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1. Introduction. In this report I will try to summarize some work on 

graph theoretical methods in classical statistics, which will appear in a 

review article by the author and G. W. Ford *). On this occasion I would 
also like to make a plea for a more standard terminology in the use of 
graphs in various approximation methods and it seems best to stick as 
close as possible to the accepted mathematical terms. 

a. Let me begin therefore with some basic notions connected with graphs. 

A (linear) graph is a collection of points with lines between certain pairs of 
points. In general there may be more than one line connecting two points; 

also loops may occur. If any two points are connected by at most one line 
and if there are no loops present, we call the graph simple. Otherwise the 
graph is called not simple. (See fig. 1) 

4% 
(b) 

Fig. 1. a) Simple linear graphs b) Not simple graphs 

A subset of points which are joined successively by lines is called a path 
connecting the initial and final points. If the final point coincides with the 
initia1 point we speak of a cycle. A connected graph is one in which there is at 
least one path between any two points. Otherwise the graph is disconnected. 

*) G. W. Ford and G. E. Uhlenbeck: The theory of linear graphs with applications to the theory 

of the virial development of the properties of gases. To appear in : Progress of Statistical Physics, 

Vol. I. All references can be found there. 
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Mostly it is sufficient to study the connected graphs. The degree of a point is 
the number of lines incident upon it. A graph is directed if directions are 
specified along the lines; usually the direction is indicated by an arrow. 
Euler grafihs are directed graphs with as many lines coming into, as out of, 
each point. Directed graphs are of importance in e.g. quantum field theory. 
An articulation point is a point which, if omitted, would cause the graph to 
fall into disconnected parts. A graph without articulation points is called a 
star. (See fig. 2) 

Fig. 2. a) Graph with articulation points b) Star. 

A general connected graph can be considered as built up out of the 
constituent stars hung together in the articulation points. If the constituent 
stars are just single lines we call the graph a Cayley tree. If the stars are 
polygons then we will speak of a Husimi tree. If more general types of stars 
are used we will speak of star trees. A pure star tree is one which consists of 
only one type of stars; otherwise the star tree is mixed. Of course if no 
restrictions are made on the type of stars, then the notions of star tree and 
connected graph are synonymous. 

b. Graphs always appear as a symbolization of the different terms in a 
successive approximation method and the number of points usually de- 
termines the order of the approximation. In each successive approximation 
method one can therefore distinguish two problems: 

1. The combinatorial problem : how many “different” terms are there in 
nth order, or how many “different” graphs of n points are there. 

2. The integral problem: what is the contribution of each graph. Mainly 
the combinatorial problem will be considered here. 

c. In the combinatorial problem one distinguishes labeled graphs and free 
(or topological) graphs. In a labeled graph different points are distinguished 
by some index. Also, since a point often represents a molecule, a point can 
have more than one label, as for instance in mixture problems. In a free 
graph the points are regarded as not distinguishable. Of fundamental 
importance is the number of different labeled graphs corresponding to a 
given free graph. To enumerate the possibilities the notion of the group of a 
graph is needed. The group of a graph is the group of automorphisms, i.e. of 
one to one correspondences of the points leaving the connections invariant. 
The group can be considered as a permutation group of the points. For 
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example, for an n-gon, the group is the dihedral group of order 2n, and for a 
so-called com.plete graph of n points (i.e., the graph where all pairs of points 
are joined by lines) the group is the symmetric groups of degree n. The order 
of the group is the symmetry number s of the graph. To a free graph of p 
points there are p !/s labeled graphs. Intermediate between the labeled and 
the free graphs are the rooted graphs, in which one point, the root, is specified. 
The main leaves of a rooted star tree are the stars which have the root point 
in common. 

