1b$z:4) + E(n111~+1L~31L:4)~. 

'I%IIs, AI!: is the splitting of t,hr pair of Ic\~ls ( n1 , I(?*, n:“‘, n:’ ) and l? is theil 
mean position. E’or simplicity, the splitt)ings AE( 0, II:! , O", 0") will bc> dcwotcld 
by A,,, . The constants Ii’, and G, can bc determined from the obserwd shift in 
splitt#ing AIC(O 0 I’ 0’ ) - A0 and the observed anharmonicity g( 0 1 I1 0" ) - 
[I?( 0 1 0” 0”) + I?( 0 0 1’ O”)] since these two quantit,ics turn out’ t’o bc in- 

tlrpelldellt of F1 ( c:, ( F4 , and G4 The observed numbers yield 

F:{ = - 175.0 cmC’, G:, = 11.0 m-‘. 

Sirnihrly, the shift in splitting AE(0 0 0’ 1’ ) - A0 and the anharmonirit.y 
I?(0 1 0" 1') - @(O 1 0' 0') + I?(0 0 0" 1’ I] yield a pair of equations in- 
volving F4 and G4 alone which giw 

8’1 = “!I.7 (‘II1 , 
I I -I (,l = - 1.3.8 (‘Ill 

The cltlest’ion naturally urisrs why t’he t,wo ohscrvrd shift,s in splitting 

AE(0 0 1’ O’I) - A, and AE(O 1 1’ 0”) - A, 

wcw not used to determiuc F, and G, I~nfortunat~clg one finds that thtl t,wo 
clcluations for F:{ and C& obt)aincd in t,his way are almost1 csonstantS multiplrs of 
each other and consequently, with an int,eraction of the form post)ulated ahovc, 
thr two observed splittings with n:, = 1 are not, tficc+vcly, indcprndcnt picws 
of informat.ion. Two picct s of information of a distiwtly diffcrcnt natuw arc 
nwdcd and the ohscrwd anharmonkity and one of thP ohscrved splittings 
satisfy t)his rrcluircmcnt. 

The drt~ermiuation of F1 and (;1 is suhjwt to a mwh grcakr unwrtainty thaII 
is thr casr for Fcr , (ii, , F, , and (;4 . Thrw pairs of lr\~ls, 

c 1, o”, O”, o”), (1, Ii, o”, o”), and (1, o*, o”, I’), 

involving t#he excitat’ion of the q1 mode have b:wl otwrvcd in the sprc*t,rum of 
NH, . ~Tllfortlulat,ely, 

E:viI>(l, O’, On, 0”) aud fSv',il,(O, O*, O", 2") 

differ only by abolit 120 (*K’, and t’hesc 1~1~~1s may tw in Iccrmi rcsonanw with 
cw*h othcbr t)hrough a cuhica pokntial term of the form K144q1r42 whicah has bren 
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neglected in the potential function used in this investigation. Similarly, the 
levels (1, I*, O”, 0’) may be in resonance with (0, l*, O”, 2’) and (1, O*, O”, 1’) 
may be in resonance with (0, O*, O”, 3’). (The levels (0, Of, O”, 3’) and 
(0, l*, O”, 2”) have not yet been observed in the ammonia spectrum.) In 
general, one would expect the Fermi resonance to have some effect on t,he split- 
tings of the levels involved. Similarly, the observed anharmonicit,y 

_R(l 1 o” 0°) - [8(0 1 o” 0”) + B( 1 0 o” O”)] 

can be expected to involve a contribution due to the Fermi resonance. 50 mat,ter 
whether the observed numbers or estimated values of the unperturbed numbers, 
corrected for Fermi resonance, are used, one has the problem of choosing F1 and 
G1 such t’hat 

AE’( 1 0 0’ 0’) > Ao , 

AE’( 1 1 0’ 0’) < A1 . 

