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Part II**

S. THE VALIDITY OF THE SPLITTING TECHNIQUE

In this section we show that, given any admissible n-term sequence
S’(1,1) containing no zeros, the procedure specified in Section 4 always
results in a folded tree whose loading sequence S(1,1) = S’(1,1). Thus
we have a constructive proof that the admissibility of any sequence of
positive integers is a sufficient condition for it to be the loading sequence
of a folded tree. The most difficult part of the proof is to show that
the splitting technique is admissibility-preserving, that is, to show that
the sequences S'(z + 1,25 — 1) and S’(¢ + 1,2j) which result from
S’(z,7) by the splitting technique are admissible if .S’ (7,7) is admissible.

(We do not give a complete proof here but rely on the results ob-
tained in (4).> We shall, however, present enough of the proof to give
an intuitive understanding of the argument.)

Theorem 10: 1f S’(4,7) is an admissible sequence with at least two non-
zero terms, then the two sequences which result from applying the
splitting technique to it satisfy the unit condition.

Proof (here and in the following proofs we use the notation developed
in Section 4): Since S'(4,7) has at least two non-zero terms, d; must
exist. d; > 1 since M (S’(s,7)) satisfies the partial sum condition. If
di = 2, then by = ¢;, = 1. If d; > 2, then S’(4,j) cannot have exactly
two non-zero terms, otherwise .5'(7,7) would not satisfy the total sum
condition ; hence, d, also exists and ¢; = b, = 1,

Theorem 11: Both of the sequences which result from applying the
splitting technique to an admissible sequence satisfy the total sum
condition.
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Proof: We need two lemmas.

Lemma 1. f4=x=p+ 1, then A, =0o0r 1;if d, = 2, then
this is so for x = 1,2,3 as well.
The proof is by induction, and can be found on p. 33 of (4)
(Lemma 1). (Note that “d.” of this paper corresponds to ‘e’ of (4).)
Lemma 2. Ay = 0.

Proof: We show first that A,;; =0 or 1. By Lemma 1 the
only possible exceptions to this would be where d, > 2 and p = 1 or 2.
If p =1, then d; = 2, in order that M (S’(s,5)) satisfy the total sum
condition. If p = 2, then d; + d; = 6 by the total sum condition. If
d; > 2, then d, = d, = 3, since the d-sequence is monotonic non-
decreasing. Here ¢; = b: = 1 and b, = ¢, = 2 so that A; = 0. Hav-
ing shown that in every case A,;; = 0 or 1, we must now show that
the value is actually 0. As mentioned in the preceding section, for each
X, ¢; + b, = d.; hence,

icz"— ‘L’;,bz= id:c-

z=1 z=1 z=1

But, since M (S’(4,7)) satisfies the total sum condition,

r
S d. =20 -2,

z=1

which is even. But A,,, is precisely the difference between

4 P
S ¢. and > ba.

z=1 z=1

If A,y were 1, then their sum would have to be odd. Hence, 4,,, = 0.
The theorem now follows directly. Since Lemma 2 entails that

» P

. and > b,

z=1 z=1

are equal, it follows that

» k4 V4
Yd, =2 Y b, =2 S¢, =20+ — 2,

z=1 x=1 z=1

Hence,

r P
b= Y c.=27—1
1

= z=1

and Theorem 11 is proved.

Theorem 12: 1 by, . . ., byand ¢y, . . . , ¢, are the sequences which
result from the application of the splitting technique to an admissible
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sequence .S’ (z,7), then for every x such that 1 = x = p,

Yb,z=Z22—1 and Y ¢, =2=—1.
y=1

y=1

This is proved as Lemma 3 on p. 34 of (4). (The ‘“derived order,”
as the term is used in (4), is the order ., b5, . . . , byand ¢y, ¢q, . . . , €,
as opposed to the monotonic order.) Roughly, Theorem 12 follows
because M (S'(z,7)) satisfies the partial sum condition and the xth term
of the b-sequence and the xth term of the c-sequence are usually ob-
tained from the (x + 1)st term of M (S’ (4,7)) in such a way that

2 b, is nearly equal to 3 ¢,.

y=1 y=1
Thus, > b, is approximately 1 ¥d,
y=1 y=1
Since 1, d,, . . ., d,are the first x 4+ 1 terms of M (S’(7,7)) and, since

S’(2,7) satisfies the partial sum condition,

14+ ¥d, =2+ —1

y=1

and hence

1yd, =2 —1.

y=1

Theorem 13: If S'(4,j) is admissible, then S'(¢ + 1,2j — 1) and
S’(2 4+ 1,25) satisfy the partial sum condition.

