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Scalar scattering of a plane wave by a perfectly reflecting body whose sur- 
face is a level surface in a coordinate system in which the scalar wave equa- 
tion is separable is considered. A general method for the computation of 
the surface distribution is described. This method reduces the problem of 
finding the surface distribution to that of evaluating a certain contour in- 
tegral. The distribution induced on a prolate spheroid by an axially-sym- 
metric plane wave is specifically computed. The evaluation by residues of 
the contour integral, given by the general theory, leads to the expected “creep- 
ing wave” interpretation of the residue series in which the attenuation of 
the “creeping waves” depends, in first approximation, on the local radius of 
curvature. The asymptotic theory used is applicable for large values of cw, 
where 2c is the interfocal distance of the spheroid and o is the wave number. 
The surface distribution is computed over the entire shadow region in- 
cluding the tip. 

1. INTRODUCTION 

It is commonly held that in the case of scalar scattering of a plane wave by 
a smooth convex body, the contribution by the shadow region may be expressed 
in terms of “creeping waves” whose attenuation is dependent upon the local 
radius of curvature (1) . For a body whose boundary is a level surface in a coor- 
dinate system in which the scalar wave equation is separable, the resolvent 
theory of linear operators developed by Sims (2) and Phillips (3) can be applied 
to obtain a contour integral representation for the distribution.’ This integral 
may then be evaluated by using Langer’s theory of asymptotic solutions of dif- 
ferential equations with turning points to compute its residues (5, 6). The re- 
sults obtained are valid in the entire shadow region. We present the details of 

* The research reported in this paper has been sponsored by the Air Force Cambridge 
Research Center, Air Research and Development Command, Contract AF-19(694)-1949. 

1 For a more complete discussion of the reduction of the solution of the time-dependent 
wave equation to the problem of evaluating a contour integral than is given here see the 
work of Ritt (4). 
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this program in the case of axially-symmetric scalar scattering of a plane wave 
by a prolate spheroid. We obtain the expected “creeping wave” interpretation 
of the residue series in which the attenuation of the “creeping waves” depends, 
in first approximation, on the local radius of curvature. The asymptotic theory 
used is applicable for large values of cw, where 2c is the interfocal distance of 
the spheroid and w is the wave number. Thus, our mathematical theory supports 
the theories of Fock (7, 8) and Keller (I), which are based on physical assump- 
tions. The opposite view given in the report (4) is incorrect, and we correct the 
errors made there here. 

The derivation of the above results is made as follows. The point of begin- 
ning is the theorem that the well-set exterior problem for the inhomogeneous 
wave equation V2u - utt = peiwt, with boundary conditions on a smooth closed 
surface and with prescribed initial conditions, has a solution of the form v(z,t)ei”t 
and that its ergodic limit, 

lim T-l 
T’oo s 

T 
v(s,t) dt, is lim &x,.s) 

0 S-t0 

where cp is the solution of the scalar equation V2p + (ti - is)$ = p satisfying 
the same boundary conditions as u and which is absolutely square integrable 
over the region exterior to the boundary surface. The problem is thus reduced 
to the study of solutions of the last equation. Using the theory of complex re- 
solvents developed by Sims (2) and Phillips (3) a contour integral representa- 
tion for the desired solution can be obtained in the case where the boundary 
surface is a level surface of a coordinate system in which the scalar wave equa- 
tion is separable. This method replaces the use of the Watson transform (9), 
which has been employed in cylinder and sphere problems (10, 11) . The integral 
representation is explicitly determined in the case of the prolate spheroid. This 
step completes the basic theoretical discussion. 

There remains the practical matter of evaluating the contour integral. Be- 
cause of the assumption of axial symmetry, this integral involves only the Green’s 
functions for the radial and angular parts of the operators into which V2 + 
(W - is)” separates. The integral is evaluated in terms of the residue series gen- 
erated by the singularities of the radial resolvent Green’s function. To deter- 
mine these singularities, the theory of asymptotic solutions of differential equa- 
tions having a simple turning point must be used (5). After evaluating the 
angular resolvent Green’s function at these singularities by means of the asymp- 
totic theory for differential equations having a regular singularity and contain- 
ing a large parameter (6), the values of the residues are obtained. The final 
steps involve putting the residue series in proper form for physical interpretation 
of the characteristics of the solution. In this, the method of Franz (IO) is fol- 
lowed. 
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2. REDUCTION TO THE SCALAR PROBLEM 

We consider the partial differential equation 

V2u - Utl = p(x)eiwt, (2.1) 

in which p(z) represents a spatial distribution. We seek the solution u(z,t) 
satisfying homogeneous boundary conditions on a closed, smooth surface B with 
u(z,t) and ut(z,t) satisfying initial conditions. It is known that the presence of 
initial conditions prevents the separation of the time dependence from Eq. (2.1). 
Moreover, the assumption of a “steady state” solution of the well-set problem 
for Eq. (2.1) is also not in general justifiable. That is, it is not true that a repre- 
sentation of u(z,t) in the form 

u(x,t) = u(x)eiut + u*(x,t), 

where 
lim u*(z,t) = 0, 
t-m 

can be found (12). The following Tauberian type theorem of Ritt (4) clarifies 
the situation. 

THEOREM. Let the distribution p(x) have compact support, and let X be the linear 
space of twice continuously diferentiable functions which satisfy the homogeneous 
boundary conditions for Eq. (2.1) on B and which vanish at infinity. If X is pro- 
vided with the norm defined by uniform convergence of junctions together with their 
Jirst and second derivatives, then in X the scalar wave operator 0’ + CO’ has a bounded 
inverse; and the function v(x,t) dejined by 

v(x,t) = u(x,t)eMiUt, 

where u(x,t) is the solution of the well-set problem for Eq. (2.1), has the C-l limit 

v(x), 

v(x) = lim 1 
T-+00 s 

T 

T o 
v(x,t> dt, 

and 
(V” + wZ)v(x) = p(x). 