It appears that no values of F1 and G, exist, unless third and higher order per- 
turbat’ions give significant, contributions, which will satisfy these inequalities. 
One can fit the splitting of the levels (1 O*, O”, O’), in which case the predicted 
splitting of the levels (1, I*, O”, 0’) is much too large or one can fit the splitt’ing 
of t,he levels (1, l*, O”, 0’)) in which case the calculated splitting of the levels 
(1, O*, O”, 0’) will be too small. In order to obtain a rough estimate of t,hc 
values of F1 and G1 the second alternative was chosen. Although t’he choice is 
quite arbit,rary it might be hoped that the Fermi resonance has a smaller per- 
centage influence on the splitting of the levels (1, l*, O”, 0’) than on the split- 
ting of the levels ( 1, O*, O”, 0”). The values of F1 and G1 obtained in this way 
are 

F1 = -144.0 cm-‘, G, = 25.6 cm-’ 

It, should be understood that the numbers for F1 and G1 may be badly in error. 
In fact’, the dilemma cited above casts doubt upon the validity of the interact’ion 
funct,ion between (I~ and x which has been postulated. 

Since Fo’ and Go’ are known, the values of tbe interact,ion constants can be 
used, with the aid of Eq. ( 17)) t)o calculat8e Fo and Go . Equation (31) then yields 
an improved value for the normal frequency w2 for NH, , which in turn can be 
used to obtain corrected estimates of the force constants a, b, and c. Improved 
estimates of the parameters au , (0 , go , II, and .Q then can he made. The best 
values obtained for these parameters are presented in Table V. As a final step, 
the corrections t,o the energy levels due to H$L have been recalculated. 

It should be noticed that the magnitudes of the interaction constants Fi and 
Gi are sufficiently small to justify the use of perturbat’ion theory. That this 
would be so was not obvious at the beginning of the calculation. Another point 
of int,erest is that H$k contributes a correction to the levels (0, ,n$, O”, 0”). 
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TAB],+; \’ 

PARAMETERS FOR NH:, 

WI = 3516.98 cm-1 (:~,t,)L’2ulo = 2.101 x 10-Z” cm x g”” 

Cd’, = 3590.51 cm-’ (p)‘%cs” = 0.5757 X 1OP” cm X g”2 

WI = 1689.11 cm-l 

F,; = 1894.61 cm-l 
G,)’ = 1288.68 cm-l 
I) = 64.93 cm-l 

P, I = 2111.91 cm-’ 
G,, = 1275.68 cm L 
E’, = -144.0 cm-’ 
G, = 25.6 crxl 
P:, = -175.0 cm I 
G, = 14.0 cm-l 
F , = 29.7 cnlr’ 

G.1 = -13.8 cm-’ 

SII = 1.1441 
sinh 0,) = 1.1133 
sin r,, = 0.2618 
I, = 0.2342 

Cl,, = 1.9574 X lo-“’ cm X p 
w: = 1017.98 cnlrl 
(1 = 2.2712 X 106 dyne/cm 
h = 7.0770 X 105 dyne/cm 
C = 2.0624 X lo5 dyne/cm 

Since the major contribut,ions to the energy corrections of the lower states 
come from matrix elements of II!:; with An2 = 0, f 1, and since it is estimated 
that contribut8ions of matrix elemenk wit,h n2 2 4 are less important, for these 
stat#es than t,he effects of t#hird or higher order perburbation krms, only matrix 
element,s (~1 Hii; 1~~2’) with ‘n, , n2’ < -I have been retained for simplkity, 
and t’he rorrect’ions for states, ‘n2 = 3, have not’ been included. The c*orrrcted 
energies for the levels (0, nz*, 0”, 0’) for n2 = 0, 1, and 2 arc given in Table VI. 
In this table two sets of calculated energy values are given. For the first, of these 
the simple form of the inversion potential, assumed up t#o now in this invrst,iga- 
tion, has been used for the zeroth order calculat’ion. The correct#ed energies 
should be compared with t,he unperturbed energies given in Table IV. 1 t is seen 
t,hat, the inrlusion of t#he corrections due to H$b improves the agreement be- 
t#wccn csalculated and observed energies. However, the ground st,atc splitting 
remains too large even afkr the correction has been applied. With the simple 
form of t,he inversion potential used so far it does not seem possible t,o decrease 
t#he ground st’ate splitt,ing and still retain a very good overall descript,ion of t#he 
remaining (0, n2+, O”, 0’) levels. However, only a very slight modificat.ion of t#he 
inversion potential function is needed to give an excellent, fit, bet,ween t,hr ob- 
served and predict)ed levels. In one possible generalizat,ion t,he simple form of t,hc 
potential function used so far can be regarded as consisting of the leading and 
dominant8 terms in a k’ourier expansion of the t,ruc potent,ial functioll. I+tter 
approximations might, t,hell he obtained by inrluding cos Xr, cos 4a, or highcl 
t’crms. It is found t’hat it is possible to fit. both t,he observed ‘n2 = 0 and n2 = I 
levels with t,he inclusion of a small negative eos -1~ term, t#hat is wit,h the follow- 
illg modified form of t,hr effec+ivc inversion pot,ential fllllctioll 