2. Application to the theory of non-ideal gases. Although the methods can 
also be applied to the calculation of distribution functions, we will restrict 
ourselves to the calculation of the classical partition function for an N- 
particle system with additive two-body forces 

Z(V, T, N) = -$LT/V . ..Sdrl...dr.ve-BZz<irncn~); 

a = h(2zmkT)-+, fi = l/kT. (2.1) 

The usual trick for the low density case, due to Mayer, is to express the 

integrand in product form by 

e-B ni<i @o+tj) = rIzi (1 + fu), (2.2) 

ft.j = e- B @(Wl) _ 1 . (2.3) 

If one represents each factor fij in the terms of the expansion of the product 
form by a line one gets all N-point labeled graphs, connected and dis- 
connected, from N separate points up to the complete graph with &N(N- 1) 
lines. The two basic theorems of Mayer’s theory can be regarded as special 
cases of two general theorems in the theory of graphs. We will sketch the 
proof of these general theorems, and indicate the relation to the Mayer 
theory. 

Theorem I. Consider the quantity FN defined by 

FN = 21;(GN) W(GN), (2.4) 

where W(GN) is a weight assigned to the graph GN of N points and where 
the sum runs over all N-point labeled graphs. The weight W(GN) is supposed 
to have the properties: 

a. W(GN) is independent of the labeling of the points 

b. W(GN) = n,,,, c,) w(CZ) 
where CL is one of the disjoint connected parts of CN. We introduce also 
quantities fl by a definition analogous to (2.4): 

fz = C@*) W(Cz) (2.5) 

where the sum runs over all connected graphs of 1 points. 
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Theorem I then states: 

1 + F(x) = exp f(x) (2.6) 

where F(x), f( x are the generating functions (counting series): ) 

The proof is based on the following lemma: 
Prodzcct theorem. The generating function for the collection of labeled 

graphs, consisting of any graph of one collection plus any graph of a second 
collection, is the product of the generating functions of the two collections 
taken separately (always assuming that the weights have the properties a) 
and b)). This may seem almost obvious, but the proof (which we omit) really 
needs some thought. For the validity of the theorem it is essential that the 
generating functions are defined with the factorials in the denominators. If 
Fm(x) is the counting series for graphs of m disconnected parts, then 

and 
F(x) = C:=, F&r), 

F&) = & [f(Xp. 

m! is required because the m parts are chosen from the same collection of 
connected graphs, and any permutation of the m parts leads to the same 
disjoint graph. From this eq. (2.6) follows immediately. (Eq. (2.6) has been 
rediscovered many times !) W(G) is arbitrary and could even be an operator. 
We now give two specializations of this theorem. 

a) Take 

where k = number of lines of graph G and y is an arbitrary variable. 
Theorem I then yields the first Riddell formula: 

where 

W(G) = yk 

1 + N(x, y) = exp C(x, y), (2.7a) 

XP 
(2.7b) 

(2.7~) 

Npk = number of labeled 

Npk = (W; 1)). 

Cpk = number of labeled, 

(9, k) graphs (graphs of $ points, k lines), 

connected (p, k) graphs. 
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Equations (2.7) constitute a set of functional relations, which can be 

solved to find Cpk in terms of the known Npk. It can be shown that, if 

k > 6 log fi, Cpk and Npk are asymptotically eqUd for hrge $. 

b) The connection of the general result with the Mayer theory is es- 

tablished by taking : 

W(GN) = l-3NJ,, . . . J-drl...drN JJaN fgj, (2.8) 

where the product is taken over all pairs of points (i, j) connected by a 

line in GN. Writing (for historical reasons) 

bz(V, J-) = &fr . ..S drl...drz Ccc,) I&,,, far (2.9) 

and introducing the cluster integral function 

XV, T, 4 = C;“=, W, T)zz, 

one then gets for the grand-partition function: 

3’(V, T, z) = x;rO Z(V, T, N)(A3~)N 

with Z( I/‘, T, N) as defined in eq. (2.1) and, conventionally, Z(V, T, 0) = 1, 
from theorem I the 1st Mayer theorem: 

S(v, T, 4 = exp{~x(~, T, 2)) (2.10) 

From eq. (2.10) one gets in the usual way in the gas phase (for N, V -+ co, 
z, = V/N finite): 

p/kT = i(T, ~0) 
1 

- = 20 -& ?(T, 20) 
V 

(2.11) 

j = I;zl 6z(T)zz; 61(T) = limN_ b(Nv, T) 

It should be noted that this reduction of the graphs occurring in the 
Mayer theory is independent of the assumption of additive forces; since 
for non-additive forces properties a) and b) for W(G) still hold, Eqs. (2.10) 
and (2.11) remain valid in this case. Note also that for (2.10) there is no need 
to pass to the limit of an infinite system. 