Now, if v(x,t) is defined as in the theorem, we can show that v(x,t) has a 
Laplace transform V(z,s) with the following properties: 

s 
1 V(x,s> 1’ dx < 00, (2.2) 

lim sV(x,s) = v(x), 
a-o+ 

(2.3j 

[V2 + (w - is)2][sV(x,s)] = p(x). (2.4) 
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In the integral above, the region of integration is the exterior of B. We note that 
the relation (2.3) is an Abelian theorem. Eq. (2.4) can be obtained from Eq. 
(2.1) after the observation is made that V(X) is independent of the initial con- 
ditions. Thus, one may rigorously establish that the solution of the scalar wave 
equation (2.4), satisfying the condition (2.2), and subjected to the limit proc- 
ess (2.3), yields the (C-l) limit of u(z,t) exp(-kt). At the same time, the 
(C-l) limit V(X) obtained satisfies the usual scalar wave equation. It will be 
seen in the sequel that the meaning of the condition (2.2) is that it ensures 
that v(z) also satisfies the radiation condition. 

Of course, the introduction of a negative imaginary part to the wave number 
in the scalar wave equation yields a solution in the form of an outgoing wave. 
We note by the foregoing that a rigorous justification of this accepted proce- 
dure comes from the solution of Eq. (2.1) by the Laplace transform method. 

3. SOLUTION OF THE SCALAR WAVE EQUATION 

The preceding argument reduces the well-set problem for Eq. (2.1) to the 
problem of finding that solution of the elliptic equation 

[V2 + (w - is)2]v = p (8 > 01, (3.1) 

which satisfies the homogeneous boundary conditions on B and which is abso- 
lutely square integrable over the region exterior to B. To proceed further, we 
now assume that the surface B is described by the equation E = &, where 
(,$,v,+) is a set of curvilinear coordinates in terms of which the scalar wave 
equation is separable. These coordinates shall be referred to as the radial, angu- 
lar, and axial coordinates, respectively. We further assume that p has axial sym- 
metry and so remove the dependence on I#J from our consideration. If p does not 
have axial symmetry, the obvious reduction can be made in which Eq. (3.1) is 
replaced by an equation for the Fourier components of v. 

We may now write Eq. (3.1) in the form 

-L$J - L,v = J(La)dbl). (3.2) 

In this equation Lg and Lv are linear differential operators involving the variables 
.$ and 7, respectively, and J(E,v) is the volume Jacobian. Because of the pres- 
ence of the complex coefficient (w - is)” in LE and L, , these operators are not 
formally symmetric; and hence, the standard spectral representation theory (13, 
14) does not apply. However, such operators have been studied by Sims (2) 
and Phillips (3). We next summarize those results of these authors which are 
applicable to the solution of the boundary value problem for Eq. (3.2). 

Let L be a formal differential operator defined by the identity 

Ly = -A- 
dx 

p(z) 3’ + q(s)y 
dd 

(-=J < a < 2 < b I +a>, (3.3) 
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where p is a real-valued differentiable function which is positive on (a$) and 
q is a complex-valued function such that Dq > qo on (a$). There exist integral 
operators &, called resolvents for L, which are defined and analytic in the 
half-plane 3X < qo and which have the property that if Ly exists and if y and 
Ly are absolutely square integrable on (a$), then 

aEA(LY - XY> = Y, (3.4) 

and 

s 

--i6+W 
c&y dX = -7rz.y (3A < 40). (3.5) 

--id-w 

Hereafter, the class of functions f such that Ji 1 f 1’ dx < 00 will be denoted 
~?(a$). In general, & is not uniquely determined. If q does not uniquely deter- 
mine @A , then the boundary conditions at a and/or b will. 

In three dimensional diffraction problems, only two cases are of importance. 
Case I. The conditions that L fall into this case are 

(a) --co <aandb = 00, 

(b) P(U) # 0, 
(c) for 3X < qo , the homogeneous equation Ly - Xy = 0 has exactly one 

linearly independent solution which is in A?“( a, 00 ). 

Under these conditions, if a homogeneous boundary condition is set and it is 
required that &y satisfy this condition at a and that &y be in ~~(a, w ), then 
aA is uniquely determined and has the representation 

@AY = s 
- G(x,~,h)y(~) dr. (3.6) 

a 

The kernel in this integral is called the resolvent Green’s function and is defined 
by the formula 

G(x,T,X) = 
1 Yl(X)Y2(7) (5 < 7) 

P(x)wYl TY2 J) y1(7)y2(x) (7 < x> ’ 
(3.7) 

where (L - X)yj = O(j = 1, 2), yl satisfies the boundary condition at a, y2 is 
in &“(a, 00 ), and W (1~1 ,y/~ ,A) is the Wronskian of yl and y2 considered as a func- 
tion of 7. 

Case II. The conditions that L fall into this case are 

(a) --oo <a<b< 03, 
(b) a and 6 are regular singular points for Ly - Xy = 0, and p(a) = p(b) = 0. 

Here, aside from the condition that %y be in C2(a,b), no boundary conditions 
are needed in order to specify @A . The resolvent @A again has a representation 
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of the form (3.6) (in which, of course, “ Q, ” is replaced by “V’). In this repre- 
sentation, the kernel is described by the formula (3.7) except that yl and 1~2 are 
now taken to be the solutions of Ly - Xy = 0 which are regular at a and at b, 
respectively. 