This is proved as Theorem 3 on p. 40 of (4). In order to prove
Theorem 13 one must extend the result of Theorem 12; for the b-
sequence and c-sequence are not always in monotonic non-decreasing
order, and a sequence satisfying the summation condition of Theorem
12 may no longer satisfy it when monotonized. Fortunately, it can be
proved that after the third term the d-sequence and c-sequence are each,
in the terminology of (4), quasi-monotonic, that is, for any x and %/,
f4d=a<x=p then b, =b,r+ 1 and ¢, =c,» + 1. It is rather
easy to show by virtue of this fact and Theorem 12 that, for each x,

Y, =20 — 1,
y=1
where d';, . . ., b, is monotonic after the third term and results from

by, . . ., b, by interchanging the appropriate terms after b;; similarly
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for the c-sequence. (Cf. the theorem on p. 18 of (4).) The extension
of this result to the case where the first three terms are rearranged to
make the entire sequence monotonic is made in the proof in (4).

Theorem 14: For every ¢ < n, if S’(4,7) has » terms including exactly
i — 1 zero terms and is admissible, and if S'(¢ + 1,2 — 1) and
S’(¢ + 1,27) are obtained from S’(4,7) by the splitting technique,
then S’(z + 1,25 — 1) and S’(¢ 4+ 1,2j) are admissible and each
contains exactly ¢ zeros.

Proof: That these are admissible follows from Theorems 10, 11, and

13. S'( 4+ 1,25 — 1) differs from &, . . . , b, in at most the presence
of zeros and the order of terms, which does not affect admissibility;
similarly for S’(¢ + 1,25) and ¢, . . ., ¢, To prove that they each

have ¢ zeros, it suffices to prove that there is one and only one unit
term in S'(¢,7). That there is one follows from the fact that S’(z,5)
satisfies the unit condition. That there is only one follows from the
fact that S'(¢,7) satisfies the partial sum condition; for if there were at
least two, then the sum of the first two terms of M (S’(¢,7)) would be
2 <2t —1.

Theorem 15: Given S’(1,1) as an admissible n#-term sequence without
zeros, the procedure specified in Section 4 results in an #-bay folded
tree whose S(1,1) = .5'(1,1).

Proof: From Theorem 14 it follows that for any j < 27! the
sequence S’ (n,7) has # — 1 zeros and is admissible. Its one non-zero
term, say, @i, must be unity by the total sum condition, and so V(#,7)
is labeled P,. Therefore, (1) S'(n,5) is S(n,7) and T'(%n,j) is a folded
tree.

We now go on to prove that (2) for any ¢ and 7, if S'(z + 1,25 — 1)
is SE+12j~1) and S'¢E+1,25) is SG@4+ 1,2j), and if
T(z+ 1,27 — 1) and 7'z + 1,25) are folded trees, then S’ (z,7) is S(4,7)
and T'(z,7) is a folded tree. There is a set

-

of n — 1 distinct labels such that each chain of T(z 4+ 1,27 — 1) contains
exactly one vertex labeled with each member of the set. The m;th,

.., m._th terms of Sz + 1,25 — 1), which is S'(¢G + 1,25 — 1),
are exactly those terms which are non-zero terms. There is a similar
set for T(z + 1,27). Now this set is identical to the set for T'(z + 1,
27 — 1), since for any ¢ the gth term of S’(¢ 4+ 1,25 — 1) will be made
zero by the splitting technique if and only if the gth term of S’ (¢ + 1,27)
is made zero. If V (4,7) is labeled P4, then k is not one of the m,, . . . ,
M a-q; this is so because the kth term of S’(4,5) is one and, therefore,



Aug., 1955.] Tur ForpeEp TrEE 119

the kth term of S’(7 4+ 1,25 — 1) and the kth term of S’ (z 4 1,2j) are
each zero. From this it follows that every chain of 7°(z,7) has exactly
one vertex labeled with each member of the set

{Pi, Py - - - Pul,

since a chain of T'(4,7) is either a chain of T'(z + 1,2 — 1) or a chain
of T(i + 1,27) with V(4,7) and its vertex-input added. Hence 7I'(z,j)
is a folded tree. Now each term of S’ (z,7), except a’+(4,7) = 1, is equal
to the sum of the corresponding terms of S'(z + 1,27 — 1) and S'(z + 1,
27); a’v(t 4+ 1,27 — 1) = @'+ + 1,25) = 0. (This follows from the
specification of the splitting technique.) Since the vertices of 1°(s,7)
are those of T(¢ + 1,27 — 1) and T(¢ 4+ 1,2j) together with V (z,7),
it follows, from the fact that S'(z + 1,27 — 1) is S + 1,27 — 1) and
S+ 1,25) is S(@ + 1,27), that S'(z,7) is S(2,7).