Theorem II. We now study the reduction of connected graphs. Suppose 
the weight W(C,) has the following properties: 

a. W(C,) is independent of labeling 

b* W(CxJ) = n,*,, 8,) W&n) 
where S, is a labeled star of m points occurring in the connected graphs C,. 
Let 

fP = &C,) W(C,)P rfR = &s,, W(%). (2.12) 
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Then theorem II states: 

dS(T) T(z) = .z exp - -- 
dT 

where 

T(z) = z $ = C,“=, $f, ; 

S(Y) = Cg=, yrn 5 

(2.13) 

are the counting series for the rooted connected graphs and for the stars. 
Proof: Consider first for simplicity pure star trees, where the constituent 

star has g points, weight W, and symmetry number s, and write: 

T(z) = C;z’=o T%(z) (2.14) 

where Tn(z) is the counting series for rooted graphs with n main leaves; 
To(z) = z. 

Now we can construct rooted star trees with n main leaves by selecting n 
rooted star trees with one main leaf and hanging them all on the root. 
From the product theorem follows: 

T,(z) = 2 + 
.( > 

n. (2.15) 

Since Tl(z)/z is the counting series for rooted star trees with one main leaf 
in which the root point is erased; the factor z accounts for the root and 
the n! is needed since the n root points are in fact identical. To find TI(z) 
we start with the main leaf and hang rooted star trees on the (4 - 1) points 
other than the root. Again from the product theorem, 

Tl(z) = 
zq w 
~ TP-l(Z) 

S 
(2.16) 

The factor z accounts for the root, and W accounts for the weight of the 
main leaf; the factor q is the number of ways in which we can select the 
root point and the factor l/s is needed since there are s equivalent arrange- 
ments of root and rooted star trees on the main leaf because of its symmetry. 
Hence 

T(z) = z exp (2.17) 

Furthermore, in this case S(y) consists of only one term r,yg/q! with 
yq = (q!/s) W since there are q!/s different labeled stars of the given type. 
Hence S(y) = WZ~/S, so that (2.17) can be written in the form (2.13). The 
generalisation to mixed star trees is straightforward. Finally that 
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T(z) = zdf/dz is clear, because each labeled graph of fi points corresponds to 
fi rooted labeled graphs since each point can in turn be preferred as the root. 

Applications of theorem II. 
a) By taking again 

W(C) = y’G 

(K = number of lines) one obtains from (2.13) the 2nd Riddell fo~mzth: 

+L y) = x ; ciz. Y) 

+ S(z, y) = In + 

(2.18) 

with 

s(x, Y) = c;!“=, “” ~~;,“-” s,kY”. 
Pl 

Spk is the number of labeled stars of fi points, k lines. From (2.18) one 
can find Spk in terms of Cpk and one can show that, if k > fi log fi, spk and 
Cpk are asymptotically equal for large p. Hence for large p, k > p log p, 
the overwhelming majority of graphs are stars. 

b) One can use (2.13) by taking W = 1, to count all kinds of labeled star 
trees. For example from (2.17) follows for the counting series of rooted 
labeled Cayley trees the functional equation T(z) = z exp T(z), from 
which one derives that there are pp-2 different labeled Cayley trees of p 
points. Similar results one can find for Husimi trees. 