We now apply these results to obtain the solution of the boundary value 
problem for Eq. (3.2). In three dimensional diffraction problems, the radial op- 
erator LE , with homogeneous boundary conditions at to , satisfies the conditions 
of Case I above, whereas the angular operator fulfills the conditions of Case II. 
We thus are able to use the relations (3.4), (3.5), and (3.6) to represent the 
solution as a contour integral. We give the details of the derivation only in the 
case of diffraction by a perfectly reflecting prolate spheroid which is considered 
below. In the case that B is a sphere, this integral representation is precisely 
the one which can be obtained by using the Watson transform (10). We carry 
out the evaluation of the integral, again, only in the case of the prolate spheroid. 
However, the features the calculation in this example exhibits are typical of the 
general situation. 

4. THE INTEGRAL REPRESENTATION IN THE PROLATE SPHEROID CASE 

For the prolate spheroid with semifocal distance G and eccentricity E = &’ < 
1, the operators Ls and L1 appearing in Eq. (3.2) are defined by the formulas 

Lp = -[(P - l)U& - y2(12 - 1)U (to < 51, 

L,u = -[(l - 7&], - $(l - ?J2)U (-l<?.?<l) 

The constant y appearing above is c(w - is). The boundary condition at E 
must now be specified, and we impose the condition 

U&~o = 0. (4.1) 

The operators L( and L, are both of the type (3.3); and for them, respectively, 

-39 2 2wsc2(502 - 11, 

Sq 2 0. 

The radial operator Ls is to be considered on the interval (to , CQ ), f. > 1. 
For Lf , p = 1 - t2, and p(Eo) # 0. The homogeneous equation Lty - Xy = 0, 
where ?jX < 2wsc2( 502 - 1)) has two linearly independent solutions yl(f‘,X) and 
yz( ,$,A) which are asymptotic as [ + 03 to (p - 1)-1’2 exp(irt) and (t - 1)-1’2 . 
exp( -irt), respectively. Since !R(ir) > 0, only the second of these solutions 
is in z”( to , CO ) ; and hence, LE falls into Case I. In order to determine the re- 
solvent Green’s function, we must single out the solution satisfying the bound- 
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ary condition (4.1) at to and a solution in J?( 50 , ~0 ) . This pair we denote (ol and 
qo2 ; and clearly, 

vJl(E,X) = Y1(4,X)Ylz’(Eo 3x1 - Y2(~,~)Y1’(50 7x1, 

(02W~ = !/2(E,X). 

We note that 

The resolvent Green’s function is 

G(5, t’, A> = (t < -5’) 

(E’ < E) . 
(4.3) 

The operator L, is to be considered on ( - 1, 1). One may easily see that it 
falls into Case II. Its resolvent Green’s function is defined in terms of the solu- 
tion $2(q,p) of L,y - my = 0 which is regular at 71 = 1 and the solution \L~(T,~) 
defined by #I( 7,~) = #2( -7,~). In particular, 

1 

GhPLp) = (1 - ~2ww1 ,#2 d-4) i 

thh,/4~2h’,d (a < rl’) 

1c’1(q’,p)#2(q,p) (7 < 7) * 

We are now in a position to derive a contour integral representation for the 
solution z)(t,q) of Eq. (3.2) which we seek. Let (RX and & be the respective 
resolvents for LE and L, , and let I? be a path in the complex X-plane defined by 
the conditions 

X = 1 + it?, 0 < 6 < 2wsc2(.$ - l), 

where 1 and 6 are real. The orientation of r is taken so that the direction of in- 
creasing 1 gives positive orientation. We apply &A and & successively to Eq. 
(3.2), taking into account the relation (3.4) and find 

- &J - &xc = &xatx[Jp]. (4.4) 

We then integrate both sides of Eq. (4.4) along r and use the relation (3.5). 
The following integral representation for 2) results: 

The justification for this result depends upon the fact that the path r lies below 
the singular points of @A and above the singular points of %-A , a fact guaranteed 
by the conditions on Dq (2). If s = 0, the argument is invalid. 
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To rewrite the integral in the right member of (4.5) we use the representation 
ensured by formula (3.6). The integrand has the value 

fl 00 

ss d(,,,‘,-x)G(~,~‘,x>~(~‘,~‘)~(~‘,~’) 4’ drl’. (4.6) 
--I to 

Because of our assumption of axial symmetry, we may regard the integral (4.6) 
as a constant multiple of a volume integral. Then if p(t,v) is a distribution cor- 
responding to a point source at (a,1 ), the integrand reduces to 

f%.d,-VWW). 

In this case, (4.5) becomes 

When s + O+, this reduces to the Green’s function for the prolate spheroid rela- 
tive to a point on the axis of symmetry. 

5. REMARKS ON THE INTEGRAL REPRESENTATION 

Our main concern is to compute the surface distribution on a prolate spheroid 
induced by an axially-symmetric plane wave. This distribution, v,(fo ,v), is ob- 
tained from v([,q) by the standard plane wave normalization, i.e., 

v,(So ,q) = i+: (E” - 1)1’2eicoz li~li~+v(~~ ,v). 