From (1) and (2) it follows immediately by induction that S'(1,1)
is S(1,1) and T°(1,1) is a folded tree.

6. THE ECONOMY OF THE FOLDED TREE

The question arises as to whether circuits represented by folded
trees are the most ‘‘economical’”’ ones which can function as complete
decoding circuits. As we have indicated earlier (Section 2) the answer
is in the negative so far as electronic digital computing circuits are
concerned (see also Section 5 of (2)). However, folded tree relay
transfer contact nets are probably the most economical (in a sense to
be defined) of all complete decoding relay transfer contact nets. To
formulate this proposition precisely we must delimit the class of dia-
grams whose realizations are all such complete decoding relay transfer
contact nets.

Our definition of vertex diagram at the beginning of Section 2 was
motivated by two considerations: (1) that a relay transfer contact is
well represented by a vertex with a single vertex-input and two vertex-
outputs, and (2) that in a relay transfer contact net the relay transfer
contacts can be arbitrarily connected. Hence any relay transfer
contact net can be represented by some vertex diagram. In this
section we go on to define an #n-label complete decoding vertex diagram
in such a way that every transfer contact net which performs a complete
decoding function is represented by a diagram of this kind. Our belief
that folded tree relay transfer contact nets are probably the most
economical of all complete decoding relay transfer contact nets can now
be more precisely stated as the conjecture: The n-bay folded tree has
the minimal number of vertices of any n-label complete decoding vertex
diagram.

The objection may be made that the minimality of the number of
vertices of a complete decoding vertex diagram is not a sufficient
condition for its realization by relays to be minimal in cost, for the
cost of a relay transfer contact net depends not only on the number of
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transfer contacts in it but also on the number of relay coils required
to operate it. To particularize this objection, consider the problem of
constructing a complete decoding net using only relays with eight
transfer contacts each; here the number of relays required is a better
indication of the cost of the net than the number of transfer contacts
it contains.

There is a certain force to this objection. However, it is to a large
extent mitigated by our previous folding results. For if an #-bay
standard tree circuit has a minimal number of contacts, we can in
practice use that folded tree circuit which of all #-bay folded trees has
the least number of relay coils. For an example see the last part of
Section 2. When relays with different numbers of contacts are avail-
able at costs which are not directly proportional to the number of
contacts they contain, then a different folding can be employed to
minimize the total cost of the circuit.

FiG. 9.

We have not proved our minimality conjecture, but in this section
we present a partial result in that direction. To this end we will
introduce a certain subclass of the class of n-label complete decoding
vertex diagrams, namely, the subclass of all #n-label progressive dia-
grams. We shall prove that the n-bay folded tree has the minimal
number of vertices of an #n-label progressive diagram. It seems,
intuitively, that an #n-label complete decoding vertex diagram which is
not an n-label progressive diagram should have at least as many
vertices as an n-bay folded tree, and it is on this ground that we make
our conjecture.

We now proceed to carry out the program sketched above. Since
all the vertex diagrams considered in previous sections were trees, we
first present an example of a vertex diagram that is not a tree (Fig. 9).
(Note the use of the loop in the wire W of Fig. 9 to indicate that the
wire W does not touch the wire V)

Some of the concepts already introduced in connection with trees
must be generalized to apply to arbitrary vertex diagrams. First, we
require a more general method of describing the way states of wires
are determined. To accomplish this we define the notion of the
connection of two wires.
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We say that two wires are directly connected when they touch each
other. A vertex is directly commected to a wire whenever the wire is
either its vertex-input, or its upper (lower) vertex-output when the
vertex is in the upper (lower) setting. Two wires W and W’ are
connected if there is a sequence of wires and vertices X, . . .,
X.(n = 1) such that Wis X, W' is X,, and such that, for each 7 < #,
X is directly connected to X; + 1. By taking » = 1 we see that any
wire is always connected to itself. The sequence X, . .., X, is a
connection of W and W’. Thus, whether two wires in a diagram are
connected usually depends upon the settings of some of the vertices of
the diagram.