I’,,‘(X’I = LX;,’ + F:12;‘1Go’ - “F,,’ (‘OS .r + “G,I’ (‘OS 2.r - I&L” (‘OS 4.r. (L’Xt,r ) 
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TABLE VI 

CORRECTED ENERGY LEVELS Ea(O, Q, O”, 0’) 

Level 

Calculated (cm-‘) 
Simple form of 

inversion potential Observed (cm-‘) 

C&&ted (cm-l) 
Modified form of 

inversion potential 

0 Of 00 00 0.00 0.00 0.00 
0 o- 00 00 0.88 0.793 0.79 
0 I+ 00 0” 933.20 932.51 932.52 

0 l- 00 00 968.29 968.32 968.33 
0 2+ 00 00 1606.70 1597.42 1588.24 
0 2- 00 00 1877.78 1882 16 1868.25 

Splitting 

Calculated (cm-l) 
Simple form of 

inversion potential Observed (cm-l) 

Calculated (cm-l) 
Modified form of 

inversion potential 

A0 0.88 0.793 0.79 
AI 35.09 35.81 35.81 
& 271.08 284.56 280.01 

The calculated energy values given in the last column of Table VI (which also 
include the corrections due to H$) were obtained with the following values of 
the parmeters: ~0 = 21.80 cm-‘, Fo' = l&38.81 cm-‘, Go’ = 1,287.65 cm-‘, 
and D = 64.71 cm-‘. Comparison with Table V shows that, the inrlusion of the 
small cos 4z term necessitates a slight adjustment of the dominant potential 
parameters. With the addition of st’ill further small correction terms it, would be 
possible to improve the fit of the higher inversion st,ates. K-0 such refinemcnk 
however will be made since the main purpose of t’he present’ invest,igation is to 
account for t,he dependence of the inversion nplit,tings on the vibrational and 
rotational quantum numbers. For all subsequent, calculations therefore only the 
simple form of t,he effective inversion potential (without, the cos 4s term) will 
be used. 

The calculated inversion splitting, as a function of the vibrational quant,um 
numbers, for levels wit’h n2 equal to 0 or 1 is given by 

AE(nl 0 n3 ” ,ni4) = A0 - O..%nl - 0.73~23 + 0.22nh 

+ 0.27nl’ + 0.28~’ + 0.03n: - 0.17~~3~~4 (32) 

+ 0.78n1n.? - 0.18nPx4 - 0.0003&” - 0.0007/4” 

and 

AE(nl 1 nil ni4) = A1 - 16.4411, - 22.63n3 + 6.7.5n4 

-I- .5.95n12 + 6.21nS’ + 0..5in42 - 3.69n3n4 (33 ) 

+ 12.16nlna - 3.60n,n4 - 0.005/3? - O.OOZSf 
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Level Calculated (cm+) OtJservetl (cm ‘1 

001’0” 0.34 0 35 
002”O” 0 4i 
002W’ 0.46 0, -43 
0OO”l’ 1.0-t 1 .0-I”* c 
OOu”2” 1.44 2.24 
W0°2” 1 :<:I I A2 
001’1’ 0.12 0. 57 
01 1 ‘0” 19 3!) lS.#l 
OlO”1’ 41.10 45.4 
011’1’ 23.(N) 2:3 6s 

_ .~~.~~ 
Anharmonicit~ 

E(OIl’O~) - [E(OlO”O”) + E(OO1’0~)] 
E101001’i ~ [J!?(olo~ocl + ECOOO”1’)l 
B~OII’I’) - [E(O10”0~) + E(OO1’l’)j 

:& ITsed to fit F, and G, 
” I’sed to iit F, and G, 

Calculated (cm-‘) Olmrvetl (cm’, 

32.32 3 1 98’~ 
-15.2s -_14,‘,‘>.” 

