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A new method of treating problems involving the transport equation is dis- 
cussed. Starting from Van Kampen’s observation that it is sufficient that “so- 
lutions” be distributions, the elementary solutions of the homogeneous equa- 
tion are considered. These are found to have completeness and, in some cases, 
orthogonality properties which lead to the solution of more interesting prob- 
lems by a conventional eigenfunction expansion. While the method is illus- 
trated here with the simplest examples of neutron diffusion, it seems to be 
generally applicable. 

I. INTRODUCTION 

We wish to present here a new method for solving the transport equations de- 
scribing neutron diffusion. The motivation is threefold. First, conventional meth- 
ods of treatment, such as converting to integral equations, become extremely 
complicated for anything but a single uniform medium. Moreover, the solutions 
obtained for the integral equations are usually expressed as contour integrals. 
These are put in a tractable form for numerical transformation only after many 
transformations. It is desirable to find the transformed forms directly. Secondly, 
it may be hoped that an alternate approach will throw light on the general sub- 
ject and suggest new methods of approximation. Lastly, the usual methods of 
obtaining rigorous solutions of particular problems are quite varied and seem to 
have no common bases. Especially the elementary approach familiar in the treat- 
ment of partial differential equations in which variables are separated and solu- 
tions expanded in normal modes seems lacking. 

The last remark contains the essence of the method to be discussed. It is sug- 
gested by Van Kampen’s work (1) on the related problems of plasma oscilla- 
tions. Van Kampen makes two important points. First he notes that in problems 
involving the transport equation it is sufficient that admissible solutions be dis- 
tributions in the sense of Schwartz. Secondly he shows that for the particular 
problem of a plasma these eigen-distributions are complete. Here it will be shown 
that similar (but more comprehensive) completeness properties hold for various 

* Supported in part by the Office of Naval Research, U. S. Navy Department. 



2 CASE 

neutron diffusion problems. In addition an orthogonality property is found which 
simplifies some expansions. 

For illustration, attention here is restricted to the simplest problems of neutron 
diffusion. Thus only neutrons of one energy are considered. The density of neu- 
trons at position r and velocity direction P is then described by function +(r, P$) 
which satisfies the equation 

$ -I- vQ*W •k vu@ = $ vu /f(SJ.P’)$(r,il’, t) dr’ + Q(r@,t). (1) 

u is the total cross section at velocity v, c is the net number of neutrons produced 
per collision, and Q describes the production of neutrons by sources. The scatter- 
ing function f is normalized so that 

s 
f(nd) da’ = 1. 

Further simplifying assumptions are those of isotropic scattering and plane sym- 
metry; i.e., f = 1 and #J depends only on the position coordinate x and the direc- 
tion coordinate 3, = P. This reduces Eq. (1) to 

Introducing the optical thickness by 

replacing Q by p where 

q(x’, p,t> = QM~‘hd 
VU 

and dropping primes gives finally 

(2) 

In the first part of the paper only time-independent problems are considered. 
Thus in Section II solutions of the time-independent, homogeneous form of Eq. 
(3) are discussed for regions where c is constant. 

As an application the Green’s function for a uniform infinite medium is con- 
structed in Section III. A rather surprising partial range completeness relation 
is then proved. A by-product of this is the solution of a generalization of the clas- 
sical Milne problem. In Section V the application of the method to some time- 
dependent problems is indicated. 
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II. ELEMENTARY SOLUTIONS OF THE 

TIME-INDEPENDENT EQUATION 

We consider a region where c is constant and look for solutions of the homogene- 
ous equation there. These solutions will depend only on local properties. The idea 
is to construct special solutions appropriate to various boundary conditions in 
terms of superpositions of the elementary solutions. 

The transport equation is simply 

Translational invariance suggests trying 

I) = e~““~y(p). 

With this assumption, Eq. (4) becomes 

(5) 

(1 - c(/v)hb) = f I: $&‘I dp’. (6) 

It is very convenient to normalize so that 

s 1 

$d~‘> dp’ = 1. (7) 
-1 

Then the above becomes 

From this point the conventional argument runs as follows: Solving Eq. (8) gives 

4”(P) = ; &. 