An n-label complete decoding vertex diagram (with designated diagram
input and diagram outputs) is a vertex diagram in which the following

hold.

1. Each vertex V has exactly one label from a set of # distinct
labels.

2. For each label there is at least one vertex with that label.

3. There is exactly one wire K designated as the diagram input.

4. A diagram state is a definite assignment of the vertex settings
such that (a) all the vertices with the same label are set the same, and
(b) a wire is in state 1 if and only if it is connected to the diagram input.

5. For each diagram state, there is at least one wire which is in
state 1 in that diagram state and in state 0 in every other diagram
state, and for each diagram state one such wire is designated (arbi-
trarily, if there is more than one) as a diagram output of the diagram.

The diagram input is in state 1 in any diagram state since it is
always connected to itself. Since there are n labels for the vertices,
there are 2» diagram states, and, therefore, 2» diagram outputs. For
any diagram output Q, let S(Q) be the diagram state in which Q is
in state 1.

Sometimes in these diagrams a vertex may have the state of its
vertex-input depend on the state of one of its vertex-outputs. For
example, consider the uppermost vertex of Fig. 10. When it is in its
lower setting, the state of its vertex input Q. depends upon the state
of its lower vertex output. For this reason the terms ‘‘vertex-input”
and ‘‘vertex-output’’ are not as appropriate for the more general class
of vertex diagrams as they are for the class of trees.

Obviously, trees are vertex diagrams, and by Theorem 1 #n-bay
folded trees are complete decoding n-label vertex diagrams.

For an arbitrary connection X, . . ., X,, if X is directly con-
nected to X, for m > k& + 1, then Xy, . . ., X._ are superfluous;
the sequence with them deleted is still a connection. It is easy to see,
therefore, that in a diagram state, .S, if there is a connection between
W and W', then there is a connection between them in .S without any
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superfluous vertices or wires. A chain of a diagram output Q is a
sequence X, . . . , X, of wires and vertices which in S(Q) is a con-
nection of the input K and Q without any superfluous elements. Ob-
viously, the chain as defined in Section 2 is a chain in this sense.
IfX, ..., X.isachain C (where X, is the diagram input K and
X .. is a diagram output), then for any 4,7 such that 7 < j we say that
X, is earlier than X; in C. If X, is a vertex, then X,_; and X, are
wires of the vertex, one being the vertex-input of X; and the other being
one of the vertex-outputs of X;; we say that X, , is the early wire and
X iy1 the late wire of the vertex X, in the chain C. If the early wire
of a vertex in a chain is the vertex-input, then we say the vertex is
oriented forward in the chain; if the early wire is a vertex-output, then
the vertex is oriented backward. For example, the vertices labeled P,
in the chains of Q, and Q. in Fig. 10 are backward, whereas the vertex

R _qQ

Q2

Q

FiG. 10. FiG. 11.

labeled P, in the chains of Q; and Q. is forward in both those chains.
The vertex labeled P, is forward in all chains.

A progressive diagram is a complete decoding vertex diagram in
which each output Q has at least one chain in which all vertices are
forward. The folded tree is a progressive diagram while Fig. 10 is a
complete decoding vertex diagram which is not progressive.

An output Q of a progressive diagram may have more than one
chain in which all vertices are forward. It is convenient to pick out
for each output Q of a progressive diagram one such chain and refer to
it as C(Q), or the selected chain of the output.

Where Q and Q' are two distinct diagram outputs of a complete
decoding vertex diagram, we define V(Q,Q’) to be the latest vertex V
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in C(Q) whose early wire is in state 1 in S(Q’) and whose late wire
is in state 0 in S(Q’). Such a vertex must exist since the diagram
input K is in state 1 in S(¢’) but Q is in state 0 in S(Q’); the latest
wire of C(Q) which is in state 1 in S(Q’) must be the early wire of a
vertex in C(Q). For example, in Fig. 11 V(Q1,Q4) is the vertex labeled
P, in C(Q)) and V(Q4Q)) is the vertex labeled P; in C(Q.). This
example shows, incidentally, that V(Q,Q") and V(Q',Q) are not always
identical.