19.1s ‘1 .‘-I 
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is due primarily to the fact t’hat these constants were obtained using approxi- 
mate values of the parameters a0 , to , Q , L, and ~0 , whereas t’he numbers given 
in Table VII were calculated using improved values for these parameters. Table 
VIII summarizes the results for t,he splittings of states in which the symmrt,ric 
41 vibration has been excited. The agreement, is seen to be relatively poor. The 
anharmonicity used to determine F1 and G1 should be the one correct,ed for 
Fermi resonance, namely, 20.18 cm-’ + C,,( 100”O”) - CFR( llO”Oo), where 
C,, is the correction due t,o Fermi resonance. Benedict, et al. (4) have estimat#ed 
that C,,(lOO”O”) is 13.5 cm-‘. Since t’he levels (0, l*, O”, 2’) have not, been 
observed it is difficult to make a reasonable est,imate of C,,( llO”Oo). For the 
purpose of determining F1 and G, a somewhat, arbitrary estimat#e of 10 cm-’ 
was made for the overall contribnt’ion of the Fermi resonance to the anharmonic- 
ity. 

It might be thought that t#he discrepancy between the computed and observed 
splitting for t,he pair of levels (1, O*, O”, 0’) can he attributed entirely t)o a Fermi 
resonance with the pair (0, O*, O”, 2”). The effects of Fermi resonance, however, 
cannot be the only source of the error since it can be shown (11) that the sum 
of the splittings for the states ( 1, O*, O”, 0’) and (0, 0*, O”, 2’) is unchanged by 
t,he resonance whereas the predict’ed splittings ( Tables VII and VIII ) arc too 
small in both cases. The trouble may lie in the simple form assumed for the inter- 
action between p1 and I. Further experimental informat,ion about stat,es surh 
as (2, O*, O”, 0’) or (1, 2*, O”, 0’) might help to clear up this difficulty. 

VI. VIBRATIONAL ENERGIES OF ND, IX LOWEST APPROXIMATION 

As a test, of the validity of t,he inversion potential chosen for the ammonia 
molecule it will be interest’ing to calculate t,he set of vibrational levels (0, ,YL~*, 
O”, 0’) for ND, . As is well known, t’he potent’ial funct,ions for two isotopic spe- 
cies of a molecule are ident)iral to a very high order of approximation. This 

TABLE VIII 

INVERSION-VIBRATIOS INTERACTIONS: LEVEI.S WITH ~1, = 1 

Inversion splitting 
_ 

Level Calculated (cm-l) Observed (cm-l) 

100”0° 0.51 0.99 
1Ol’OO 0.81 - 

10001’ 0.58 0.86 
1 loOoO 25.32 25.55 

Anharmonicity Calculated (cm-l) Observed (cm-l) 

_E?(llOW) - [B(OlO~O~) + B(lOoooa)J 30.63 30.18 cm& 

8 Including a somewhat arbitrary correction of 10 cm-1 for Firmi resonance. 
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identity of potential function imposes the following relations between the con- 

stmts of Eq. (14) and those of t,he corresponding formula for ?JD, . 

(Fo)m, = (F”)h?I,, (~~“)ND, = C(“I”hh, 
(FJND:, = [(Wi)~iD1/(Wi)SH:,I(FI)SH:~ 
((:hl = [(~j),,,!(~i)s,,l!~~i),,, 

(::&I 1 
i= 1,3,4. 

Thrw relations follow at onw from the fact that the ratio (c/L) is a mass inde- 
pendent, dimensionless quant,ity while bhe coordinates (I~ , 7-3 , and r4 are dimen- 
sionless small oscillation coordinaks relat’ed t#o the w’s in the usual way. The 
transformation of the quant,it,y D which occurs in t,he kinetic energy part of the 

Hamiltonian is accomplished through Eq. t.31 j and is 

CD )NDs = [(~~)NDB/!w.?)NH:~I’(D)NH~ ( :&Lb ‘, 

The normal frequency ~~~~~~~~ can he obtained through the aid of the observed 

w1 by applying t,he product rule 

\vhwc Jf is t,he nitrogen mass, wH the hydrogen mass, and UZ~ the deutcrium 
IlM,SK. 