Inserting this result into Eq. (7) yields the condition 

(9) 

1 = cv tanh-’ l/v. (10) 

There are, as is well known, two roots of the equation. Here they will be denoted 
by fv, , (We note that for all c, j Re l/v, j < 1 and vO is purely imaginary for 
c > 1.) The argument has given the usual solutions of the homogeneous transport 
equation. However, there are others. Thus, Eq. (9) does not strictly follow from 
Eq. (8). If &(p) can be a distribution, it can contain a term proportional to 
6( v - cl), Thus from Eq. (8) one can only conclude that 

h(P) = f P & + X(v)8(p - v), (11) 
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where P indicates that principal values are to be understood when integrating 
an expression involving $Q(P). The number X(v) is to be determined by condi- 
tion (7), i.e., 

f: +JI1) d,.t = 1 = ; VP /’ -J!!!- + X(v) f: S(,.i - v) dv. (12) 
-1 v - /.L 

There are two pssibilities: 
(a) v is not real and between - 1 and + 1. The second term on the right of (12) 

is zero and the condition is 

12 s ’ dp 
2v - -’ 1v - p 

(The P has been dropped since the denominator does not vanish in the range of 
integration.) The two roots f v, occur. With the normalization (7) the corre- 
sponding solutions of the transport equation are 

where 

(13a) 

(b) v is real and lies between - 1 and + 1. The normalization condition is then 

l+P/ - l dp + X(v). 
-1v - p 

Clearly X(v) can always be chosen so that this is satisfied. Hence there are solu- 
tions for all real v such that - 1 s v $ 1. These are 

J’dw) = 4dcl>e-““, (154 

where 

d.LL) = ; P & + x(v)& - VI. 

Here X(v) is defined by (14) or, explicitly, 

X(v) = 1 - cv tar&-l v. (16) 

To summarize: There are two discrete solutions given by Eqs. (13) and a con- 
tinuum of solutions given by Eqs. ( 15). 

The usefulness of these functions arises from the facts that they are both orthog- 
onal and complete. This can be stated in the form of two theorems. 
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THEOREM I: 

s 1 

PbY'(Pb#JY(P) = 0, v # v'. (17) 
-1 

Proof: 4” and C#W satisfy the equations 

(1 - CL/&W(P) = ; z/: +(P”) d;. (18b) 

Multiplying the first of these by &(p), the second by &(P), subtracting, and 
integrating, gives 

From this the theorem follows. 
Since the explicit forms of the functions have been found, the orthogonality 

integral for v = v’ can be readily computed. The results are 

s 1 

-1 
&&i) dp = No* = f ; vo3 (20) 

and 

s 1 

w#w(~cL)d~cL) dp = NJ(v - v’), (21) 
-1 

with 

N, = v X”(V) + $f v” 1 . (22) 

THEOREM II: 
The functions r& and &( - 1 6 v 5 1) are complete for functions I/&L) de- 

fined in the interval - 1 5 P 5 1.l 
The truth of the theorem is suggested by the degenerate case c = 0. Then 

&,(p) = 6( v - CL). These “functions” are obviously “complete.” It is worth 
noting that the proof is constructive in that a method for finding the expansion 
coefficients is given. Actually the orthogonality relation does this anyway. How- 
ever, in the general case treated in Section IV it will be seen that an orthogonal- 
ity relation is not available. 

1 The necessary restrictions on $(p) appear to be very weak and satisfied by all functions 
of physical interest. In particular, the proof seems to apply if \L(p) involves delta functions. 
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Proof: It is to be shown that one can express #(FL) in the form 

$(P) = a+#wt(~L) + G-&-(P) + /-I A(vh#&L) dv. (53) 

If the expansion is possible, the coefficients are readily found using Theorem I. 
In particular, it follows from Eqs. (19) and (20) that 

Hence it is sufficient to show that given any #(cl) the function 

V(M) = ti(Pu) - %+4b+b) - uL(Pcl> 

[with agt give by (24)] can be written as 

d(d = 1: A(vh#&) dv. 