Making use of the relations (5.1), (4.7), (4.2), and (4.3) and the asymptotic 
form of (02(1,c,X) for E -+ + =a, we obtain the important result that 

The integrand which appears in the relation (5.2) has poles in the half-planes 
above and below r. These half-planes will hereafter be referred to as the upper 
and lower half-planes, respectively. The poles lying below r arise from the singu- 
larities of &q,l,--X) for fixed VJ. The operator L, is self-adjoint when s = 0. 
Therefore, on the basis of Sturm-Liouville theory we may legitimately evaluate 
the integral in the relation (5.2) as a residue series involving the residues which 
arise from the poles of g(~,l,--A). For large values of o, the residue series will 
converge slowly-it is the analog to the expansion in surface harmonics which 
occurs in the case of the sphere. It thus becomes necessary to consider the residue 
series contributed by singularities in the upper half-plane. These are precisely 
the zeros of (pi(& ,A). Because the operator LE , even with s = 0, is not self- 
adjoint when the radiation condition is imposed, the question whether or not 
the integral in the representation (5.2) can be successfully evaluated as a residue 
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series contributed by singularities in the upper half-plane is one which can only 
be settled by considerations removed from Sturm-Liouville theory. 

From this point on the broad outline of our work follows that of Franz (10). 
‘To determine the residue series, we must obtain a knowledge of the behavior of 
solutions of the equations 

and 

[Cl - 9%hlr + [r”(l - 7’) - a/ = 0 (5.3) 

NE” - 1hlE + h2(E2 - 1) + WY = 0. (5.4) 

We first consider the contribution to the residue series for the right member of 
the relation (5.2) when 1 X 1 >> 1 y 12. If [ X ] >> I y 12, the solutions of Eq. (5.3) 
behave asymptotically in X like the solutions of Legendre’s equation of order Y, 
where V( v + 1) = -1. The resolvent Green’s function associated with L,, is 
then essentially that obtained in the case of the sphere. A similar consideration 
applies to Eq. (5.4) but involves slightly more computation. 

If we introduce the change of variables defined by 

8(t) = (P - l>“‘YW and z = >5[(.$’ - 1)1’2 + ,$] , 

then Eq. (5.4) becomes 

1 4 +; (2 + l/42)- (j.7 = 0. (5.5) 

If the last term in the coefficient of jj in Eq. (5.5) is suppressed, the equation 
reduces to Bessel’s equation and has solutions C,,(rz) with p2 = +$jy” + x - X. 
Hence, for either fixed X and large x or fixed z and large X, y2 being fixed and 
I A I >> I Y 12, th e solutions of Eq. (5.5) are asymptotically approximated by 
cylinder functions CP(rz). Because of this fact, the resolvent Green’s function 
associated with LE is also closely approximated by the resolvent Green’s func- 
tion in the case of the sphere when I X I >> 1 y 12. The larger I y 1 is the better 
the approximation. 

The preceding argument may be formalized so as to show that for I X / >> 
] y 12, the integrand appearing in the relation (5.2) resembles that obtained in 
the case of the sphere closely enough that the argument of Franz (Ref. 10, p. 
713) may be applied. The conclusion is that in the illuminated region, that is, 
for positive ‘1, the residue series diverges; whereas in the shadow region, that is, 
for negative q, the residue series converges and represents the solution. This same 
argument #shows that the contribution to the residue series for I X I >> I 7 I2 may 
be neglected. To evaluate the integral in the representation (5.2) and give a 
physical meaning to the result, we must therefore do two things. We shall first 
compute the residues in the upper half-plane for values of X which are “corn- 
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parable to” y’. We shall then transform the residue series into a double series 
which, if the order of summation is interchanged, can be interpreted as a series 
of “creeping waves”. We shall see that if the first creeping wave is deleted from 
this series, the remaining series converges even in the illuminated region. Finally 
we shall show heuristically that the terms which have been removed can be 
re-evaluated by the stationary phase technique, and thus find that they corre- 
spond to the optical contribution. 

6. THE TURNING-POINT ANALYSIS 

The program we follow to compute the residues contributed by the zeros of 
caz’(& ,X) which lie above the integration path r is: 

(i) Using the theory of Langer (5), we obtain an asymptotic representation 
for the zeros of P{ (50 ,A) ; 

(ii) We obtain an asymptotic representation for d[~z’( [o ,A)]/& at these zeros; 
(iii) Lastly, we derive an asymptotic representation for &7,1,-A) at these 

zeros, using work of Langer (6). In carrying out (i) , we need only to find those 
zeros which occur for values of X which are comparable in absolute value to 

I Y 12. If I x I -+< I Y I27 we can show that no zeros exist; as we have mentioned 
above, the zeros corresponding to values of X with 1 X 1 >> j y I2 need not be con- 
sidered. 

The homogeneous equation to be studied is Eq. (5.4) with 

.$ 2 1 + e,~ > 0, and 3-r < 0. 

If we let 

then 

y = (p - p2w 7 

WN + 
[ 

Y2 + [2 _ 1 -J-+ (Q !  1)” 1 w = O, 

where the primes denote differentiations with respect to ,$. For 1 X 1 << ) y I’, this 
equation has linearly independent solutions wj(j = 1,2) such that 

wj(&y) = e*iyt [1+?]. 

Here and whenever the symbols f or =F appear, the upper sign is to be used 
when j = 1, the lower sign when j = 2. The linearly independent solutions of 
Eq. (5.4) which are relevant, yi , correspond to the functions wj and have the 
form 

(j = 1, 2). 
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Moreover, 

yjt = *sy - 
( (E2 t 1) > 

([2 _ l)-llzpS [I + !-y]. 

Hence if / X 1 << 1 y 12, y; = 0 implies that E/(4” - 1) = 0(1 y I). But if / y 1 
is large and ,$ 2 1 + t, this cannot happen; and therefore, since y2 = (Do , if 
1 X 1 << 1 y 12, (pz1(.$0 ,A) has no zeros. 