The values of t’he constants for ED, , calculated from Ey. (3-l ), are given in 
Table IX along with t,he constants Fo’ and Go’ appearing in the ef3’wtivc one- 
dimensional potential. Using t)hese values of the constjants the eigenvalues of 

the one-dimensional double minimum problem, Ey. (ii%), (simple form of the 
inversion potenbial), have hecn found for SD, according to the met,hod de- 
wrihcd in Section IV. In t)his case, the O+ level lies 894.93 cm-’ above the minima 
of t,hc effect-ive one-dimensional potent)ial. The energy differences &z, - I?‘,,’ 
art‘ given in Table X. 

TABLE IS 

w = 801.01 F, = -128.8 
D = 37.93 G:i = 10.3 
F” = 2111.91 fi, 1 = 21.6 
Go = 1275.68 G, = -10.0 
F, = -102.2 Fn’ = 1953.61 
G, = 18.2 Go’ = 1285.08 
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TABLE 2C 

ENERGY DIFFEREKCES FOR THE LEVELS (0, n?*, O”, 0°) of ND: (N X AT 

TRUNCATION) 

Level Energy differences (cm-l) 

n** Calculated simple form of inoersion pofenlial 

N = 12 .V = 16 ‘V = 20 

Calcrrlafed modi- Esfimated 
fied form of perlurbation Observed 

inversion polenfiol corre~fiun 
AV = 16 

0+ 0.00 0.00 0.00 0.00 
O- 0.08 0.08 0.08 0.07 
If 746.90 746.74 746.74 748.18 
l- 751.20 751.18 751.18 752.61 
2+ 1359.71 1359.45 1359.45 1347.44 
2- 1435.70 1435.60 1435.60 1429.39 
3+ 1835.47 1834.98 1834.98 1814.24 
3- 2115.41 2115.08 2115.07 2101.24 
4+ 2495.39 2485.28 2485.28 2468.57 
4- 2873.08 2867.55 2867.55 2851.93 

0.00 
-0.02 0.053 
-2.0 745.7 
-2.2 749.4 
-5 1359 
-4.5 1429 

1830 
2106.60 

The table also gives these energy differences calculated with the modified 
form of the effective one-dimensional inversion potential, Eq. (28~). The poten- 
t,ial const’ant’s again follow from those of NH, and have the values: ~0 = 21.80 
cm-’ ; Fo’ = 1947.81 cm-l; Go’ = 1284.05 cm-‘; D = 37.80 cm-‘. An exact 
calculation of the perturbation due to H!:!, has not, been performed and might 
be difficult to interpret’ since there exist’ a number of resonances. However, on 
the basis of the H$i contributions for XH3 , a very rough est’imate has been 
made of their probable values for SD, . These appear in the next to last column 
under the heading Estimated Perturbation Correction. 

VII. INVERSION-ROTATION SPLITTINGS IN NH3 

The observed infrared spectrum of ammonia shows the rotational fine struc- 
ture which is characteristic of a symmetric top molecule where, however, the 
effective rotational constants are functions of the vibrational quantum numbers 
and of the symmetry (+ or - ) of the inversion states. The inversion splitting 
may therefore be expressed as a function of the rotational quantum numbers 
through a formula of the form 

A,t = A,: + (h’,- - &+)[J(J + 1) - K2] + (c,h- - c,+)@ + *. . . 