With (15b) this becomes 

(25) 

(26) 

d&L) = A( + ; P s: yy) ,““’ . (27) 

To prove completeness the existence of a solution of this singular integral equa- 
tion must be demonstrated. Such problems have been extensively treated. The 
essential point is to relate the functions which occur to the boundary values of 
functions of a complex variable. The properties which can be ascribed to these 
functions serve to determine them completely. In the present case not all the 
available apparatus is needed.’ We follow a shortcut suggested by Van Kam- 

pen (1). 
Suppose a solution A ( v) exists. Introduce a function N(z) of the complex vari- 

able z by 

(28) 

This function vanishes as ] x 1 -+ to and is analytic in the complex plane cut 
from - 1 to + 1. For the limits as z approaches the cut from above ( + ) and 
below ( - ), we have 

Hence 

(29) 

* In Appendix A an alternate approach using the general theory is shown. 
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and 

Iv+ - A- = &4(p). (31) 

In terms of N’ the integral equation (27) becomes 

c 
2 P+‘(P) = 

[ 
UP> + i 2 “s]Nt(r) -[A(P) - i#‘J-bd. (32) 

The explicit form for X(k) could now be introduced. However, it is more con- 
venient to proceed as follows: Introduce a function Q(z) by 

Q(z) has similar properties to N(z) except that it tends to -c/2& as x + co. 
In particular 

Therefore., 

and 

Q+ - Q- zz 5 
2P’ 

In terms of these boundary values one sees that 

A(P) = 1 + ?ri(Q+ + Q-1 

and 

7riq.l - = ,,-i(Q+ - Q-) 
2 

(34) 

(35) 

Then the integral equation is: 

[I + %iQ+(dlN+(d - D + 27riQ-(~L)lhr(~) = ;&A). 

Finally consider the function 

(37) 

F(z) = [l + 2tiQ(z)lN(z) - 2 1: ; “;;9 p”’ (38) 
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This function is zero at infinity and analytic in the complex plane except perhaps 
for a branch cut from - 1 5 z 5 1. On this cut the discontinuity of F(x) is: 

F+(p) - F-(/A) = [I + 27ri&+]N+ - [l + 2&Q-IN- - ; /A&A) = 0. (39) 

Hence F(z) is analytic everywhere. Since it vanishes at infinity, one concludes 

F(z) = 0, 

and thus 

’ c P’Y%‘) di 
N(z) = [I + 2LQ(z)] 2’,i -12 s p’ - z ’ (40) 

So far it has been assumed that A(Y) exists. Then the function N(z) is given 
by (40) and A(V) can be determined from (31). Conversely, if N(z) given by 
(40) has the required analytic properties [see remarks after (ZS)], then A ( Y) 
given by (31) exists and satisfies the integral equation. The crucial question is 
then as to whether N(z) is analytic in the cut plane and vanishes at infinity. 
The numerator in (40) does have these properties. The denominator is analytic 
and goes to a constant at infinity.3 Hence the question is whether the numerator 
vanishes at the zeros of the denominator, i.e., is 

when 

By definition 

1 
-s 

l c /.$‘(P’) di = o 
27ri -1 Z p’ - z 

1 + 2&Q(x) = O? (42) 

Q(Z) = ki f z I: -$$ = Gi (-cx tanh-’ z). 

Hence the condition of Eq. (42) is 

1 = cz tanh-l x, 

which is just the transcendental equation for the discrete solutions. The points 
of interest are therefore fv, . Is (41) satisfied at these points? That is, is 

c 
s 
’ &‘(P’) & = o? 

-P-l jl=Fvo ’ 
3 The apparent difficulty for the case c = 1 is illusory. A careful analysis leads to exactly 

the results expected by taking limits e + l+ or c -+ l-. 
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Comparing with Eq. (13b), it is seen that 

A&.4> = ++. 
VO 

Hence the left side of (44) is 

s 

1 

P'&~P'>$'(P'> 6'. 
-1 

Using Eqs. (24) and (25), it follows that this expression is 

(45) 

(Here the orthogonality and normalization properties of the dst have been used.) 
Thus, the question of Eq. (44) is answered affirmatively. N(x) has the desired 
properties. A(v) exists [and can be found using Eq. (31)]. 

III. GREEN’S FUNCTION FOR A UNIFORM INFINITE MEDIUM 

As an illustration of the applicability of the results of the preceding section, 
the Green’s function for the transport equation will be constructed. To be defi- 
nite c < 1 is assumed here.4 The Green’s function tig satisfies the equation 

Integrating across the plane x = 0 show5 that #g satisfies the homogeneous 
equation for x # 0 and the jump condition 

Phm+, /Jcc> - ~,(o-,r>l = & HP - /&J. (48) 

Let us look for the solution gQ which vanishes as 1 x 1 -+ a~. It is sufficient to 
expand tie in the form 

A = a+b+(w) + s,‘~b)vh(w~) dv, x > 0, (@a) 