For the configuration of X and y2 left to be considered, it is convenient, and 
in fact, is the key to the matter, to introduce an auxiliary parameter c;~ with 

512 1+ e and (&‘-1)~~+X=0. (6.2) 

For this configuration of .$I ,y, and X, the differential equation (6.1) has a sim- 
ple turning point at [I ; and if we eliminate X from the equation using the de& 
nition (6.2) of [I , we obtain the equation 

w” + 
[ 
r”(5” - fl”) + 1 

P-1 (52 _ 1)2 1 w = 0. (6.3) 

The solution of this equation whose behavior must be determined is the one 
asymptotic to exp(--iyE) as E --f co. Under our hypotheses, the theory of Lan- 
ger (5) applies to Eq. (6.3), and we may proceed as follows. 

Let 

where U is the branch which is positive for 5: > & . The functions of central 
importance in Langer’s theory are: 

Nf) = 1: U(r) dr, l-(&r) = r@(E) (6.5) 

and 

\E(() = cpu--1’2, Wb) = ,‘iT Wf‘)* 

With the above definition, \E is regular at & . We compare solutions of Eq. (6.3) 
with solutions of the related equation 

V” + 
[ 
y2U2(f) - z v = 0. .I 

When / { I 5 N, the solutions 

(j = 1,2> 



288 KAZARINOFF AND RI’JT 

are convenient to use; while for ( { ] > N, the solutions 

0 

112 
V(j)(f) = ; e *(5xi’12),(,),1’3,~j~(~) (j = 1, 2) (6.6) 

are convenient to use because of their simple asymptotic behavior in {. Here 
and henceforward “N” is used as a generic symbol for a positive number. 

We are interested in the solution 15 of Eq. (6.3) which is asymptotic to exp 
(-iyC;> asE+ CQ. Now 

V’“‘(E) = \k(,$){-“6e-“[l + O([-‘)I if 1 arg 5 1 < 7r - 6, 6 > 0; 

and there is a solution w@) of Eq. (6.3) of the form V’“‘([)[l + ~(y-‘)I. Hence 
it must be that 6 is a constant multiple of wc2’; that is 

6 = cJ2), 

where 

To evaluate C, it is necessary only to compute 

f(c;l) = t: P(t) - Cl, (6.7) 

since 

To determine f( &) we let z = h/t and use the definitions (6.7), (6.5), and 
(6.4). We then find 

f(h) = lim 51~ z-o { [;(gy2dt - ;}. 

An integration by parts yields the formula 

f(h) = lim 
i 

[Cl - z”>(g - z2)P2 - ,$I 
2’0 z 

Finally, we see that 

f(41) = - I’ gg>“” dt = - .@ (;, 2;l). 

We observe for future use that 

f’(h) = - h 1’ [(b2 - t”) (1 - t2)]-1’2 dt = - F (4, I;~). 
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The functions F and E appearing in these formulas are, respectively, complete 
elliptic integrals of the first and second kinds. 

We can now give the asymptotic representations for @ which are guaranteed 
by Langer’s theory. If [ 2 1 + C, e > 0, and 1 p 1 > N, then 

and (68) 

If 5 2 1 + E, e > 0, and I{ 1 5 N, then 

and (6.9) 

C’=y e 1’6 iy’(yv(2)‘(Q + B(&y)]. 

In these formulas “B” is a generic notation for a function which is bounded 
with respect to its arguments. The dependence relation 

V'"'(5) = YlVl(E) + rzV2(8, (6.10) 

with 

yl=i t$ 0 
l/2 l/2 

e-3sii12 
3 

y2 = _ i 2?r e--*il12, 

0 3 

should be used in conjunction with the latter formulas. 

7. THE ZEROS OF p2’(&, , X) 

The equality 

cpz(,9) = (p - 1)-1’227) (7.1) 

relates the solution 102 of Eq. (5.4) to the solution C of Eq. (6.3). Thus in order 
to carry out step (i) in the program given in Section 6, we now find the zeros 
of 

(c;” -l)ycY2’ = ij)’ - & 6, 

and in particular, the functional dependence of the zeros of (~~‘(50 ,A) on X. There 
are two cases to consider: 1 { 1 > N and I !: I I N. 



:290 KAZARINOFF AND RITT 

If ( { 1 > N, the relations (6.8) apply; and we can conclude that cpi has zeros 
,only if 

--iyu”2[1 + o(r-‘)I - ~ 4 1 P2[1 + a(?-‘)I = 0, 

which implies 

t = -im” - NP - .$1”)1”“[1 + O(fl)l. 
If ,$ > & , the factor involving E and &‘I in the right hand member of this formula 
is real; hence, E must have an imaginary part, contrary to hypothesis. On the 
other hand, if t; < $ , (f2 - t?)“’ is pure imaginary; and again [ must have an 
imaginary part, since y does and E > 1, which is contrary to hypothesis. Thus 
for unbounded / < (, the assumption that y has an imaginary part implies that 
vpzf has no zeros. 

If 1 { ( < N, then the relations (6.9) apply. Using them, we find that p2’ has 
zeros only where 

[P’ + B(f,-y)] - [P + B(t,r)r-l]E(t” - 1)-r = 0. 