Whenever A is any set of outputs of a progressive diagram we let
D(A) be the set of just those vertices V(Q,0") where Q and Q' are both
in A. If A has only one output Q, then D(4) is the null set, since
there isno V(Q,0). For any set 4 and any output Q not ind, A + {0}
is the set whose members are Q and all the members of 4.

Theorem 16: 1f A is a set of one or more outputs of a progressive diagram,
and if Q is an output not in 4, then there is a vertex in D4 + {0})
which is not in D(4).

Proof: Let V be the latest vertex V(Q,Q") in C(Q) where Q' isin 4.
We shall prove that V is not in D(4), from which Theorem 16 follows
directly since ¥ must be in D(4 + {Q}).

We shall use the reductio ad absurdum method. Suppose that V
isin D(4). Then there are diagram outputs Q'" and Q" in A such that
Vis V(Q",Q"). Let x be the early wire of Vin C(Q) and y the late
wire. Since the diagram is progressive and since Vis in C (Q), x is the
vertex-input and v is a vertex-output of V. Let 2 be the other vertex-
output of V. Since Vis V(Q”,Q""), xisin C(Q") and either y or z is in
Cc(Q").

Case I. vyisin C(Q”). Then yisin state 1 in S(Q"). The latest
wire in C(Q) which is in state 1 in S(Q"), then, can be no earlier than y,
and hence V(Q,Q”) is later than V in C(Q), contrary to the original
stipulation that V be the latest such vertex in C Q).

Case II. z is in C(Q”). Since V is V(Q”,Q"’), x must be in
state 1 in S(Q"”), and z in state 0. This means that the setting of the
vertex Vin S(Q”") must be such that y is in state 1 in S(Q"""). Reason-
ing as in Case I, then, we can show that V(Q,Q"") islater than Vin C(Q),
which is likewise contradictory. This completes the proof of The-
orem 16.

Theorem 17: In a progressive diagram, if A is a set of % outputs then
there are at least & — 1 vertices in D(4).

Proof: Let A,, . . ., A, be a sequence of subsets of 4 such that
A.is A, A, has exactly ¢ members, and, if 2 = ¢ = k — 1, A;is a proper
subset of 4.... Thus, 4, has just one member besides those of A,
There is at least one vertex in D(A4.); and by Theorem 16 D(A4:.) has
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at least one more vertex than D(4,). Hence, D(A4,) has at least £ — 1
vertices.

Theorem 18: In the class of n-label progressive diagrams the n-bay
folded tree has a minimal number of vertices.

Proof: In an n-label complete decoding vertex diagram there are 2»
outputs. If A is the set of all these outputs, then D(4) must have at
least 2» — 1 vertices. Hence, the diagram must have at least 2~ — 1
vertices which is the number of vertices in the n-bay folded tree.

i

i

i

Fi1c. 12.

7. A GENERALIZATION OF THE FOLDED TREE

In this section we shall consider generalized folded trees containing
vertices, all of which have the same arbitrary number of vertex outputs
and possible settings. A vertex with m vertex-outputs is called an
m-order vertex and its m settings are the first setting, the second
setting, . . . , the mth setting. The sth vertex output is the 7th right-
hand wire from the top. (See Fig. 12.)

A generalized n-bay folded tree containing vertices of order m,
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called an n-bay m-order folded tree, obviously contains

n

Zmet = (mr —1)/(m — 1)

r=1

vertices. Thus an n-bay folded tree as previously defined has order 2.
The definition of “‘complete decoding” is the same as that given in
Section 2, and the generalization of Theorem 1 goes through quite easily.

It is not difficult to see what sort of physical realization an m-order
vertex can have, either in relay circuits or in electronic digital com-
puting circuits. In relay circuits the m-order vertex represents a
single-pole m-throw switch, for example, a stepping switch. In elec-
tronic digital computing circuits the m-order vertex can represent an
arrangement of m conjunction elements generalized from the arrange-
ment of Fig. 2.

As in Section 2 we ask the question, for a given loading sequence,
ai, . . ., @, is there an n-bay m-order folded tree having a, vertices
labeled Py, . . ., and @, vertices labeled P,? We have a generalized
condition of “admissibility”” which we can prove to be necessary and
which we conjecture to be sufficient if the sequence contains no zeros.
Our generalized condition of admissibility involves four conditions, as
compared with only three in Section 3.