4 The cases c > 1 or c = 1 can be treated analogously. 
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01 

yb = -wL(w> - [; ~bMv(~,~) dv, x < 0. (49b) 

Condition (48) then gives an integral equation to determine the expansion co- 
efficients. It is 

The solution obtained using the orthogonality relations is 

and 

Hence J/O can be written in the typical normal mode expansion 

(51c) 

(52) 

Particularly simple results follow for the angular distributions and densities 
due to an isotropic plane source. For the angular density tiO we have 

~~x,cL) = l; ~g(w+o) ho 

[ 

&+(p) e-‘Z”“O ’ ~.LL) e-““” dv 
1’ 

(53) 
1 =- 

47r NIT+ +J, N, 

where the normalization of Eq. (7) has been used. To find the neutron density 
it is only necessary to integrate (53) over all CL. This yields 

,,(x) = ?-[g+ s,‘gdv]. (54) 

It is worth noting that the method is well suited to finding the asymptotic 
behavior of solutions. This is clearly given by the two discrete eigenfunctions. 
The coefficients are readily obtained. 

IV. PARTIAL RANGE COMPLETENESS 

The elementary solutions found in Section II have a much more general com- 
pleteness property than is indicated by Theorem II. This can be stated as: 
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THEOREM III : 

Let (Y and /3 be two real numbers such that - 1 4 a! < @ 5 1. Then 
(a) If LL # - 1 and /3 # +l, the functions $&A) (a 5 v s /3) are complete 

for functions #(p) defined in the interval (Y 5 p 5 p. 
(b) If (Y = - 1 (p = +l), the set &(a 6 v 6 p) is complete when supple- 

mented by &(&+). 
It is believed that the theorem is true under quite weak restrictions on the 

function g(p). However, the result is peculiar enough that it seems worthwhile 
to give a rigorous mathematical proof. Thus, to be explicit, it is assumed that 
g(p) satisfies a Holder condition in the open interval ar < P < /3 and is bounded 
by (constant)/ 1 cc - (Y jy or (constant)/ I ~1 - /3 Ir with y < 1 at the endpoints. 
The proof consists of tracing through in detail the solution of singular integral 
equations given by Muskhelishvili (2). In essence we ask for the conditions under 
which the integral equation implied by the possibility of expansion has a solution. 
It will be seen that either there is a solution or the conditions can be satisfied by 
appending the functions & , or &+ , or both. 

Proof: If #(p) is an arbitary function (subject to the above conditions) de- 
fined in the interval - 1 5 (Y s ~1 =( /3 s 1, it is to be shown that 

hcl) = 1” A(v)&) dv , (a s EL 5 PI, (55) 
(1 

i.e., a solution of the integral equation 

exists. Suppose there is such an A(v) with properties similar to those of $(c(), 
Introduce a function of the complex variable z by 

(57) 

This function has the properties: 
(1) It is analytic in the complex plane with a cut from LY to p. 
(2) N(z) Nl/zasz--) co. 
(3) N(z) is bounded by C’J 1 a! - x 1’ and C’J 1 p - z Jy withy < 1 as z -+ (Y 

and /3, respectively. 
Further, 

and 

(53) 

Z@- - AI- = ; VA(V). (59) 
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The integral equation (56) is: 

CASE 

or 

where 

G(P) = 
x(/J> + (i7/2>w 
h) - (i*/2)w * 

Suppose G(r) = X+(,)/X(,) where: 
(1) X(z) is analytic in the cut plane. 
(2) X(x) is nonvanishing in the cut plane. 
(3) X(x) does not vanish as rapidly as CY - z or /3 - z as z + (Y or j3, 

tively. 
(4) At infinity X(z) b e h aves in one of the following ways: 

(a) X(x) -+ constant (nonzero) ; 
(b) X(z) +z--~ (n integral and positive) ; 
(c) X(z) + zm (m integral and positive). 