When ] b j I N, V”’ is bounded, and thus p2’ has zeros only where [Vc2” + 
B([,r)] has. If there were a sequence (.$} of zeros approaching .$‘r , then on this 
sequence, V(‘) would remain bounded. But by the relations (6.10) and (6.6), 

jiyl ( V2” / = cc ; 
-1 

hence, cp2’ has only a finite number of real zeros lr when ( X ] and ) y 1’ are com- 
parable, and there is an E > 0 and an N > 0 such that 

E < I S-(fr) I < iv 

for every such r. From this last relation and the explicit expression for Vc2’ 
which can be obtained from (6.6), it is easy to show that these zeros satisfy an 
equation of the form 

$ k-“3H~;h(l-)I + am = 0. (7.2) 

If ,$ = ,& , f. fixed, and X is considered as variable, the value {,. of { correspond- 
ing to the rth zero may be thought of as the value of 

P = Y Ii0 U(4El) ca 
E,(h) 

which is attained when X = X, , since & and X are related by the condition (6.2) : 
that is, 

rr = i-(-to, ElPb ,rl)* 
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Because the zeros h, of d[t1’3H1’/2~(t)]/dt are simple and this function is analytic 
in a neighborhood of each of its zeros, the numbers lV determined by the con- 
dition (7.2) satisfy the relation 

5-r = h, + o(Y-‘). 

When considered as a function of [, {“3H:/2i([) is essentially an Airy function; 
hence, the known values of the zeros of Ai’ and Ai at these zeros may be used 
to compute h, and h,“3H1’/2i(hr) (15). Using the definition of {, the last relation 
may be recast in the form IO 

s II t” - tl%r ,r> tl(b'-l) t2 - 1 1 lD dt = $ + o(p). (7.3) 

When expanded in powers of (50 - &), the integral on the left becomes 

2 
2 (‘“-)‘i’ (to - t1)3’2 [ 1 + 2O;(; b f) 3 fo2 - 1 (Eo - Sl> + (Eo - &)2o(1) . 1 

For the present, the branch of (.$o - EI)~” will be left unspecified. Replacing 
the integral in the relation (7.3) by its equivalent above, we find 

l1 - lo = pi’3 p$>“” @>“” [ 1 + lo(g;:~;~oml,2,3 

. (3”” (y3 + o(y-‘)]. (7*4) 

Again we leave the branch of the cube root unspecified. 
The numbers X, may now be determined by using the defining relation (6.2) 

for & in conjunction with the estimate (7.4). The conclusion is 

A,= -3.2(&+ 1)[1+a-‘“/3(~l~3~~)1/3+~(~)l13b-2~~~3 2502 - 1 h, 413 

. * 0 + o(y-5’3) 1 
(75) 

(2t;d”‘3(r;oz - 1)4’S 7 . 

The branch of the cube root can now be chosen to satisfy the requirement, ob- 
tained from the theory in Section 4, that X, must be in the upper half-plane. 

8. THE RESIDUE CONTRIBUTION MADE BY qz’(&, ,x) AT X, 

Our next objective is to compute 

&Q2’(50,X) 

ax Ash, * 

Since X and & are related by the formula (6.2), it is sufficient to compute 

%2’ at1 
Fl’ dX LX, 
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where the first factor in this product is to be evaluated at the value of ,$I given 
by the estimate (7.4). The form of cpzl(& ,A) as determined by the formulas 
(7.1), (6.9), and (6.6) is 

p2’(fo,X) = (Et - l)-“*yl’6ei- (3”’ e-5*i,12 [ @w-“amw 1’ 
(8.1) 

From the definitions of c, q’, and H!$ and in conjunction with the estimate (7.4), 
it may be found by a computation that 

where E, is &(A, ,y). Because of the critical nature of the phase, the exactness 
of the term involving .& is important. The derivative 

ah -1 =- 
ax A+ 2Y2‘m) 

may easily be computed. Thus 

adto ,A> 
ax 

X=hr = (to' - I)-' I'* h,H~::h,H:::(h,)e"Yf'E"+5"i'4 
(8.2) 

[l + 0 P3>1 

9. THE DETERMINATION OF G(rl,l,-x,) 

The final step in our program for the computation of the residues of the inte- 
gral in the representation (5.2) is to determine an asymptotic representation 
for f?( 7,1,-X?). The differential equation to be considered is now Eq. (5.3) 
with - 1 < 7 < 1 and X = X, . Using the theory of Langer (6)) we shall derive 
an asymptotic representation for the solution #1(7,-X) of Section 4 which is 
uniform on - 1 _< 4 5 1 - E, c > 0. The Wronskian W ($1 , $2) is a constant 
multiple of (1 - ~‘)-l, and its evaluation is a simple matter. 

If we let 

y = (1 - q*)-“*w and p* = --X, 

then since X, = (1 - C;r”)y’, Eq. (5.3) takes the form 

(9.1) 

d$+ p i [ 
t: - q* 

(F,2 - 1x1 - 7”) 1 + (1 1 T2)2 w = 0 
i 

(9.2) 

for the values of p we need to consider. This equation fulfills the hypotheses 
necessary to the application of the theory in (6) on - 1 < 7 2 1. Following 
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Langer, then, we define 
2 2 

pw = 
(&2 “‘,,l”- 112)’ 

with P taken as the positive root, 

S(q) = JI’ PO) dt, u(w) = d(7))) 

and M = [P(~)IS(~)]-"~, with M(1) = ,“F M(q). 

The related equation for (9.2) is that equation of the type 

;; + p2p2 + (1 !  02)2 + ICC?) v = 0, 1 
which has solutions 

v = MuCo(a), 

(9.3) 

where Co is any cylinder function of order zero. In Eq. (9.3) k( 71) is a function 
of the form O(l)/(l - v) on -1 < 7 I 1. Eq. (9.3) is related to Eq. (9.2) 
in the sense that its solutions are asymptotic representations for solutions of 
Eq. (9.2). The solutions 

and 

vo = MuJo 

0 
112 

vj = 
; 

ef*i'4M&(')(cr), 

= Mu”2e*i”[l + a-‘o(l)] 

(j = 1, 2) 