A sequence satisfies the unit condition if there is a 1 somewhere in
the sequence. It satisfies the fofal sum condition if the sum of all the
terms is equal to

P
(mr = 1)/ (m — 1) = ¥ met
=1
where p is the number of non-zero terms. A sequence S satisfies the
partial sum condition if, for each & = p, the sum of the first k terms of
M (S) is greater than or equal to

(mt— 1)/ (m — 1) = Zi:mr‘l.

It satisfies the congruence condition if, for each term a;, ¢ = 1(mod
m — 1), that is, ¢, — 1is divisible by m — 1. A sequence is admissible
if it satisfies all four conditions. Note that admissibility as defined in
Section 3 is a special case (m = 2) of this more general notion of ad-
missibility, for any sequence of integers satisfies the congruence condi-
tion when m = 2. ’

Theorem 19: The loading sequence S(1,1) of an n-bay m-order folded
tree is an admissible sequence of # non-zero terms.

Proof: Obviously, S(1,1) must satisfy the unit condition and the
total sum condition. The reader can reread Theorem 8 and its proof
and see that it very easily generalizes from the case (m = 2) to prove
that S(1,1) satisfies the partial sum condition for any m. To demon-
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strate that S(1,1) satisfies the congruence condition we consider any
n-bay m-order folded tree having a,(1,1) vertices labeled P,. Suppose
that for each & = # there are k, vertices labeled P, in the Ath bay.
There are m" chains and each chain must have exactly one vertex

labeled P,.
But a vertex in the hth bay is on exactly m»—*+! chains. Hence (1)

the number of chains is equal to

n

Z khm"'—h-H = mn.
h=1

By elementary number theory we know that for any non-negative
integer x, m* = 1(mod m — 1). Thus, for each &, kym 1 = k;(mod
m — 1). Hence (2)

S kimritl = 3 ky(mod m — 1).
= h=1

h=1

From (1) and (2), since m» = 1(mod m — 1), it follows that
ay(1,1) = T k= 1(modm — 1).
h=1

This completes our proof of Theorem 19.

APPENDIX

Interchange and the Folded Tree

The phrase “folded tree” is appropriate because a folded tree can be obtained from the
standard tree of Section 2 by the technique of “folding.”” That technique, perhaps better
described as “interchange,” can be defined as follows. An n-bay labeled-tree 77(1,1) results
from an n-bay labeled-tree T(1,1) by an interchange of P; and Py in the minor tree T'(4,7) when
all the vertices labeled Py in T'(3,7) are labeled Py in T7(4,j) and vice versa, all other vertices
of T'(1,1) being labeled the same as in T(1,1).

By referring to the definition of “folded tree,” it is not difficult to see (1) that if 77(1,1)
is obtained from T'(1,1) by interchange, then 77(1,1) is a folded tree if and only if 7°(1,1) is.

It can also be shown (2) that for any n-bay folded trees T°(1,1) and T7(1,1) having the
same set of labels, 77(1,1) can be obtained from T(1,1) by a sequence of interchanges. For
suppose T(1,1), T2(1,1), . . . , is a sequence of distinct n-bay labeled-trees where 7:(1,1)
is 7°(1,1) and where 7.,1(1,1) is obtained from 73:(1,1) by the following process. Having
ordered all the vertices of 7,(1,1) in the sequence V,(1,1), V»(2,1), V»(2,2), V.(3,1), V=(3,2),
. . ., we consider the first vertex V.(7,7) which has a label different from the corresponding
vertex V'(4,j) of T'(1,1). Suppose that P, and Pi are the labels of V.(4,7) and V'(4,), re-
spectively. Then T;41(1,1) results from T,(1,1) by interchange of Pj and P in T:(7,7). Itis
easily seen that P; must label at least two vertices in T3(7,7), so the interchange can always
be made if 7:(1,1) is not identical with 77(1,1). Obviously, then the label of V,.:(4,j) and
the labels of all vertices of T::(1,1) which precede V:,1(7,7) in the ordering of vertices men-
tioned above are the same as the labels of the corresponding vertices of 77(1,1). It is not
difficult to see that the sequence T:(1,1), T2(1,1), . . . has a last member T,(1,1) which
must be 77(1,1).

Since a standard tree is a folded tree, it follows from (1) and (2) that a necessary and
sufficient condition that an n-bay labeled-tree with labels Py, . . . , P. be a folded tree is
that it be obtainable from the #-bay standard tree by a sequence of interchanges.

Everything asserted in this appendix is true also of trees all of whose vertices are of order
m>2. -