Then 

(60) 

(61) 

(62) 

respec- 

(63) 

is analytic in the cut plane and continuous across the cut. It has at most remov- 
able singularities at (Y and p. In cases (a) and (b), P(z) vanishes at infinity. 
Hence 

and therefore 

F(x) = 0, (640) 

N(z) = L IS 
OC /&(P’)~~cc’) &’ 

X(z) 2n”z a: z [X(d) - (i?r/2)C~‘](~’ - 2) (65a,b) 

In case (c) , F(z) - P-l at infinity. Hence 

F(z) = Pm-l(Z), 

where P,-l( z) is an arbitrary polynomial of degree m - 1. Then 

(MC) 

N(z) = -A- -5 Bc P’~~P’D-(P’) d/J’ 
X(z) 27r2 s 2 [X(/i) - (&r/2)cLJ’](/.J’ - 2) 

+ Pm-l(Z) 
a x(x>’ (65~) 
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Thus, ij a solution A ( V) exists and if there is an appropriate X( .a), the func- 
tion N(z) is given by Eqs. (65). Conversely, given X(z) we consider the function 
N(z) defined by Eqs. (65). We can then find the solution A(Y) using Eq. (59)- 
provided the conditions listed after Eq. (57) are fulfilled. 

In cases (a) and (c) these are satisfied for all #(II). Hence the solutions exist. 
[It is unique in case (a) but not in case (c)]. In case (b) the condition (2) is 
the only one not automatically satisfied. A solution (unique) exists only if 

PYh)x-(II) 
X(p) - (&r/2)+ 1 dp = 0, 1 = 0,1,2, * * *, n - 1. (66) 

We turn to the construction of X(z). Taking logarithms of both sides of Eq. 
(62) gives 

In X+ - In X- = G(r). (67) 

If I’(Z) be defined by 

(‘33) 

then 

X,(z) = P 

satisfies Eq. (67). Moreover, since I’(z) is analytic in the cut plane and vanishes 
at infinity, X,(z) is a satisfactory X(Z) [case (a)] provided the behavior in the 
neighborhood of the points a! and P [condition (3)] is all right. Let us examine 
this behavior. 

For z M LY, 

r(z) w 2+i In G(a) l--$$ = - 2$ ln G(a) ln(a! 

Similarly, for 2 near P 

r(z) w 2< In G(P) ln(P - z). 
A 

Now from Eq. (62) it follows that 

2$ In G(P) = f O(P), 

where 

21, (69) 

(70) 

O(F) = arg X(p) i- F = arg 1 - cp tanh-’ p + m$ ‘I c . (72) 
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Thus, near a! and P 
-K(x) = (a - 4-“(a)‘a 

or (73) 

X0(z) m (p - 2)o(fl)‘r* 

When ~1 varies between - 1 and fl the function e(p) varies between --?r and 
+?r. [0(O) = Oand 0(-p) = -C?(P).] 

-l&!l~l. - (74) n- 

Hence there are integers Z(a) and k(p) which are either +l, 0, or - 1 such that 

1 > Z(CY) -w 2 0, 
?r 

and 

1 > k(P) + e(p> 2 0. 
a 

(75) 

(76) 

These numbers are given in Table I. 
An appropriate X(x) is 

X(x) = (a - pyp - z)k’~‘xo(z). (77) 

At infinity X(z) - .E?(~‘~), where 

N(d) = J(a) + WP>. (78) 

The values of N and the class of X(z) (and the corresponding n and m) are given 
in Table I. From this we note that for all possible a! and p the X(z) lie in one 
of the three classes (a), (b), or (c) . If neither a = - 1 nor fi = + 1 the class 
(b) doesnot occur. Thus in those cases the integral equation possesses a solution 

TABLE I 
CLASSIFICATION OF THE FUNCTIONS X(z) 

a lb) 0 k(a) N b$) Class of X(z) 

-1 
-1 
-1 

-l<a$O 
-l<aSO 
-l<aSO 

O<a<l 
O<a<l 

-1 
-1 
-1 

0 
0 
0 

+1 
+1 

+1 -1 -2 b(n = 2) 
osg<1 0 -1 b(n = 1) 

-1<j3<0 +1 0 a 
+1 -1 -1 b(n = 1) 

ora< 0 0 a 
asj3<0 +1 +1 c(m = 1) 

+1 -1 0 a 
cY<B<l 0 +1 c(m = +l) 
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and the expansion is possible.6 The cases where X(z) is a member of class (b) 
require special attention. Consider cz = -1, @ = +l. Then n = 2 and a solu- 
tion exists only if 

s 

1 1 GYGF(P)l ($ = () 
p X(p) - (i?r/2)cE.c ’ 

1 = 0,l. 
-1 

09) 

These will certainly not be satisfied in general. But we can modify the procedure. 
Instead of $(P), consider the function 

#(CL) = e/J> - Uo+db+(PL) - %-h-(P). 