c) For additive forces the weight 

W(C,) = lim,_,+ fV . ..Jdrr...drl n,, fin 

fulfills the two requirements and therefore theorem II is applicable. T(z) 
becomes 

dX 1 

%=u 
and calling 

(2.19) 

one gets 

S’(y) = $ c;=, $a-1 = Xl 18,Y" = P(Y) 

From (2.13) one now obtains the 2nd Mayer theorem: 

(2.20) 

(2.21) 



S 24 G. E. UHLENBECK 

which expresses formally z in x, or inverts the second Mayer eq. 1/v=zd2/dz. 
From the first Mayer equation one then gets 

= x --  f :  x 9' (x) dx 

2,,=1 v---~-/5,,  , (2.22) 

which is the virial expansion. 

3. Further developments. The two Mayer theorems reduce the problem of 
calculating the partition function to the calculation of the/~v, i.e., to the star 
integrals. Any further reduction must make distinctions between different 
types of stars. It  seems reasonable to classify the stars somehow according 
to their complexity or connectivity, because the more complex or connected 
the stars are, the smaller the corresponding star integral will be. Dr. M e e r on 
has gone farthest in this direction and since we will hear about these develop- 
ments from Prof. J. de B o e r  I will only give here some of the definitions 
and simple theorems. 

a) The connectivity ~(G) of a graph G is the minimum number of points, 
whose omission together with the lines incident upon them, would separate 
the graph. For a complete graph of N points, the connectivity, by definition, 
is N -- 1. For disconnected graphs K ---- 0. For graphs with an articulation 
point K = 1; K > 2 for stars. 

From the (few) known theorems we only mention: 
1) K(G) < minimum degree of the points of G. The more evenly the 

degrees of the points are distributed, the higher the connectivity. 
2) For a (p, k) graph, 

l 
0 if k < p -- 1 ; disconnected graph, 
1 if k ---- p -- I • the graph is a Cayley tree, 

masK---- E2_~ ] i f k > p - -  1. 

i i  if k <  p - - 1  - - (  2 ) '  
min K =  _ _ ( p - - l )  i f k > ( p - -  1) 

2 2 " 

This theorem, which is due to Harary, gives information on the range of 
values of K; but unfortunately we know nothing about the distribution of 
K, or even its average value. 

b) The complexity d(Cp) of a graph C~ is defined in t e rms  of the graph 
matrix dlj(C~) The graph matrix du(C~) is a p × p mat r ix  with elements 
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defined by 

dll(Cp) 4 I -- 1 if the line (i,/') occurs in C~, 
iva  J / 0 if the line (i,/') does not occur in Cp. 

dii(C~) = degree of point i in Cp. 

It  is easy to see that the determinant lid,ill = 0 and that  all minors of order 
p -- 1 are equal. Their common value d(C~) is called the graph complexity. 

1) The relation of the complexity d(C~) to the integral problem is obvious 
if one takes in the Mayer weight function (2.8) the Gaussian function 

/ i J  = - -  e - " r r ' - ' ' t '  ( 3 . 1 )  

which does not correspond to a real physical potential, but which should 
represent qualitatively a soft repulsive potential. One now finds 

i ,  
W(Cv) = (-- 1) ~ [d(C~0)] - t .  (3.2) 

This result shows directly, that  the larger the complexity of the graph, the 
smaller the corresponding integral. 

2) d(Cv) = number of labeled Cayley trees which are subgraphs of C~ 
(Kirchhoff). Taking for Cp the complete graph gives therefore for the 
total number of labeled Cayley trees of p points 

p - 1  - 1  - 1  
- -1  p - - 1  - - 1  

pp-2. 

- -1  - - 1  p - - 1  

3) The sum of the complexities for all (p, k) graphs is given by 

Y,(c,~) d(C~k) -----p~-~ {(P -- 1)(p -- 2) ~ .  (3.3) 
2 J k - - p + l  

This result is due to G. W. Fo rd .  Since one also knows the number C~k of 
labeled (p, k) graphs, eq. (3.3) gives the average value of the complexity 
for these graphs. By direct computation of the complexity for all graphs 
up to seven points, Ford has found empirically that  the distribution of 
the complexity (for k in the middle of the range between p -  1 and 
p(p -- 1)/2) is gaussian around the average value given by (3.3). I t  would 
be very valuable if this could be proved and if one could calculate the 
variance of the distribution. 