Although terms quartic in J and K are often added to this type of expression in 
order to obtain a more exact fit to the experimentally observed splittings, the 
dominant contribution comes from the quadratic terms. In the present’ inves- 
tigation no attempt will be made to calculate t’hese higher order terms. One of 
the consequences of the potential function chosen to represent the ammonia 
molecule is that the potential becomes exceedingly high and the wave function 



\unishingly small for all values of the coordinates for which the cwnfiguratio~~ 

departs signifirsntjly from pyramidal symmetry. I’or this reason the total Hamil- 
t onian which includes both rotation and vibration may hc rcprrscntcd to first 
order as the sum of the vibrational Hamilt’onian already twatrd and :I rotat ional 
Hamiltollian characterizing a symmrtricnl top. Thl1.q 

H = H,,,, + (‘;I, r(P,’ + I’,;‘) + ( ‘&i/,:2, / ::.i ) 

wtww 1, is the moment of inc& about tht> symmetry axis at\d / is tht) momtwt, 
of iwrtia about an axis pcrpcwdkular to the symmetry axis. -1s r~s~~nl I’, , I’,, , 
a11d I’, dcnotr the cwmponcwts of the total ang~~lar moment~um along 1 hc pritl- 
~ipal axes of the molwulc. 

I’rom ‘I’ahlc T it can hc seen that tht rotatioll-ilir~~rsioil constjants W,,- - H,,’ 

;llld (‘,,_ - c,;+ arc very sensitive fruwtions of the inversion quantum number, 

)1,> ) whiltb their depcndcwcc on the rrmnining cluantum numbers is much less 
prono\uwrd. This fact suggested the following plan of attack. The Hamiltoniatl 
of I<([. (:S) was initially ,simplified hy inc.lltding in H,i,, and in 1 aild I, oni? 
those tclrms which dcpcnd upon t)hc invrrsion coordiilatc’ .r. ‘l’ho illvcrsioll split- 
ritrgs (WI he cnlr~ktted with some cxactnws using pcrturhation thwq. Suh- 
wcluciltlp thr dtptwdrnw of K,, - B,,+ aid C’,, - f’,,& OII thtl rwn:ritling 
cwordinatw mill he rxnmincd. 

I”or the purpow of cw~~putation it is convenicwt to rcwritrt 11:(1. (2.5 ) :LS 

f[ = fp + N”‘, 

whew 

H”“:hc = H:$.hc + H,.[J” - .I,“] + (‘,,I:‘, ( :iti ) 

H”’ hc = H$,‘, h,c + ( R - R, ,[J’ - .1:‘] + ( C‘ - (i,,)J:', i Xi) 

:u1tl 

n = h/8aYcI, ( (’ = 1, ,‘3~“,./~ . ( 38 ) 

‘lb rotational cwefi&nts B and C’ arc f~uwtions of the inversion cwordillatcl 
whrrrus 13, = 9.9fi5 cm -’ and C’,. = 6.841 cam ’ are t hrir rquilibrium valurs as 
estimated hy Renrdict and I’lykr ( 2). For convrnirllcr, dimensionlrss allgllar 
monwntum oprrators .I, = f’, s fi C (Y = x’, y, x ) havr hem introduwd. H(.y,‘, is 
givrn by IGq. (21) and H:.::, by E:q. (22). 

If the drgrncrutc~ frrqucnc~ies are not rxritrd thr rotational constants arc’ gsivc~11 
hy 
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where s = f/L is the inversion coordinate and go is t,hc equilibrium value of the 
coordinate C. 

The zeroth order Schradinger equation has solut,ions 

*CO’ (0) = *vi11 $.JK.M 7 (JO) 

E”“’ = E$, + B,[J(J + I ) - K2] + c& (41) 

where #IK.U is a symmetric top wave fun&on, q$‘L is t#he wave function given 
by Ey. (27)) and Ezj, the energy given by Eq. (26). Since t,he calculation of the 
vibration-rotaCon energies will be restrict,ed to t,erms at most quadratic in the 
rotational quantum numbers J and K, the correct,cd energies are found to have 
t,he form 

E = lC:vib + B(Tx~~~+TA~~~)[J(J + 1) - K*] + C(TI~TZ~*~I~TL~)K’, (-12) 

where h’vib is the vibrational energy calculated previously. 
The quantities of interest in this invest’igat’ion are the differences of t,he ro- 

t,at’ional constant,s of the (+) and ( - ) levels, namely, 

B,,- - B,+ = B(ngz-nar~4) - B(ngxz+rm), 

c,,- - (‘,,+ = c(?lln2-?2&) - C( nln*+n3n4). 