Here a,& are unknown constants. The condition that #I(p) can be expanded in 
terms of the &(P) is then that the two conditions of Eq. (79) be satisfied with 
Ij/(p) replaced by #‘(P). These conditions are then used to determine ati . Thus 
we always have the possibility of the expansion 

It(w) = a+b+(~cl> + G-&-(P) + I: Add dv. 

Moreover, we have a procedure to determine the expansion coefficients. 
A second special case of particular interest is (Y = 0, 0 = 1. Then, from Table 

I, X(x) is a member of class (b) with n = + 1. The expansion is possible only if 

s 

l G!HPB--(P,)l dp = o 
0 X(p) - (i7r/2)cj.4 - (80) 

Again the procedure is modified. Consider #I(p) = $(p) - u,,+&,+(~). This can 
be expanded in terms of &(P) (0 S v S 1) provided Eq. (SO) with $( CL) replaced 
by #‘(cl) is satisfied. This is accomplished by suitable choice of a,+ , i.e., 

s 

1 

Y(II)$(IL) & 

U 
-0 

o+ = 
(81) 

Moe ’ 

where 

(82) 

and6 

Mo+ = J: Y(PL)&+(PCL) dcc. (83) 

The other special case of class (b) can be treated in similar fashion. 

6 It is interesting to note that for CU,~ both on the same side of the origin X(z) belongs to 
class c. The expansion coefficients are then not unique. 

6 Of course M,+ must not vanish. This is proved in Appendix B. 
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V. APPLICATIONS OF THE HALF-RANGE 
COMPLETENESS RELATIONS 

The first of our applications is to the albedo problem. A plane parallel beam 
is incident at 2 = 0 on the half space 0 5 z < cc). The problem is to find a solu- 
tion \k, of Eq. (4) in this region subject to the conditions: 

(a> \E,(O,cc) = Sb - 1.4 I-VJO > 0, 

(b) lirn!FJz,cc) = 0. 
z-woo 

A general solution of (4) subject to condition (b) is 

(84) 

Condition (a) gives the equation 

6(cl - ro> = G+&++(P) + s,‘Abb#&) dv, (P 2 0). (85) 

The solution a,+ , A(v) is given by the completeness proof above. In particular 
the asymptotic form is determined by a,+ where 

r(d a+=-. 
MO+ 

(8’3) 

Secondly, we consider the Milne problem. A solution q’, of Eq. (4) is required 
in the region 0 $ x < m subject to the conditions 

(a> *dO,l~) = 0, M 2 0, 

(b) lim*,(x,p) = YL(x,PFC). 
27-m 

The general solution of Eq. (4) subject to condition (b) can be written as 

%(x,cr) = b-b-+cL) + cwb+(w> + s,’ AbMv(w) dv. (87) 

Condition (a) then requires that 

-&-(P) = GM#J&> + s,‘Abb#&) dv. (88) 

Again the solution has been found above. All that is needed is to put +9(p) = 
-&(p) in the formulas of Section IV. The important coefficient a,+ is given by 

s 1 

Y(/Jh#b-(PL) 
0 

a+ = - 
Mo+ * 

(89) 
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A generalization of the Milne problem suggests itself. We ask for a solution 
e,(z,p) of Eq. (4) subject to condition (a) and 

00 FJ~ *Ey(x,~) = &(x,P), (-15 Y S 0). 

The solut,ion of this Milne problem is obviously obtained just as that of the origi- 
nal one. Thus, instead of a single solution of the half-space problem with zero 
incoming flux, we have one discrete solution plus a continuum of solutions. This 
set of solutions determines the Green’s function for a half space. Thus suppose 
it is required to solve the equation 

in the region 0 5 x < m subject to the boundary conditions 

\k,(O,r) = 0 P 2 0, 

and 

lim*.II(Z,p) = 0. 
urn 

We write down the solution and then check the properties. 

(90) 

CW 

(gob) 

, (91) 
[%(x,P) - Ity~Cw)lezo’” dv I . 

tiO is the infinite medium Green’s function given by Eq. (52) and hence satisfies 
Eq. (90). The remainder is a solution of the homogeneous equation. Hence Eq. 
(90) is satisfied. Condition (90b) is fulfilled since %0(x,~) - &,-(s,~) and 
qV(z,~) - &(z,P) are combinations of decreasing exponentials. Finally, at 
x = 0 the expression becomes 

and each term vanishes for ~1 1 0. 