4. Application to plasma's (/ully ionized gases). Of course with long range 
forces the virial expansion has no sense and should be replaced by the so- 
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called Debye expansion, in which the small parameter  is ~vi; 1/K is the 
Debye shielding radius: K 2 = (4ae2/kT) ~ Z .2n . ;  n~, ~- N~,/V = concen- 
t ra t ion of ions of type  a; v is again v = V / N  = V / E .  N . .  

Electrical neut ra l i ty  E .  Z . n .  = 0 is always assumed. 
I t  would take too long to discuss this expansion in detail, and we only 

want  to draw a t ten t ion  to one aspect of the theory  (due to Mayer, 1950), 
since it is probably the first example of the part ial  summing technique. 
Consider a plasma of different types  a of ions. In the part i t ion function 
there occurs the potent ial  energy 

q ~ i F  ---- 4~e2ZoZfl)(R) + T ~ ( R ) ,  R = l r / - -  r~i (4.1) 

where To.(R)  is the short-range potent ial  (range a..) ,  and where ~ is a 
(formally) damped Coulomb potential ,  

e -~R 
q~(R) -- 47~R ' a > 0 (4.2) 

Because of this damping one has formally made the Coulomb potential  also 
short range and hence one can s tar t  in the same way as in the virial de- 
velopment.  However one now expands in e 2, so t ha t  

with 
/,S ~" = g. .(R) + [1 + go~(R)] Zn°°=l 

( -  
n! 

47~e 2 

kT (4.3) 
g ~ ( R )  = e -Y 'o* (R) /kT  - -  1 

Each star is now doubly-labeled (according to type  a, and according to 
the number  in each type),  and if one subst i tutes (4.3) for / i f  • each star 
is blown up in an infinite set of (not simple) stars by  interpreting:  a) g t f  '~ 
by  a dot ted  line say;  and b) --  Z,Zf lq~ by  a solid line. 

For  example (fig. 3): 

4- x + 4- 

Fig. 3. 

Dot ted  lines (g-bonds) can occur only zero or one times, whereas the 
solid lines (q~-bonds) m a y  occur any  number  of times. The n ! is the symmet ry  
number  of the n-tuple q~-bond. Or course, if a --> 0 all weights diverge. But  
now Mayer considers together all graphs which are homeomorphic with re- 
spect to the q~-bonds. In general two graphs are homeomorphic if they  differ 
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only with respect to the number of points of degree two. Thus (fig. 4): 

Fig. 4. 

The reason why this is a good idea lies in the fact that for a chain the 

integral is of the folding type, so that the integration over the intermediate 
points can easily be performed. Especially one easily proves 

theorem. Let 

then 
Qn(rig) = fF, . ../dri... dr,@(rzi)@(riz). . .@(rnr) ; 

the following 

(4.4) 

(4.5) 

In this way the Debye potential enters the development. In addition it is 

easy to see that: 
a) The contribution of the single @-bond or the graph . -. gives zero 

because of electric neutrality; 
b) The contribution of the cycle of Q-bonds gives the first Debye- 

correction to the free energy or equation of state. 

.____-_-* cl ---____ --__--__ 0 
e 0 0 --_---_- 

Fig. 5. 

There remain the blown-up stars, as for instance (fig. 5) where now each 
solid line represents a Debye bond: - .Z,Z,A@@). We will not discuss 
these terms further and mention only that in this way one obtains in a 
systematic way corrections to the well-known Debye limit laws. The short 
range potential is essential, since otherwise one gets the also well-known 
divergences for R -+ 0. There are now of course several parameters in the 
expansion, and one must assume that: 

a oI M il <V-* < l/K (4.6) 

to assure the practicality of the combined virial and Debye expansion. 