(I u I -+ w,, I ax u I < r - ~1, 

are the ones important to us. Now, 

lim (1 - q2)-1’zt~o( T) = ip, 
7-1 

and (1 - q2)-1’2 210 is regular at 3 = 1. Only one solution of Eq. (5.3) is regular 
at 1; hence, the theory in (6) guarantees that 

&(q,--A) = $ (1 - Tj2y2 [vo(q) + u3 y(y (Ial IN), 

+2(q,-x) = l-cl _ +y:21vo(qj + ~“2~eic~(l) + e-‘“O(l)1 
(9.4) 

\ P 
(I++, 

$&,-A) = i (1 - gy2 
i 

vo’ + 
VI e ’ -2i”O( 1) + v2’e+2iuO( 1) 

P (9.5) +- 1 ” q2 
uo + 

u1’2[eiuO( 1) + e-““@(l)] II (1 u 1 > M). 
P 
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As a second solution of Eq. (5.3)) we choose 

!h(rl,--x) = ih(-?,--x). 

The asymptotic behavior of $1 for - 1 < I] < 1 and of $1’ for 1 a(q) ] 2 N may 
be found from the relations (9.4) and (9.5). As previously noted, the function 
(1 - ~‘)lql(lj/~ ,&) is a constant; and hence we may evaluate it at any conven- 
ient point. We choose the origin. Since 1 a(O,p) 1 > N, 

For ] u 1 large and in particular for V(O), the representations 

Jo(a) 

2 112 2-3 + O(a-2) = _ 
01 

Cos(a - 7r/4)[1 + O(u-“)I + sin(u - n/4) 
‘\ 

?TU U 1 P 
Jo%> 

sin(a - n/4)[1 + o(~-~)] + COS(~ - ?r/4) 3e2-3 ‘, @cu-2)]} 

can be used. Therefore, 

(1 - q%%h ,YQ 

= z {cos[2pX(O)][l + B(u-~(O)] + sin[2u(0>]O(a-1(0>) { fy}, 1 + 

and 

~l(%--A) = {-i ($>“’ (([o2 -‘“,,‘- ,,>“’ cos[cr( -s> - */4] 

+ p-3/2[ei~~-~~o( 1 j  + e--ie--ll)O( l 11 

i 

for ] 7 1 < 1 - E, or I 4-q) I 2 N. 
From these relations, we finally conclude that 

l/2 

O( Eo” - 1 
l/4 

&$,-+I,) = -i & 
(1 - ?l”>W - ?I”> 

cosfpB( -q) - 7r/4] + p~-‘[eiu(-‘)O(l) + e-“+“‘O(l)] 
(9.6) 

(cos[2,,s(o) + K-1 sin TZ~(O)]l 
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where 

S(s) = p: = -A, = (5; - l)r”, 

for/q] 5 1 - ror(a(--9)] 2N.Ifrl~-l,thenIp,S(-~)I~O;andin 
this instance, the representation (9.4) with / u 1 5 N is to be used. We find 
that for ] (J( -7) ( 5 N, 

. -312 

i ( 
--Q-% fO2 - 1 

(Eo” - T”>(l - q2> ) 

l/4 

x L!F2( -T,l)JJp+s( -q>] + u3(-;~;;;[+;~/!20(1) 
1 (9.7) 

ohy lp --&) = ;~(cos,2prs(o)][1 + e(Y’(O))] 

+ sin[2~(0)10(~~‘(0))) (l+O(l>pT’) 

In the limit as 7 + - 1, 

b( -1,1,-X,) 

7r 
= jj pl”‘“~cosI2p,S(O)j[l + 0(~~‘(0>>] + sin[2~(0)]B(a-l(O)))-’ 1 + { $1. 

10. THE RESIDUE SERIES AND ITS INTERPRETATION 

We now can exhibit the asymptotic form of the residue R, at A, contributed 
by the right member of the integral representation (5.2). Combining the esti- 
mates (9X), (9.7), and (8.2) and explicitly writing only terms involving the 
highest powers of y, we obtain the result 

R, N lim s-*0+ exp - ip7( & - W”“f(~J cos[Ps(-~) - T/41 1 
- T12) (to2 - D2V4 h,H$(h,) COS[2P~~(O)1 

when I p$( - 7) / > N. In this formula, & is to be determined from the relation 
(7.4) with h = & , and p7 = -A, , where X, is given by the relation (7.5) and 
y = w --2k. If j p,S( -q) I I N, then 

R, - lim 
i 3-“*(2~&,)~‘~ exp -ip,([: - 1>-““,f(fJ 1 SY -T)JO[PrS( -v>l s-10+ Y(EO2 - 1)“2 [(l - ?jqt: - 7j2)]“4h,H:;:(h,) cos[2p,x(o)l 

We omit the estimates of error in these results only to avoid excessive complica- 
tion of already complicated formulas. 

By introducing some new parameters, we shall rewrite these results in a form 
more amenable to interpretation. We first suppose that the limit as s + 0’ has 
been taken so that y becomes EQW, where E = 50~’ is the eccentricity of the ellipse 
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which generates the prolate spheroid and a is its semimajor axis. Of course, 
(1 - e2)1’2a = b, the semiminor axis. We also let 

d(rl) = b[S(-7) - S(O)] and d*(l) = -b[S(-7) + S(O)]. 

The integral defining S is elliptic; hence, the functions d and d* have the fol- 
lowing interpretation. Let a point on a &- spheroid with angular coordinate 7 be 
considered. Then 1 d(q) 1 is the length of the shortest geodesic arc from the point 
to the shadow boundary, the curve on which q = 0. If - 1 < q < 0, d(q) > 0; 
if 0 < 7 < 1, d(q) < 0. The length of that geodesic arc from the point to the 
shadow boundary which passes through 71 = - 1 is d*( 7). Let us also set 

Pr y, = -- 
b 

= -w il + ;e-~~q2!!L~+ e--pri/J(&)03 (10.1) 

~ - P3.2-31 + o(,"'gs. 