VI. TIME-DEPENDENT PROBLEMS 

The method is readily generalizable to time-dependent problems. Consider a 
region where u and c are constant. Choose units so that v = u = 1. In this re- 
gion the homogeneous form of the transport equation (3) is: 

(93) 
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Look for solutions of the form 

J/(x,,.‘) = eikze(l+iork)t~or,k(C1). (94) 

(k is any fixed real number. The permissible values of a! are to be determined.) 
With this assumption Eq. (93) becomes 

(a - d&,k (d = $ j.1 &,k (d &‘. (95) 

Since a generalization of this eigenvalue problem has been discussed elsewhere 
(S), it is sufficient to state the conclusions. 

For each k there is a continuum of solutions C$u,k(M) with - 1 5 (II $ 1. These 
are 

(96) 

where 

X (CY) = 1 - T tanh-’ (Y. 

These solutions are orthogonal in that 

s 

1 
9&k (d&‘,k (PL) dp = Na,kS(a - a’>, 

-1 

with 

(97) 

(98) 

N a,k = X”(a) - g. 

In addition, for 1 k 1 < c1r/2 there is a discrete solution 

‘#‘o,k(d = & -!i-- 
ffo - /.l 

(100) 

where 

1 = 5 tanh-’ l/o,. (101) 

This solution is orthogonal to the continuum solutions, that is, 

(102) 

and 

s 1 

-l &b) dp = 
-AC2 

2k2( 1 - &2) = No*k - (103) 
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For any k the enumerated solutions are complete for functions $,+A) defined in 
the range - 1 5 p 5 1. They are all normalized so that 

s 

1 

4Ok (d & = 1. (104) 
-1 

As an application we will solve the initial value problem for a uniform infinite 
medium. It is sufficient to consider an initial distribution which is 

‘ki(x,cc;o) = 6(x - xo)S(cl - PO). 

Expand in the complete set of functions c’““++( ,.6), that is, 

(105) 

(106) 

(Here ca means adding the discrete term to an integral over the continuum.) 
We readily find the expansion coefficients using the orthogonality properties. 
The distribution at a time t is then [using the time dependence of the eigen- 
functions indicated by Eq. (94)] 

The neutron density p due to an initial distribution which is located at x0 but 
uniform in velocity directions is particularly simple. All that is needed is to inte- 
grate (107) with respect to p0 and ~1 and remember Eq. (104). The result is 

(108) 

Finally, the time-dependent Green’s function for a uniform infinite medium, 
i.e., the function which satisfies Eq. (3) with q = 6(x - xJS(p - po)8(t - to), 
is trivially expressible as 

G = \Ei(x,p; t - to) t > to. 

= 0 t < to. 
(109) 

VII. CONCLUSION 

It has been seen that a varied set of neutron transport problems can be treated 
in a uniform manner with the present method. The approach is the analogy of 
the classical separation of variables method for partial differential equations. 
The resulting “functions” are certainly more singular, but not any more difficult 
to deal with. 

It should be emphasized that while the illustrations have all been extremely 
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simple problems, it is expected that the structure of the solutions for more com- 
plicated situations will be similar. Thus, consider the equation 

w  at + WV* + -OU# = 
s F(v,v’)# (r,v’, t) dv’. (110) 

Qualitatively we expect the following type of eigenvalue spectrum: First a con- 
tinuum corresponding to each point v in velocity space where F(v,v’) # 0. 
These “eigenfunctions” will all be singular. In addition, there may be a set of 
discrete eigenvalues corresponding to well-behaved functions. It is expected 
that the total set of eigenfunctions will be complete in both position and velocity. 
Moreover, there will be various orthogonality properties. 

The simplifications utilized in this paper serve primarily to permit certain 
integrals to be found explicitly. No particular limitations of principle seem to 
have been made. In complicated problems where the explicit functions may not 
be readily evaluated, the present method may serve as a basis of approxima- 
tion-for example, one could expand in terms of a finite number of the elemen- 
tary solutions. 

APPENDIX A 

It is illuminating to see how the formal solution of the integral equation for 
completeness given in Section IV reduces in the case a! = - 1, B = +l to 
that obtained by a trick in Section II. 