The calculated values of B,,- - B,,+ and C,,- - GIL+, for the levels (0, Q*, O’, 
O”, J, K) are compared with the observed values in Table XI. The numbers in 
Table XI are differences of t.he diagonal matrix elements of B - B, and C - C, 
when only the inversion coordinat,e .r is considered. As stated, it, is believed that 
these represent the major contributions to the rot,ational part’ of the inversion 
splittSing. A comparison with the observations tends to verify this conclusion 
since the agreement is relatively good. In part8icular it, is grat,ifying to see that 
the increase as n2 takes on the values 0, I, 2 and the decrease for n2 = 3 is 

correct,ly predicted. Although the agreement is qu&e good it is far from perfect 
as might be expected from the approximate nature of the calculation. It, may 
be remarked that Sheng et al. (8) and Hadley and Dennison (9) made similar 
calculations for ~1~ = 0 and 1 using essent#ially tbc same techniques. A compari- 

928 (B- - Bf),,&,,” (B+ - B+L,h, (c- - C+)deil cc- - CfLlhr 

0+ -0.0055 (cnl-I) -0.005054 (cm-l) 0.0015 (cm-‘) 0.001998 (cmdl) 
1’ -O.li -0.1817 0.049 0.0721 
2’ -0.5i -0.535 0.17 0.231 
3’ -0.25 -0.3041 0.095 0.1034 

a Major contributions only, as given by the simple Hamiltonian (35). 



3i WEI?K$, HECHT, AND DESMSOS 

Level AB,.:,,,.(Cnl -1: .m,,,,(cm-‘) 

1 1 0” 0” 0,OAi 0.0552 

IJ 1 I ’ 0” 0.091 0 ,0x:x? 

0 1’ 0” 11 -0.02i -0.000 

0 l- 1’ 1’ O.Oti4 0.032 

-0.019 -0.0251 

-0.025 -0.029” 

0.008 0.025 

-0.018 -0.018 

1 0’ 0” 0” 0 uw!) -0.007 --o.OOl!) O.(HJl 

(JO: 1'0" 0.0041 0.0015 -0.0011 -O.o(Jl3 

0 0; (1” 1’ -0.0012 0 OR9 0 .000~3 0.000 

:’ AI:~jor cwrltrihutions only , :ts givrn 1)~ thy simple Hnmiltonian 135). 
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tional levels (1, O*, O”, 0’). For the levels (0, 0*, I’, 0’) the calculat,ed and ob- 
served values of AC agree well while t’he corresponding values of AB agree in 
sign and only roughly in magnitude. The calculated and observed numbers for 
the levels (0, O*, O”, 1’) are not in good agreement’ and indeed even t,he sign of 
AB is not given correctly. 

A complet’e agreement between t’he calculated and observed rotation-inver- 
sion constants should not be expected on the basis of a Hamiltonian as incom- 
plete as Eq. (3.5). The fact’ t,hat the agreement is as good as it is appears to verify 
the assumption t,hat Eq. (3.5) does indeed contain the dominant terms. An 
attempt was made to introduce corrections to Eq. (3.5) for t.hc purpose of ex- 
amining the next order of approximatjion. Details of this att,empt are given 
elsewhere (11) .3 Unfortunately a number of difficulties appeared which pre- 
vented any substantial progress being made. In the first place the additional 
terms which are quite complex in form, contribute mainly t,hrough off-diagonal 
elements and thus second order perturbation theory must be employed. There 
were found to exist a number of near resonances among the intaracting levels 
which appear to limit the validity of nondegenerate perturbation theory. While 
t,he numerical values for these correction terms did not subst,antially improve 
the agreement between the calculated and observed rotation-inversion constants, 
the theory did predict, that the fine structure of the resonance perturbed levels 
(0, O*, O”, 1’) and (0, l*, O”, 1’) should exhibit marked perturbations of the rota- 
tion lines. Experimentally (3-5) it is found that t’he rotation-inversion pattern 
for these bands is indeed highly irregular and can not well be expressed by a 
power series in the rot,ational quantum numbers. It’ seems probable that further 
progress may require important modifications of t.hc inversion potential func- 
tion as well as refinements in the m&hod of calculation. 

RECEIVED: March 24, 1961 
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