The second of these two equalities is obtained from the relations (9.1) and (7.5). 
The imaginary part of vr is positive. We finally observe that if L denotes the 
length of the circumference of the ellipse which generates the spheroid, then 

L = -4bS(O). 

We can now write R, in the forms 
iv,d(tj)+st/4 + eiv,d*(7)--*i/4 

1 + eivrL 

and 

(I PrS(--t) I > N), (10.2) 

(I PrN-71) I I m 

where 

A, = 2.3-“2i[h,H~~:(h,)(1 - $)(I - E~~~))~‘~]-‘, (10.4) 

and 

B 
r 

= (2d1’23-1’2i[d(q) - L/4]““J&.(d*(~) - L/4)] 
b3’2wh,H;;:(h,)[(l - v”)(l - .~2,2)]“~ ’ 

(10.5) 

Of course, the surface distribution v, = c R, . 
If the residues given in Franz’s paper (Ref. 10, p. 712) are specialized to the 

case of a plane wave, and if. the relations (10.4)) (10.2), and (10.1) are special- 
ized by letting E + 0, then his residues and ours coincide. We must observe, 
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however, that since our asymptotic estimates are all made under the hypothesis 
that 1 y 1 is large, and hence that EW is bounded away from zero, this fact-that 
the limit as .C --+ 0 of R, as described by relation (10.2) is the known sphere 
solution-must be regarded as a happy coincidence. 

The length d*(q) is always positive, and in the shadow region d(s) > 0. 
Thus the residue series c R, for the distribution on the surface converges rap- 
idly in the shadow region and may be summed by the “creeping wave” represen- 
tation 

x1. R, := -j-z-( -1)” cr A,IeiY’[d(1)+$Ll+ri/4 + eiv,[d*(?)+1L1-ri/4). (10.6) 

[Added in proof: Professor J. B. Keller has shown us that our geometric interpreta- 
tion of the functions d(q) and d*(q) is in error, since the &.-spheroids have no real 
physical significance. He has shown that since the combination ~~(572 - 1)-l is 
identical withy, the exponential terms can be correctly interpreted by expanding 
i-@‘(-T) -- S(O)] and -i-&9(-~) -I- S(O)] as p ower series in (& - to) and using 
the formulas (7.4). This simplifies the result and makes the parameter Y,. and 
Eq. (10.1) superfluous. We find that the following description of the terms in the 
expansion can be given. 

The leading term is pure imaginary and equals ws, where s is the arc length 
from the shadow boundary. The second term is complex and is proportional to 
Ll/3s’, where s’ is an integral depending upon the local radius of curvature in 
exactly the manner predicted by Keller (1). Hence, with this approximation, 
our theory agrees with the Fock-Keller theory. The next term in the expansion 
is proportional to (wRo)-~‘~, where Ro is the radius of curvature at the tip of the 
spheroid. Thus, the approximations of Fock and Keller are applicable only when 
the wave length is small relative to Ro . We prefer not to speculate on the correct- 
ness of the notion of “creeping waves” except to point out that on the basis of 
Section 2 the integral we have evaluated represents the time average of a time- 
dependent’ function and not the space-dependent factor of a separated steady- 
state solution.ll 

Some remarks on the distribution near the tip in shadow will now be made. 
The representation (10.3) for R, applies in a neighborhood of the tip whose size 
depends upon pT . In first approximation, the region is the one where 

1~41 + d” I < iv (Pr - wb). 

For this configuration of pr and 7, the sum c R, is rapidly convergent. As 
& --, o’, 

Rr -+ 

(2~)“~3-“~i [Arcsin( -7) - a]“” JO [p, brcsin( - 7) - z}] 

awh,#:(h,) (1 - 72)1’4 cos Arcsin( --r]) - 5 
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. 

This formula may be of interest even though it is obtained by illegitimate use 
of our asymptotic representations, since y = 0 when E = 0. 

Lastly, we consider the situation in the illuminated region. We shall argue 
heuristically to obtain a conclusion analogous to that rigorously obtained in the 
case of the sphere by Franz (Ref. 10, p. 712). We conjecture that the conclusion 
is correct and that it can be rigorously proved by following Franz’s program. 
If one rewrites the summation (10.6) as 

C’ R, = CT &f”rd(?)+Ti/4 + c*, 

where c* represents the terms for n = 1, 2, * . . , and the “small” part of the 
n = 0 terms, one sees that c* represents a series which converges even in the 
illuminated region. The other terms sum to the integral 

1 ?r 
I( > 2sir2p 

I” expl-i&-‘&q) + ?ri/4] dx 
(la2 - l)co2’(~O,X) . 

An examination of Eq. (5.5) reveals that if the quantity -y”z’ - p2, where k2 = 
($5~” + x - X), is large in comparison with (Z + l/42)-‘, the Hankel function 
representations for (P~‘(.& ,X) can be used; hence, one can evaluate the above 
integral by the method of stationary phase, making use of Langer’s representa- 
tions for Hankel functions. The computation follows that of Franz (Ref. 10, p. 
714). The point of stationary phase occurs for the value of X which satisfies the 
equations 

-d(a) = ab, yz cos a = /.l. 

But unless cos LY is small or 1 d( 7) ( is large, these equations contradict the hypoth- 
esis that y2z2 - k2 is large. This means that this stationary phase evaluation can 

be legitimate only in a neighborhood of the specular point of the spheroid; as a 
matter of fact, the evaluation gives precisely the geometric optics solution. 
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