In Section IV we considered an arbitrary function G(r) ( - 1 r /J 5 + 1). The 
expansion coefficients ati and A(v) are to be determined by 

;vA(v) =N+- N. (-4.1) 

Here 

N(z) lc AL/ - I&’ G’> x- (cl’> 
X(.4 271-i -12 [X(P’) - (i?f/2)cp’](p’ - 2) ’ 

(A.21 

where 

rcl’h’) = #Lb’) - a4h-kb’) - a4L(p’>. (-4.3) 

The agt are determined by the conditions 

I 
1 

b.d;y-m 

1 G(p) - (i?f/2)cu dp = 0, 1 = 0,l. 64.4) 

The appropriate X(z) is: 

(A.5) 
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with 

64.6) 

Now note that 

1 - cb tanh-’ p + (&r/2) CM 
G(P) = 1 _ 

(1 - cz tanh-’ z) + 
C,J tanh-l p - (&,/2)cp = ( 1 - cz tanh-l z)- ’ (A.7) 

Hence 

where the contour c 
rection. 

I’(x) = ki [ In ’ - T’ F:h-’ ’ da’, (A.81 

encircles a branch cut from - 1 to +l in the clockwise di- 

The form of (A.8) suggests the use of the Cauchy integral formula. Since 
1 - cz’ ta,nh-’ z’ -+ 1 - c as z’ --+ ~0, it is convenient to take (1 - cx’ tanh-’ z’)/ 
(1 - c) as the argument of the logarithm in (A-8). [I’(z) is unchanged since the 
additions above and below the cut cancel.] The resulting logarithm will not be 
analytic in the cut plane because of singularities-at the zeros of 1 - cz tanh-’ z. 
The function 

(A.9) 

is analytic. However, the argument of the logarithm now does not tend to 1 
as z’ --+ 00. This is remedied by multiplying by 1 - z2. Thus 

(A.lO) 

Completing the contour with a large circle at infinity and using the Cauchy 
integral formula gives 

r(2) = In 
l- z” 1 - cz ta.nh-’ z 
- 
VO 2 - 22 1 l-c ’ 

or 

X(x) = k2 l - y2h-l y 
VO 

(A.ll) 

(AX?) 

In particular 

x-3,) = --& 
[l - cu tanh-’ p - (i?r/2)c~] 

l-c 
(A.13) 
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and therefore 
2 2 

N(z) = 
v,J - 2 1 l /d(d dp 

1 - cz tanh-’ z2?ri s 1 (~~2 - $)(P - Z) ’ 
(A.14) 

with the conditions of (A.4). To reduce this to the form of Section II, we note 
that the two conditions are equivalent to 

s ’ ~h.4 4 = l 
-1 vo =F p s 

w#dd~‘(d 4 = 0. 
1 

(A.15) 

This form of the conditions together with the partial fraction decomposition 

[~][~l=~[(v~-Z)~v~-P)+(v~-Z~(LI-Z) (A16) 
+ 1 

(vo + z>(cl - z> = (vo + z,‘(, + P) 1 
shows that 

i 

1 
cl~‘(d dcc 1 =- 

s 
’ ~c/G’(cc) & 

-1 (vo” - P2>(E,c - 2) v.2 - 22 -1 /.l-z * 
(A.17) 

Hence 

N(x) = 
1 1 

s 
’ c /.&d & 

1 - cz tanh-’ z 2ri -12 p - x ’ 

Equations (A.18) and (A.15) are just the results of Section II. 

APPENDIX B 

An essential point in the general completeness proof of Section IV was that 
it must be possible to choose the coefficients a O* so that the necessary conditions 
for a solution of the integral equation are satisfied. Let us check this for the case 
LY = 0, /3 = +l. (To be definite it is assumed that c is less than one.) 

It must be shown that 

Since eO+(p) N l/( V, - I(), it is enough to show that 

03.1) 

03.2) 

does not vanish for z real in the range 1 < z < ~0. 
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with 
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g(z) 
X(z) = - 

l-2 

23 

03.3) 

(B.4) 

Therefore, 

r-(p) = & [P l’ In F(f),“’ - ri In G(P)] 

03.5) 

- iln G(P). 

Therefore, 

x-(p) = yg exp p I1 e(fi’> &’ 
P 7r 0 pf-p 

= 
id 

x - (in/2)cp 1 
x + (in/2pcr G exp f s,’ “$‘?y * 

03.6) 

Hence, 

(B.7) 

We see that for x real and in the range 1 < z < CQ , R(x) is an integral of a posi- 
tive definite quantity and thus does not vanish. 
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